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We investigate a stochastic epidemic model with time delays. By using Liapunov functionals, we
obtain stability conditions for the stochastic stability of endemic equilibrium.

1. Introduction

In [1], Zhen et al. introduced a deterministic SIRS model

Ṡ(t) = b − μS(t) − βS(t)
∫h

0
f(s)I(t − s)ds + αR(t),

İ(t) = βS(t)
∫h

0
f(s)I(t − s)ds − (

μ + c + λ
)
I(t),

Ṙ(t) = λI(t) − (
μ + α

)
R(t),

(1.1)

where S(t) is the number of susceptible population, I(t) is the number of infective members
and R(t) is the number of recovered members. b is the rate at which population is recruited,
μ is the death rate for classes S(t), I(t), and R(t), c is the disease-induced death rate, β is
the transmission rate, λ is the recovery rate, and α is the loss of immunity rate. Equation
(1.1) represents an SIRS model with epidemics spreading via a vector, whose incubation
time period is a distributed parameter over the interval [0, h]. h ∈ R

+ is the limit superior
of incubation time periods in the vector population. The f(s) is usually nonnegative and
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continuous and is the distribution function of incubation time periods among the vectors and∫h
0 f(s)ds = 1.

To be more general, the following model is formulated:

Ṡ(t) = b − μ1S(t) − βS(t)
∫h

0
f(s)I(t − s)ds + αR(t),

İ(t) = βS(t)
∫h

0
f(s)I(t − s)ds − (

μ2 + λ
)
I(t),

Ṙ(t) = λI(t) − (
μ3 + α

)
R(t).

(1.2)

The positive constants μ1, μ2, and μ3 represent the death rates of susceptibles, infectives, and
recovered, respectively. It is natural biologically to assume that μ1 < min{μ2, μ3}. If α = 0,
model (1.2)was considered in [2–5]. For α = 0 and fixed delay, the global asymptotic stability
of (1.2)was considered in [6].

The basic reproduction number for (1.2) is

R0 =
βb

μ1
(
μ2 + λ

) . (1.3)

If R0 ≤ 1, the system (1.2) has just one disease-free equilibrium E0 = (b/μ1, 0, 0); otherwise, if
R0 > 1, the disease-free equilibrium E0 is still present, but there is also a unique positive
endemic equilibrium E∗ = (S∗, I∗, R∗), given by S∗ = (μ2 + λ)/β, I∗ = (b(μ3 + α)(R0 −
1))/(R0[μ2(μ3 + α) + μ3λ]), R∗ = (λ/(μ3 + α))I∗.

2. Stability Analysis of the Atochastic Delay Model

Since environmental fluctuations have great influence on all aspects of real life, then it is
natural to study how these fluctuations affect the epidemiological model (1.2). We assume
that stochastic perturbations are of white noise type and that they are proportional to the
distances of S, I, R from S∗, I∗, R∗, respectively. Then the system (1.2) will be reduced to the
following form:

Ṡ(t) = b − μ1S(t) − βS(t)
∫h

0
f(s)I(t − s)ds + αR(t) + σ1(S(t) − S∗)ẇ1(t),

İ(t) = βS(t)
∫h

0
f(s)I(t − s)ds − (

μ2 + λ
)
I(t) + σ2(I(t) − I∗)ẇ2(t),

Ṙ(t) = λI(t) − (
μ3 + α

)
R(t) + σ3(R(t) − R∗)ẇ3(t).

(2.1)

Here, σ1, σ2, and σ3 are constants, and w(t) = (w1(t), w2(t), w3(t)) represents a three-dimen-
sional standard Wiener processes.

This system has the same equilibria as system (1.2). We assume that R0 > 1; we discuss
the stability of the endemic equilibriumE∗ of (2.1). The stochastic system (2.1) can be centered
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at its endemic equilibrium E∗ by the changes of variables x1 = S − S∗, x2 = I − I∗, x3 = R −R∗.
By this way, we obtain

ẋ1 = − (
βI∗ + μ1

)
x1 − βx1

∫h

0
f(s)x2(t − s)ds − βS∗

∫h

0
f(s)x2(t − s)ds + αx3 + σ1x1ẇ1(t),

ẋ2 = βI∗x1 − βS∗x2 + βx1

∫h

0
f(s)x2(t − s)ds + βS∗

∫h

0
f(s)x2(t − s)ds + σ2x2ẇ2(t),

ẋ3 = λx2 −
(
μ3 + α

)
x3 + σ3x3ẇ3(t).

(2.2)

In order to investigate the stability of endemic equilibrium of system (2.1), we study
the stability of the trivial solution of system (2.2).

First, consider the stochastic functional differential equation

dy(t) = h
(
t, yt

)
dt + g

(
t, yt

)
dw(t), t ≥ 0, y0 = ϕ ∈ H. (2.3)

Let {Ω, σ, P} be the probability space, {ft, t ≥ 0} the family of σ-algebra, ft ∈ σ,H the space of
f0-adapted functions ϕ(s) ∈ Rn, s ≤ 0, ‖ϕ‖ = sups≤0|ϕ(s)|,w(t) the m-dimensional ft-adapted
Wiener process, h(t, yt) the n-dimensional vector, and g(t, yt) the n ×m-dimensional matrix,
both defined for t ≥ 0. We assume that (2.3) has a unique global solution y(t;ϕ) and that
h(t, 0) = g(t, 0) ≡ 0. Then, (2.3) has the trivial solution y(t) ≡ 0 corresponding to the initial
condition y0 = 0.

Definition 2.1. The trivial solution of (2.3) is said to be stochastically stable if, for every ε ∈
(0, 1) and r > 0, there exists a δ > 0 such that

P
{∣∣y(t;ϕ)∣∣ > r, t ≥ 0

} ≤ ε (2.4)

for any initial condition ϕ ∈ H satisfying P{‖ϕ‖ ≤ δ} = 1.

Definition 2.2. The trivial solution of (2.3) is said to be mean square stable if, for every ε > 0,
there exists a δ > 0 such that E|y(t;ϕ)|2 < ε for any t ≥ 0 provided that sups≤0E|ϕ(s)|2 < δ.

Definition 2.3. The trivial solution of (2.3) is said to be asymptotically mean square stable if it
is mean square stable and limt→∞E|y(t;ϕ)|2 = 0.

The differential operator associated to (2.3) is defined by the formula

LV
(
t, ϕ

)
= lim sup

Δ→ 0

Et,ϕV
(
t + Δ, yt+Δ

) − V
(
t, ϕ

)
Δ

, (2.5)

where y(s), s ≥ t is the solution of (2.3) with initial condition yt = ϕ ∈ H, and V (t, ϕ) is a
functional defined for t ≥ 0.

If V (t, ϕ) = V (t, ϕ(0), ϕ(s)), s < 0, we can define the function Vϕ(t, y) = V (t, ϕ) =
V (t, yt) = V (t, y, y(t + s)), s < 0, ϕ = yt, y = ϕ(0) = y(t). Let us define C1,2 as a class of
function V (t, ϕ) so that for almost all t ≥ 0, the first and second derivatives with respect
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to y of Vϕ(t, y) are continuous, and the first derivative with respect to t is continuous and
bounded. Then the generating operator L of (2.3) is defined by

LV
(
t, yt

)
=

∂Vϕ

(
t, y

)
∂t

+ hT(t, yt

)∂Vϕ

(
t, y

)
∂y

+
1
2
trace

[
gT(t, yt

)∂2Vϕ

(
t, y

)
∂y2

g
(
t, yt

)]
. (2.6)

The following theorems [7] contain conditions under which the trivial solution of (2.3)
is asymptotically mean square stable and stochastically stable.

Theorem 2.4. If there exist a functional V (t, ϕ) ∈ C1,2 such that

c1E
∣∣y(t)∣∣2 ≤ EV

(
t, yt

) ≤ c2sup
s≤0

E
∣∣y(t + s)

∣∣2, ELV
(
t, yt

) ≤ −c3E
∣∣y(t)∣∣2 (2.7)

for ci > 0, i = 1, 2, 3. Then, the trivial solution of (2.3) is asymptotically mean square stable.

Theorem 2.5. Let there exist a functional V (t, ϕ) ∈ C1,2 such that

c1
∣∣y(t)∣∣2 ≤ V

(
t, yt

) ≤ c2sup
s≤0

∣∣y(t + s)
∣∣2, LV

(
t, yt

) ≤ 0 (2.8)

for ci > 0, i = 1, 2 and for any ϕ ∈ H such that P{‖ϕ‖ ≤ δ} = 1, where δ > 0 is sufficiently small.
Then, the trivial solution of (2.3) is stochastically stable.

Consider the linear part of (2.2)

ẏ1 = − (
βI∗ + μ1

)
y1 − βS∗

∫h

0
f(s)y2(t − s)ds + αy3 + σ1y1ẇ1(t),

ẏ2 = βI∗y1 − βS∗y2 + βS∗
∫h

0
f(s)y2(t − s)ds + σ2y2ẇ2(t),

ẏ3 = λy2 −
(
μ3 + α

)
y3 + σ3y3ẇ3(t).

(2.9)

Theorem 2.6. Assume that R0 > 1 and the parameters of system (2.2) satisfy conditions

0 ≤ σ2
1 < 2μ1 −

α
(
1 + q

)
q

,

0 ≤ σ2
2 <

q
(
2βS∗ − α

)
1 + q

=
q
[
2
(
μ2 + λ

) − α
]

1 + q
,

0 ≤ σ2
3 < 2μ3 + α − λ,

√
2αq

2μ3 + α − λ − σ2
3

< min

{(
2μ1 − σ2

1

)
q − α

(
1 + q

)
βS∗ , p∗

}
,

(2.10)

where p∗ = (−βS∗ +
√
((βS∗)2 − 4λ[(1 + q)σ2

2 − 2qβS∗ + qα]))/2λ. Then, the trivial solution of sys-
tem (2.9) is asymptotically mean square stable.
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Proof. Set

V1 = py2
1 + y2

2 + p2y2
3 + q

(
y1 + y2

)2 (2.11)

for some p > 0 and q > 0. Let L be the generating operator of the system (2.9), then

LV1 =

[
−(βI∗ + μ1

)
y1 − βS∗

∫h

0
f(s)y2(t − s)ds + αy3

][
2py1 + 2q

(
y1 + y2

)]

+

[
βI∗y1 − βS∗y2 + βS∗

∫h

0
f(s)y2(t − s)ds

][
2y2 + 2q

(
y1 + y2

)]

+ 2p2y3
[
λy2 −

(
μ3 + α

)
y3
]
+
(
p + q

)
σ2
1y

2
1 + 2qσ1σ2y1y2 +

(
1 + q

)
σ2
2y

2
2 + p2σ2

3y
2
3

=
[(

σ2
1 − 2μ1

)(
p + q

) − 2pβI∗
]
y2
1 +

(
1 + q

)(
σ2
2 − 2βS∗

)
y2
2

+ p2
[
σ2
3 − 2

(
μ3 + α

)]
y2
3 + 2α

(
p + q

)
y1y3 + 2

(
qα + p2λ

)
y2y3

+ 2
[(
σ1σ2 − βS∗ − μ1

)
q + βI∗

]
y1y2 + 2βS∗(y2 − py1

) ∫h

0
f(s)y2(t − s)ds.

(2.12)

Let

q =
βI∗

βS∗ + μ1 − σ1σ2
. (2.13)

Since σ1σ2 ≤ (σ2
1 +σ

2
2)/2 < μ1 +βS∗, it means that q > 0. By using the inequality 2|uv| ≤ u2

1 +u
2
2

and 2αpy1y3 ≤ αp(y2
1/p + py2

3) = αy2
1 + αp2y2

3, we find that

LV1 ≤
[(

σ2
1 − 2μ1

)
q + α

(
1 + q

)
+ pβS∗

]
y2
1

+
[(
1 + q

)(
σ2
2 − 2βS∗

)
+ qα + p2λ + βS∗

]
y2
2

+
[
p2
(
σ2
3 − 2μ3 − α

)
+ 2αq + p2λ

]
y2
3

+
(
1 + p

)
βS∗

∫h

0
f(s)y2

2(t − s)ds.

(2.14)

We now choose the functional V2 to eliminate the term with delay

V2 =
(
1 + p

)
βS∗

∫h

0
f(s)

∫ t

t−s
y2
2(τ)dτds. (2.15)
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Then for functional V = V1 + V2, we obtain

LV ≤
[(

σ2
1 − 2μ1

)
q + α

(
1 + q

)
+ pβS∗

]
y2
1

+
[
p2λ + pβS∗ +

(
1 + q

)
σ2
2 − 2qβS∗ + qα

]
y2
2

+
[
p2
(
σ2
3 − 2μ3 − α + λ

)
+ 2αq

]
y2
3 .

(2.16)

If the first condition of (2.10) holds, then (σ2
1 −2μ1)q+α(1+q) < 0. Set F(p) = p2λ+pβS∗ +(1+

q)σ2
2 −2qβS∗+qα, and if the second condition of (2.10) is true, then F(0) < 0, thus F(p) = 0 has

one positive root p∗ = (−βS∗ +
√
((βS∗)2 − 4λ[(1 + q)σ2

2 − 2qβS∗ + qα]))/2λ, for any 0 < p < p∗,
F(p) < 0. From (2.10), there exists a p > 0, such that

√
2αq

2μ3 + α − λ − σ2
3

< p < min

{(
2μ1 − σ2

1

)
q − α

(
1 + q

)
βS∗ , p∗

}
. (2.17)

Therefore, there exists a c > 0 such that LV ≤ −c|y|2, where y = (y1, y2, y3). From Theorem 2.4,
we can conclude that the zero solution of system (2.9) is asymptotically mean square stable.
The theorem is proved.

Remark 2.7. If α = 0, then the system (2.1) becomes an SIR model, which has been discussed
in [8]. The conditions (2.10) of Theorem 2.6 reduce to

0 ≤ σ2
1 < 2μ1, 0 ≤ σ2

2 <
2q

(
μ2 + λ

)
1 + q

, 0 ≤ σ2
3 < 2μ3 − λ. (2.18)

The constant p in the proof of Theorem 2.6 is 0 < p < min{((2μ1 − σ2
1)q)/(βS

∗), p∗1} with

p∗1 = (−βS∗ +
√
((βS∗)2 − 4λ[(1 + q)σ2

2 − 2qβS∗]))/2λ. The first two conditions in (2.18) are the
same as those in Theorem 7 of [8]. Since for α > 0, we use different inequality to zoom up the
term 2(qα + p2λ)y2y3, then the third condition in (2.18) is different from that in Theorem 7 of
[8].

Theorem 2.8. Assume that R0 > 1 and that conditions (2.10) are satisfied. Then the trivial solution
of system (2.2) is stochastically stable.

The proof is omitted because of the fact that the initial system (2.2) has a nonlinearity
order more than one, then the conditions sufficient for asymptotic mean square stability of
the trivial solution of the linear part of this system are sufficient for stochastic stability of the
trivial solution of the initial system [9, 10]. Thus, if the conditions (2.10) hold, then the trivial
solution of system (2.2) is stochastically stable.

3. Conclusions

In this paper, we have extended the well-known SIRS epidemic model with time delays by
introducing a white noise term in it. We want to examine how environmental fluctuations
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affect the stability of system (1.2). By constructing Liapunov functional, we obtain sufficient
conditions for the stochastic stability of the endemic equilibrium E∗. Our main results extend
the corresponding results in paper [8], which discussed an SIR epidemic model.
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