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One of the most important assessment indicators of computer virus infections is epidemic tipping
point. Although many researchers have focused on the effects of scale-free network power-law
connectivity distributions on computer virus epidemic dynamics and tipping points, few have
comprehensively considered resource limitations and costs. Our goals for this paper are to show
that (a) opposed to the current consensus, a significant epidemic tipping point does exist when
resource limitations and costs are considered and (b) it is possible to control the spread of a
computer virus in a scale-free network if resources are restricted and if costs associated with
infection events are significantly increased.

1. Introduction

Research on the epidemic dynamics of computer viruses has increasingly incorporated Watts
and Strogatz’s [1] description of small-world networks (characterized by tightly clustered
connections and short paths between node pairs) and Barabási and Albert’s [2] insights
regarding scale-free networks marked by power-law connectivity distributions. The list of
researchers using network approaches to computer virus models and analyses also includes
Kuperman and Abramson [3], Newman [4, 5], Newman and Watts [6], Pastor-Satorras and
Vespignani [7–11], Watts [12], and X. Yang and L. X. Yang [13]. All of these investigators have
noted that the topological properties underlying communication networks exert considerable
influence on computer virus epidemic dynamics and spreading characteristics and support
subtle analyses that non-network-directed approaches cannot.
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A central issue for researchers using a network analysis approach is whether or not
tipping points exist when computer viruses are spread via the Internet [7–11, 14–17]. Accord-
ing to Pastor-Satorras and Vespignani [7–11], Internet-based viruses and worms do not have
positive epidemic tipping points, other researchers of epidemic dynamics and tipping points
in scale-free networks also consistently argue that, regardless of spreading capability, all
Internet-based computer viruses have high probabilities of stability and survival [18–21].
Note that new computer viruses are constantly emerging on the Internet, but the majority
disappear almost immediately, and a tiny minority achieve epidemic status. This observation
serves as our motivation to take a more detailed look at daily interaction and communication
process limitations among users of e-mail, instant messaging software, online social network
platforms, USB flash drives, and smart phones rather than the topological power-law con-
nectivity distribution properties of scale-free communication networks that have served as
the focus of many network-directed epidemic studies published in the past decade.

Resource limitations and interaction costs are two Internet-based daily communication
process factors that have been overlooked. We acknowledge the importance of Pastor-
Satorras and Vespignani’s work on scale-free networks—their ideas have inspired numerous
studies on epidemic tipping points and antivirus strategies. However, closer inspection
of their mathematical analyses and simulation results reveals two incorrect assumptions:
Internet-based daily interactions and communication processes are cost-free, and the impacts
of resource limitations and interaction costs are minimal. Both assumptions are beneficial
in terms of mathematical analyses and hypothesis testing and suitable for studying simple
scenarios of malicious scripts spread by e-mail attachments sent to large numbers of
recipients. However, they lose accuracy in situations where viruses are spread via attach-
ments sent to few recipients, peer-to-peer resource sharing, Internet downloads, multimedia
messaging service attachments, or Bluetooth transfers.

For this project we simulate and analyze the influences of resources and costs on com-
puter virus epidemic dynamics and tipping points. Our four main findings are as follows
(a) a significant epidemic tipping point exists when resource limitations and costs are taken
into consideration, with the tipping point exhibiting a lower bound; (b) when interaction
costs increase or usable resources decrease, epidemic tipping points in scale-free networks
grow linearly while steady density curves shrink linearly; (c) regardless of whether Internet
user resources obey delta, uniform, or normal distributions, they retain the same epidemic
dynamics and tipping points as long as the average value of those resources remains
unchanged across different scale-free networks; (d) the spread of epidemics in scale-free
networks remains controllable as long as resources are properly restricted and intervention
strategy investments are significantly increased. We believe these conclusions can assist
computer scientists in their efforts to understand the epidemic dynamics and tipping points
of computer virus infections and to identify potential immunization and virus control
strategies [22, 23].

2. Agent-Based Epidemic Simulation Model

To simulate behavioral and transformative results arising from agent interactions, we selected
the Susceptible-Infectious-Susceptible (SIS) state transfer concept as the core feature of our
proposed model (Figure 1). (Our simulations are available as Java applications. For source
code and binary executables, please contact the corresponding author.) Two characteristics of
an infectious agent (representing computers in a communication network) at time t are that
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Figure 1: Susceptible-Infectious-Susceptible (SIS) state transfer diagram.

it is infected at time (t − 1) and is capable of infecting others. An agent that is vulnerable to
a computer virus but has not yet been infected is considered a susceptible agent. The most
common infection mechanism is contact with an infected agent; recovery is determined as a
specific probability. A recovered agent immediately becomes susceptible again.

The agent-consumable resources in our proposed model have five reasonable pro-
perties:

(a) they are finite (e.g., daily CPU/network usage time and communication bandwidth
for uploads/downloads);

(b) they can be temporarily exhausted (e.g., elapsed time chatting online);

(c) they are nonreproducible;

(d) they can recover or regenerate;

(e) consumption of one kind can entail consumption of other kinds, thus reducing the
total amount of available resources (e.g., large attachments require large amounts
of upload/download time and communication bandwidth).

Based on these properties, a complex network G(N,E) is formulated consisting of
n = |N| agents and m = |E| links (indicating interactions and contacts between two agents,
with those having direct connections labeled “neighbors”). Only a small number of agents
are given infectious status at the beginning of each simulation run; all others are designated
as susceptible. Also at the beginning of each time step, usable resources for each agent ai are
reset to R(ai), where 0 ≤ R(ai) ≤ Rmax, meaning that all agents are either renewed and/or
receive supplemental resources. In our later experiments, the statistical distribution of usable
resources can be delta (fixed value rconstant), uniform, normal, or power-law, as long as the
average 〈r〉 value of agent resources satisfies the following equation:

〈r〉 =
∑n

i=1 R(vi)
n

= rconstant. (2.1)

Agents randomly interact with multiple neighbors during each time step, with usable
resources and costs consumed during each interaction. Each agent ai interacts with a
randomly selected neighbor agent aj . Regardless of the interaction result, agents ai and aj

expend interaction costs c(ai), c(aj), where 0 ≤ c(ai) ≤ R(ai) and 0 ≤ c(aj) ≤ R(aj), and their
resources decrease accordingly. If R(ai) < c(ai) after an interaction, that agent cannot interact
with other neighbors; otherwise, agents continue to randomly select other neighboring agents
for interactions until their resources are depleted.
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Figure 2: Simulation flowchart.

The epidemiological status of every agent is determined at each time step using a
combination of behavioral rules, original status, the statuses of neighbors, infection rate ν,
and recovery rate γ . When an infected agent ai and adjacent susceptible agent aj interact,
whether or not aj is infected by ai is determined by infection rate ν, and agent ai recovery
and return to susceptibility is determined by recovery rate γ . Spreading rate λ is defined as
ν/γ ; generally, γ = 1 and λ = ν. We defined ρ(t) as the density of infected agents present at
time step t; when time step t becomes infinitely large, ρ represents a steady infected density. In
the interest of robustness, all epidemic dynamics and tipping points discussed in this paper
represent average values for 30 runs. A simulation flowchart is presented in Figure 2, and
experimental parameters are described in Tables 1, 2, 3, and 4.
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Table 1: Epidemic parameters.

Parameter Default value Description

ν
Infection rate. Default range from 0.01 to 0.5 in 0.01 steps when recovery
rate δ = 1.0

δ 1.0 Recovery rate
λ Effective spreading rate = infection rate/recovery rate

Table 2: Network parameters.

Parameter Default value Description

NetworkType SFN

According to network type, a complex network for our proposed
epidemic model can be built in the same manner as Watts and Strogatz’s
[1] small-world homogeneous network and Barabási and Albert’s [2]
scale-free network. If NetworkType = SWN, a small-world network is
built; if NetworkType = SFN, a scale-free network is built

N Node set of a complex network

E Link set of a complex network

n n = |N| represents total number of nodes (agents) in a complex network

m m = |E| represents total number of links in a complex network

Rewiring rate 0.01

Specific parameter for Watts and Strogatz’s (1998) [1] small-world
network. Generating such a network begins with a 1-dimensional
regular network with periodic boundary conditions. Each link is
randomly rewired to a new node according to a rewiring rate probability

3. Epidemic Model Analysis

Our proposed model is expressed as

dρk(t)
dt

= −ρk(t) + λSk

[
1 − ρk(t)

]
θ
[{
ρk(t)

}]
, (3.1)

where Sk is the minimum value for the ratio between agent’s resources (R) in relation to
interaction costs (c) and its connectivity (k). With the exception of Sk, the symbols used
here are consistent with those used by Pastor-Satorras and Vespignani in their discussions
of spreading dynamics. ρk(t) � 1 is the probability that a node with k links is infected at
time t ≥ 0 (neglecting the higher order). λ is a predetermined constant representing the
spreading capability of specific computer viruses, defined as the ratio between the rates
at which healthy agents in a population become infected and infected agents recover. The
term {ρk(t)} denotes the set containing all ρk(t) for all positive k, as well as the alternative
representation {ρ1(t), ρ2(t), ρ3(t), . . .}. Accordingly θ[{ρk(t)}] is the probability that any given
agent will be linked to an infected agent. According to Pastor-Satorras and Vespignani, this
probability is proportional to the infection rate and can therefore be reduced to θ(λ).

In (3.2) we define ρk as the steady state of ρk(t) by solving the stationary condition
dρk(t)/dt = 0. Substituting θ(λ) in that equation,

θ =
1

〈k〉
∑

k

kP(k)
λSkθ

1 + λSkθ
. (3.2)
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Table 3: Experimental parameters.

Parameter Default value Description

Time step limit 300 Total number of time steps during each simulation
InitialStatus I 10% × |N| Initial number of infected nodes at the beginning of

epidemic simulation

Table 4: Agent-related parameters.

Parameter Default value Description
c 1 Costs per communication/interaction
R 16 Agent resources per time step
NowState Current epidemiological state
NowState Epidemiological state during the following time step

As shown, a trivial solution is θ = 0. Next, inequality (3.3) is derived based on the
possibility that the right-hand side of (3.2) has a nonsingular solution:

d

dθ

(
1

〈k〉
∑

k

kP(k)
λSkθ

1 + λSkθ

)∣
∣
∣
∣
∣
θ=0

≥ 1. (3.3)

Without using a concave function as an alternative proof, we show that (3.3) is a
contradiction. Assuming that (3.3) does not hold, it should be expressed as

d

dθ

(
1

〈k〉
∑

k

kP(k)
λSkθ

1 + λSkθ

)∣
∣
∣
∣
∣
θ=0

< 1. (3.4)

After defining

F(θ) = θ − 1
〈k〉

∑

k

kP(k)
λSkθ

1 + λSkθ
, (3.5)

we observe that a trivial solution for F(0) = 0 is θ = 0. Next, note that the first derivative of
F(θ) at 0 with respect to θ is larger than 0:

d

dθ
F(θ)

∣
∣
∣
∣
θ=0

= 1 − d

dθ

(
1

〈k〉
∑

k

kP(k)
λSkθ

1 + λSkθ

)∣
∣
∣
∣
∣
θ=0

> 0. (3.6)

However, this implies that nontrivial solutions for F(θ) = 0 do not exist for any
θ > 0, which contradicts inequality (3.4). We therefore obtained λc = 〈k〉/ΣkkP(k)Sk as a
conclusion regarding epidemic tipping points. By deriving the above conclusion in advance,
we obtained a separate conclusion for the lower epidemic tipping point boundary, λc ≥ 1/
(((R/c)2/〈k〉) + (R/c)) (as 〈k〉 → ∞, λc is at minimum equal to c/R), which also implies
that resources and interaction costs significantly affect epidemic tipping point values.
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Table 5: Parameters for eight scale-free networks built using different numbers of nodes and average vertex
degrees.

Barabási and Albert’ [2] scale-free networks
Description SFN SFN SFN SFN SFN SFN SFN SFN

no. 1 no. 2 no. 3 no. 4 no. 5 no. 6 no. 7 no. 8
Number of nodes 1,000 1,000 2,000 2,000 10,000 10,000 20,000 20,000
Number of edges 2,000 4,000 4,000 8,000 20,000 40,000 40,000 80,000
Average vertex degrees 4 8 4 8 4 8 4 8
Exponent of power-law distribution ≈2.4 ≈2.4 ≈2.4 ≈2.4 ≈2.4 ≈2.4 ≈2.4 ≈2.4
Average clustering coefficient ≈0.02 ≈0.03 ≈0.01 ≈0.02 ≈0.00 ≈0.00 ≈0.00 ≈0.00
Average degree of separation ≈4.2 ≈3.2 ≈4.4 ≈3.4 ≈5.1 ≈3.9 ≈5.3 ≈4.1

Since λc represents the tipping point at which a computer virus becomes epidemic,
managing its value should be a primary concern for computer scientists and antivirus experts.
In summary, the lower bound of epidemic tipping point λc decreases when interaction cost c
decreases or average resource R increases. Accordingly, agent’s available resources increase
when c/R decreases, thereby enhancing its ability to contact most other agents via underlying
communication networks. This result supports existing knowledge about immunization and
antivirus strategies: restricting a computer’s resources increases the epidemic tipping point.
Neglecting resources makes R infinitely large, meaning that they are inexhaustible and that
the epidemic tipping point λc will continue to approach 0 as long as the average number
of links is sufficiently large. Our proposed model is therefore identical to Pastor-Satorras
and Vespignani’s model in that a computer virus has the potential to achieve epidemic
proportions even when the number of infected agents is very small.

Since an infection event requires sufficient resources, controlling the c/R ratio can
increase the epidemic tipping point λc and decrease the steady-state density ρ. In contrast,
computer viruses can spread very quickly via small e-mail attachments distributed to a
large number of recipients because they can be simultaneously transmitted to many sites.
Affected areas can be very large over a short time period, with disastrous results in terms
of lost data, work delays, and money. Initially designed to slow the spread of a com-
puter virus, a throttling strategy [24] for containing virus infections places restrictions on
uploads/downloads from remote servers (e.g., one gigabyte per day)—in other words,
resources are purposefully limited in order to increase the epidemic tipping point. Another
throttling strategy is charging upload/download fees for exceeding daily limitations—that
is, increasing communication costs.

4. Experimental Results

Toward the goals of determining the reliability and robustness of our results and ensuring
the applicability of our conclusions to scale-free networks whose connectivity distribution
probabilities satisfy P(k) ∼ k−α where 2 < α ≤ 3, we built 8 scale-free (Table 5) and 8
small-world networks (Table 6), all containing different numbers of nodes and links. All
sensitivity analysis experiments were simulated using these networks in order to determine
the consistency of our results; no weakening or side effects were observed when node
and link numbers were changed. Except for node and link numbers (resulting in different
average degrees of separation), all parameter settings for the 8 scale-free networks were
identical (Table 5). Those networks can be classified in terms of four categories based on node



8 Discrete Dynamics in Nature and Society

Table 6: Parameters for eight small-world networks built using different numbers of nodes and average
vertex degrees.

Watts and Strogatz’ [1] small-world networks with rewiring rate = 0.01

Description SWN SWN SWN SWN SWN SWN SWN SWN
no. 1 no. 2 no. 3 no. 4 no. 5 no. 6 no. 7 no. 8

Number of nodes 1,000 1,000 2,000 2,000 10,000 10,000 20,000 20,000
Number of edges 2,000 4,000 4,000 8,000 20,000 40,000 40,000 80,000
Average vertex degrees 4 8 4 8 4 8 4 8
Average clustering coefficient ≈0.28 ≈0.37 ≈0.28 ≈0.37 ≈0.28 ≈0.37 ≈0.28 ≈0.37
Average degree of separation ≈7.0 ≈4.4 ≈7.9 ≈4.9 ≈9.9 ≈6.0 ≈10.6 ≈6.5

number (1,000/2,000/10,000/20,000) or two categories based on average vertex degree (4 or
8 outgoing links per node). Scale-free simulation network number 3 was designated as our
default; unless otherwise indicated, it was used to generate all results reported and discussed
in this paper. According to those results, our conclusions are not limited to our proposed
agent-based simulation models based on the 8 scale-free networks.

We used the first simulation experiment to show that a computer virus spreading in a
scale-free network has a nonzero, positive, and significant epidemic tipping point if resources
and interaction costs are taken into consideration—a conclusion that conflicts with those
reported by past researchers. To evaluate how node and link numbers in scale-free networks
affect epidemic tipping points, all experiments were simulated using scale-free (Table 5) or
small-world (Table 6) networks with different numbers of nodes and links. The value of
usable resources per agent was reset to 16 units at the beginning of each time step. Daily
interaction and communication process costs were designated as one unit, accounting for
6.25% of agent’s total usable resources.

We used three types of complex networks to analyze relationships between effective
spreading rate and steady density for our proposed model: small-world, scale-free without
interaction costs, and scale-free with limited resources and interaction costs. As shown
in Figure 3, the 8 simulation suites generated consistent results that did not become
contradictory when node and link numbers were adjusted, suggesting that our results can be
applied to different scale-free networks used to simulate computer virus diffusion scenarios.
The curvesmarkedwith triangles indicate that the scale-free network version of our proposed
model reached a 0 level of steady density in a continuous and smooth manner when the
effective spreading rate was decreased, indicating the absence of an epidemic tipping point
without interaction costs. The curves marked with squares indicate that computer viruses do
have epidemic tipping points in small-world homogeneous networks. In a similar manner,
the curves marked with circles also indicate that computer viruses have significant epidemic
tipping points in scale-free networks when resources and interaction costs are considered
(approximately 0.14 in Figures 3(a), 3(c), 3(e), and 3(g) and 0.10 in Figures 3(b), 3(d), 3(f),
and 3(h)). According to these results, resources, interaction costs, and average vertex degree
impact epidemic dynamics and tipping points in scale-free networks to amuch greater degree
than node and link numbers.

Our second simulation focused on relationships among epidemic tipping point, steady
density curve, and the ratio of interaction costs to an agent’s usable resources (hereafter
referred to as “the ratio”). To analyze the influences of the ratio on the other two factors,
we employed 10 usable resource values (4, 8, 12, 16, 20, 24, 28, 32, 36, and 40 units) and
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Figure 3: Relationship between effective spreading rate and steady density in our epidemic model
according to three types of complex network platforms: small world; scale-free without interaction costs;
scale-free with limited resources and interaction costs.



10 Discrete Dynamics in Nature and Society

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6

ρ
(%

)

λ

BA scale-free network

Individual resources = 40 units per time step
Individual resources = 32 units per time step
Individual resources = 24 units per time step
Individual resources = 16 units per time step
Individual resources = 8 units per time step

Nodes = 2000, edges = 4000, avg. degrees = 4

No transmission costs

Transmission costs= 1 unit per contact

(a)

0

0.1

0.2

0.3

0.4

0 5 10 15 20 25

E
pi

d
em

ic
 th

re
sh

ol
d
λ
c

(c
ri

ti
ca

l p
oi

nt
)

Transmission costs/

individual usable resources (%)

(b)

Figure 4: Simulation results for scale-free network #3. (a) The amount of agent’s resources affects density
curves and epidemic tipping points. (b) Linear relationship between the ratio of interaction costs to agent’s
resources and epidemic tipping point.

assigned daily interaction and communication process costs as single units accounting for
25%, 12.5%, 8.33%, 6.25%, 5%, 4.17%, 3.57%, 3.13%, 2.78%, and 2.5% of the agent’s usable
resources, respectively.

As shown in Figure 4(a), the epidemic tipping point significantly increased as the
ratio grew. For instance, when the value of agent’s usable resources was set at 8 units
at the beginning of each time step, the epidemic tipping point was approximately 0.22—
significantly larger than for a small-world network with the same number of nodes and links
(Figure 3, curve marked with squares) and same average vertex degree (Figures 3(a), 3(c),
3(e), and 3(g)). The opposite was also true: when the value of agent’s usable resources was
set at 40 units at the beginning of each time step, the shape of the density curve was very
close to that of the scale-free network without interaction costs (Figure 4(a), solid line); in
addition, the epidemic tipping point decreased to 0.09. As shown in Figure 4(b), we observed
(a) a linear correlation between the epidemic tipping point and the ratio, and (b) that the
density curve grew at a slower rate as the ratio increased (Figure 4(a))—that is, the ratio and
density exhibited a negative linear correlation when the effective spreading rate exceeded the
epidemic tipping point. According to these results, when interaction costs increased or agent
resources decreased, the epidemic tipping point of a computer virus spread via the Internet
grew linearly, and density curve shrank linearly.

A comparison of results from our mathematical model and second simulation is
presented in Figure 5. We used several probability degrees for P(k) ∼ k−α and found that,
at an α of 2.7 or 2.65, the values for both curves exceeded those derived from the simulation
experiment. The two curves matched at an α of 2.4.

The motivation for the third simulation was to investigate the effects of the statistical
distribution of an agent’s usable resources on the epidemic dynamics and tipping points
of computer viruses spread via the Internet. Our specific goal was to determine how
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different statistical distribution types (delta, uniform, normal, or power law) and distribution
parameters (average value and standard deviation in a normal distribution, or number of
values and range in a uniform distribution) affect the steady density curves of viruses in
contexts of limited agent resources and interaction costs (Figures 6(a)–6(c) and 7(a)–7(c)).

The density curves marked with diamonds, crosses, and circles in Figures 6(a) and
7(a), respectively, represent delta (fixed value = 16), uniform, and normal resource distri-
butions; parameters are shown in Figures 6(b) and 7(b). The results indicate nearly
identical epidemic tipping points and overlapping density curves (indicating no statistically
significant differences)when the average values of usable resources were equal. However, as
shown in Figures 6(c) and 7(c), when those same resources represented a power-law distri-
bution (i.e., the majority of agents had very limited resources while a small number had large
amounts) and no correlation existed between the total amount of agent’s usable resources
and vertex degree (number of neighboring nodes), the resulting dashed density curve grew
more slowly compared to those for the other three distribution types, even when they all
shared the same epidemic tipping point.

As shown in Figures 5 and 6, the same results emerged as long as the average usable
resource values were identical. Note that density curves and epidemic tipping points were
very similar across the distribution types, regardless of whether the resources had a uniform
distribution with a range of 2 or 3 or a normal distribution with a standard deviation of 2 or
3 (Figures 6(b) and 7(b)). According to the density curves shown in Figures 6(a) and 7(a),
as long as researchers ensure that usable resources do not reflect a power-law distribution, at
the beginning of each time step they can assign usable resources for each agent as the fixed
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Figure 6: Simulation results for Scale-free network #3. (a) Effects of different statistical distribution types
for agent resources on the density curves and epidemic tipping points of computer viruses spread within
scale-free networks. (b) Uniform (n = 5, r = 2) and normal (standard deviation = 2) distributions of agent
resources with an average 〈r〉 value of 16. (c) Power-law distribution (degree = 3) of agent resources.

average value 〈r〉 of the statistical distribution derived from the real-world scenario being
studied.

5. Conclusion

Ever since Watts and Strogatz [1] proposed their small-world network model and Barabási
and Albert [2] introduced their scale-free network model, computer scientists and antivirus
experts have used network models and agent-based epidemic simulations to analyze com-
puter viruses in detail. To simplify their experiments, researchers have tended to overlook
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Figure 7: Simulation results for Scale-free network #3. (a) Effects of different statistical distribution types
for agent resources on the density curves and epidemic tipping points of computer viruses spread within
scale-free networks. (b) Uniform (n = 5, r = 3) and normal (standard deviation = 3) distributions of
individual resources with an average 〈r〉 value of 16. (c) Power-law distribution (degree = 3) of agent
resources.

resource limitations and interaction costs, both of which exert significant impacts on epidemic
dynamics and tipping points. In this paper we described five characteristics of network
resources and proposed an agent-based epidemic simulation model for investigating how
resources and interaction costs influence the epidemic dynamics and tipping points of com-
puter viruses in scale-free networks. According to results from our first set of experiments,
resources, interaction costs, and average vertex degree are among those factors exerting
significant impacts on epidemic tipping points, but node and link numbers were found to
have little impact. Results from our second experimental set provide insight into how the ratio
of single infection event costs to total amount of agent’s resources affects density curves and
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epidemic tipping points. We found that, when interaction costs increased or when the total
amount of agent’s resources decreased, the epidemic tipping point of an infection event in a
scale-free network grew, and density decreased at certain transmission rates. Results from our
third set of experiments indicate that—regardless of delta, uniform, or normal distribution—
they have nearly identical density curves and epidemic tipping points as long as average
resource values remain the same across different networks.

We believe these conclusions can be used to simplify the task of constructing both basic
and abstract computer models and can support the efforts of computer scientists and anti-
virus experts to analyze core questions tied to epidemic dynamics and computer virus
spreading scenarios and to design and enact effective virus control strategies at various
intrusion levels.
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