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We extend the existing techniques to study semidiscrete adaptive finite element approximation
schemes for a constrained optimal control problem governed by parabolic integrodifferential
equations. The control problem involves time accumulation and the control constrain is given
in an integral obstacle sense. We first prove the uniqueness and existence of the solution of this
optimal control problem. We then derive the upper a posteriori error estimators for both the state
and the control approximation, which are useful indicators in adaptive multimesh finite element
approximation schemes.

1. Introduction

For the last twenty years great progress has been made on standard finite element
approximation of optimal control problems governed by elliptic or parabolic equations; see,
for example, [1-9], although it is impossible to give even a very brief review here. More
specifically, research on finite element approximation of parabolic optimal control problems
can be found in, for example, [10, 11]. Systematic introduction of the finite element method
for PDEs and optimal control problems can be found in, for example, [5, 12, 13].

In many real modeling applications it is important to consider time accumulation.
Parabolic integrodifferential equations and their control of this nature appear in heat
conduction in materials with memory, population dynamics, and viscoelasticity; see, for
example, Friedman and Shinbrot [14], Heard [15], and Renardy et al. [16]. This calls for more
studies on the finite element approximation on integrodifferential equations. For instance,
finite element methods for parabolic integrodifferential equations with a smooth kernel have
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been discussed in, for example, Cannon et al. [17], Sloan and Thomée [18], and Yanik and
Fairweather [19].

Recently adaptive finite element method has been widely studied and applied in
practical control computations. In order to obtain a numerical solution of acceptable accuracy
for the optimal control problem, the finite element meshes have to be refined according to a
mesh refinement scheme. Adaptive finite element approximation uses a posteriori indicators
to guide the mesh refinement procedure. Only the area where the error indicator is larger will
be refined so that a higher density of nodes is distributed over the area where the solution
is difficult to approximate. In this sense efficiency and reliability of adaptive finite element
approximation rely very much on the error indicator used.

Adaptive finite element schemes have been widely studied for some optimal control
problems governed by elliptic and parabolic PDEs as well. Some of recent accounts
of progress can be found, for example, in [11, 20, 21]. Although there exists so much
progress in adaptive finite element elliptic and parabolic control problems, it is much more
complicated to study and implement adaptive multimeshes computational schemes for
parabolic integrodifferential control problems. More specificity, there has been a lack of a
posteriori error estimates for any parabolic integrodifferential control problem, in spite of the
fact that such control problems are widely encountered in practical engineering applications
and scientific computations as we discussed above.

In this work, we extend the results and the techniques used in [20-22] to a quadratic
optimal control problem governed by a linear parabolic integrodifferential equation, which
can be generalized to the control problems with more general objective functions. The
semidiscrete finite element scheme for this problem is presented. We derive the upper a
posteriori error estimates for the semidiscrete finite element approximation for the case where
the control constraints are given in an integral sense: U,y = {v € X; fQu v>=0,te[0,T]}.

We are interested in the following optimal control problems:

T
min_J(u,y(u)) = fo (g(y) + h(w))dt (1.1)

uel ;qCX

subject to

t
Yy +ay +J y(t, T)y(T)dTr = f +Bu, in Qx(0,T],
0

y=0, onoQx]|[0,T], (1.2)

Yo =y’ inQ

where Q and Q; are bounded open sets in R” (n > 2) with the Lipschitz boundary 02
and 0Qu, ¥° € HLX(Q), f € L*(0,T;L*(Q)), U = L*(Qu), X = L*(0,T;U), Uy € Xisa
closed convex subset; a is a linear strongly elliptic self-adjoint partial differential operator of
second order with coefficients depending smoothly on spacial variables, y(t, ) is an arbitrary
second-order linear partial differential operator, with coefficients depending smoothly on
both of time and spacial variables in the closure of their respective domains, and B is a
suitable linear and continuous operator.

Here we assume g(:) is a convex functional which is continuously differential on
L%*(Q), and h(-) is a strictly convex continuously differential functional on U. We further
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assume that h(u) — +oo as ||lul|; — +oo and that g(-) is bounded below. Details will be
specified later.

The plan of the paper is as follows: in Section 2, we give the weak formulation and
prove the existence and uniqueness of the solution for this optimal control problem. In
Section 3, we will give a brief review on the finite element methods and optimality conditions
and construct the semidiscrete finite element approximation schemes for the optimal control
problem. In Section 4, the upper a posteriori error bounds in L?(0,T; H'(Q))-norm are
derived for the control problem. In Section 5, we obtain the a posteriori error bounds in
L?(0,T; L*(Q))-norm for the control problem.

2. Existence and Uniqueness of the Solution of the Model Problem

In this paper, we adopt the standard notation W™9(Q) for Sobolev spaces on Q with norm
I| - ”m,q,Q, and seminorm | - |m,qlg. We set Wén’q(Q) = {w e W™1(Q) : w|,q = 0}. We denote
Wm2(Q) (W(;"Z(Q)) by H™ (L) (H'(€2)), withnorm || - [|,, o, and seminorm | - |, o. In addition
c or C denotes a general positive constant independent of h.

We denote by L*(0, T; W™1(Q)) the Banach space of all L* integrable functions from

(0,T) into W™4(Q) with norm ||v|| < r.wmaq)) = (fOT ||v||f,vm,q(g)dt)1/s for s € [1,0) and the
standard modification for s = co. Similarly, one can define the spaces H' (0, T; W™4(Q)) and
Ck(0, T; W™4(Q)). The details can be found in [23]. To fix idea, we will take the state space
W = L*0,T; V) with V = Hj(Q) and the control space X = L*(0,T;U). Let the observation
space be Y = L?(0,T; H) with H = L%(Q).

Let

(Fi, fo) = fQ fife V(fifo) € Hx H,

(u,v)y = f uv, VY(u,v)elxU, (21)
Qu
a(z,w) = (az,w), clt,7;z,w) = (y(t, T)z,w), Vz,weV xV.
Assume that there are constants ¢ and C, such that for all ¢, T € [0, T]:
(a) a(z,2) > cllzllio, Vz€EV,
(b) la(z,w)| < Clizl gllwll,q, Yz, weV, (22)
(c) le(t, 7;z,w)| < Clizlh gllwlh o Yz weV.
We will assume the following convexity conditions:
(W) - K (@©),u-v) > clu-vllhq, Yuvel*(Qu), (2.3)

that is to say h(-) is uniformly convex.
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Noting that g(-) is convex, it is easy to see that
(¢(uw)-¢(v),u-v) >0, YuveH(Q). (24)
Also, we have that

|Bo, w| < clollyg, lwlle, Yo € [2(Qu), ue HY(Q) (2.5)

because B is a bounded linear operator.
Therefore the above-mentioned control problem (1.1)-(1.2) can be restated as follows
(OCP):

T
min  (u, () = [ (g(v) + h(w)t,
UEU g4 0

¢
<%—f,w) +a(y,w) +f c(t,m;y(r),w)dr = (f + Bu,w), YweV,te(0,T],
0

ylt:O = yo'
(2.6)

where B is a linear bounded operator from L?(€;) to L?>(€2) and independent with .

From Yanik and Fairweather [19], we know that the above state equation has at least
one solution y € W(0,T) = {w € L*(0,T; H(Q)), w, € L*(0,T; H(Q))}. For the existence
and uniqueness of the solution of the system (2.6), we have the following lemmas.

Lemma 2.1. For the optimal control problem (2.6), there exists the unique solution (u,y), such that
u € Xandy € L*(0,T; L*(Q)) N L*(0,T; Hy(Q)) and 0y /ot € L*(0,T; H(Q)).

Proof. Assume that {(u",y™")} ", is a minimization sequence for the problem (2.6). It follows
that {u"}5°, are bounded in L?(0, T; L*(Qy)). Therefore there is a subsequence of {1}, (still
denoted by {u"}5,) such that u" converges to u* weakly in L2(0, T; L*(Qy)). It is clear that
for the subsequence u"

ayn t
<7,w) +a(y", w) +I c(t,m;y"(r),w(t))dr = (f + Bu",w), YweV, te(0,T].
0
2.7)

By taking w = y" and integrating time from 0 to ¢ in (2.7), and applying Gronwall’s inequality,
we have

T ) T
[ htaae < (ol [ (W0 ) ) < <o

9 T T o
max ||y (0|5 < c{ ||y0||aQ + fo (12,0 + 1y ) + fo fo ly"()][; od7 dt} <C

0<t<T
(2.8)



Discrete Dynamics in Nature and Society 5

This infers that u" € L?(0, T; L?(Qy)) and y" € L*(0,T; L*(Q)) N L?(0, T; H'(Q)), and

u" — u  weakly in L2 (o, T; LZ(QU)>,
y" —y weakly inL*(0,T;L%(@)) (L2(0,T; H'(Q)), (2.9)

y"(T) — y(T) weakly in L*(Q).
Now let us integrate time from 0 to T in (2.7) and take limits as n — oo. Clearly we have

T T T ot
, - (v°, - L, w))d ,w)d ,T; , drd
(y(T),w(T)) (y w(0)> Io (y, wy) t+J‘0 a(y,w) i‘+J‘0 foc(t 7;y(T), w(t))dr dt

T
=J’ (f + Bu,w)dt, VweW(©,T).
0

(2.10)
Therefore
T /oy T T At
I <E,w)dt+f a(y,w)dt+f J‘ c(t, T y(T),w(t))dr dt
0 ) 0 0Jo (2.11)
= f (f + Bu,w)dt, YweW(0,T).
0
Furthermore, we have
” oy . [1(dy/at,w)dt
- — u . - - @
Otllizorai@)  werz(orm@) IPlzonmi@)
(2.12)

< C<||y0||zg + fOT(||f||ELQ + ||u||§,gu)dt> 5T,

It follows that dy /ot € L*(0, T; H™1(Q)).
Since g(-) is a convex function on space L*(0,T; L*(€2)) and h(-) is a strictly convex
function on U 4, we have

T T
f (g(y)+h(u))dt<h7mf (g(y™) + h(u"))dt. (2.13)
0 n—ow Jo

It follows that (u,y) is one solution of (2.6). Because J(u, y(u)) is a strictly convex function
on U,4, we have that the solution for the minimization problem (2.6) is unique. The proof of
Lemma 2.1 is completed. O
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Remark 2.2. Here we suppose that the operator « is independent of time variable ¢. The above
results can also be applied to the case a = a(x,t) provided that suitable conditions for the
operator a are to be imposed.

3. Finite Element Approximation of Control

In this section, we firstly state the optimality conditions and set up the finite element
approximation for optimal control problems governed by parabolic integrodifferential
equation.

It follows from [24] that we can similarly deduce the following optimality conditions
of the problem (2.6).

Theorem 3.1. A pair (y,u) € (L*(0,T; Hy(Q)) N L*(0,T; L*(Q))) x L*(0,T; L*(Qu)) is the

solution of the optimal control problem (2.6), if and only if there exists a costate p € L*(0, T; Hy (Q))N
L*(0,T; L*(Q)) such that the triple (y, p, u) satisfies the following optimality conditions:

<a—y,w) +a(y,w) + ftc(t,T;y(T),w(t))dT =(f+Bu,w), YweV, te(0,T],

ot 0 3.1)
Yl = ",
op T
(e F) va@p)+ [ cmbawpm)ar=(v-z00), VacV, teloD),
¢ (3.2)
Plt:T = 0/
T
f (W (u)+B'p,v—u),dt >0, VYveluy, (3.3)
0

where B* is the adjoint operator of B.

In the following, we construct the semidiscrete finite element approximation of the
control problem (2.6) by approximating the optimality conditions.

Let Q" be a polygonal approximation to Q with boundary 8Q". For simplicity, we
assume that Q is a convex polygon so that Q = Q. Let T" be a partitioning of Q" into disjoint

—h _ _
regular n-simplices 7, so that Q = |,y 7. Each element has at most one face on 0Q", and T
and 7' have either only one common vertex or a whole edge or face if 7 and 7 € T". As usual,
h denotes the diameter of the triangulation T".

—h

Associated with T" is a finite-dimensional subspace S" of C(Q"), such that x|, are
polynomials of m (m > 1) order for all y € S" and 7 € T". Let V"' = S"n H} (Q). Note that we
do not impose a continuity requirement. It is easy to see that V* c V, W" c w.

—h

Let T be a partitioning of QJ, into disjoint regular n-simplices 7;, so that Q; =
Unrert Tu- For simplicity, we again assume that Qy; is a convex polygon so that Q = Q.
Ty and 7T|; have either only one common vertex or a whole edge or face if 7;; and 7|; € T}..
Let h.(h,) denote the maximum diameter of the element 7(7;) in T" (TZ’I).

Associated with T[’[ is another finite-dimensional subspace U" of LZ(QZ), such that
Xl are polynomials of order m (m > 0) for all y € U" and 7y € T/i. Here there is no
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requirement for the continuity. Let X" = L?(0, T; U"). It is easy to see that X" c X. Let h,(hy,)
denote the maximum diameter of the element 7(7y;) in T" (T[’[).

In this paper we only consider the piecewise constant finite element space for the
approximation of the control for the reason of the limited regularity of the optimal control
u in general. For ease of exposition, in this paper we assume that UZ L, CUa N XM

In order to derive a posteriori error estimates of residual type, we need the following
important lemmas.

Lemma 3.2 (see [12]). Let a1, be the standard Lagrange interpolation operator. For m = 0 or 1,

g>n/2and v e W21(Q),

[0 = T4l g < CH ™[0y, q. (3.4)

m,q,Q

Lemma 3.3 (see [25]). Let oy, be the average interpolation operator defined in [25]. For m =0 or 1,
1 < g < oo and for all v € W (QH)

1_
|U _ﬂhv|m,qfr < z ; ChT m|v|1,q,7'" (35)
TNT#0

Lemma 3.4 (see [26]). Forallv e WY(Q),1< g< o

-1/q 1-1/q
lolloger < C(A= 0l + Br 00 ) (3.6)

Then a possible semidiscrete finite element approximation of (OCP) is thus defined by
(OCP)":

T
min [ (up, yn) = J;J (g(yn) + h(uy))dt (3.7)

h
up€ ad

subject to

) t
<%'Wl> + a(yn, wn) +I c(t, 7 yn(t), wp(t))dr = (f + Bup,wy), Yw, e V", te(0,T],
0
Ynlio = Vi
(3.8)

where yj, € W, y? € V" is the approximation of y°.

Since this is a finite dimensional linear control problem and the reduced objective
function is convex, we can easily prove that the above problem (3.7)-(3.8) has a unique
solution (yy, uy) € W x LIZd.
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By applying [24] again we can show that a pair (v, un) € W" x U", is a solution of

(3.7)-(3.8), if and only if there exists a costate p, € W' such that the triple (v, pp, up) satisfies
the following optimality conditions, which we will label (OCP — OPT)":

a t
(ﬂ,wh> + a(yn, wn) +I c(t, m;yn(1), wip(t))dr = (f + Bup, wp), Ywy € vh,
0

ot (3.9)
yh't:O = yg'
- (qh %) +a(qn pn) + _[TC(T t qn, pr(7))AT = (yn = Za,qn), Van € V"
7 at 7 ; rbr 7 7 7 ’ (310)
Phlir =0,
T
f (K (un) + B*pn, o — up) dt >0, Vo, €Ul (3.11)
0

The optimality conditions in (3.9)—(3.11) are the semidiscrete approximation to the problem
(3.1)-(3.3).

4. A Posteriori Error Estimates for First-Order Derivatives

Adaptive finite element approximation has been found very useful in computing optimal
control, as mentioned in Introduction. It uses an a posteriori error indicator to guide the mesh
refinement procedure. Furthermore it has been recently found that for constrained control
problems, different adaptive meshes are often needed for the control and the states; see [27].
Using different adaptive meshes for the control and the state allows very coarse meshes to
be used in solving the state and costate equations. Thus much computational work can be
saved since one of the major computational loads is to solve the state and costate equations
repeatedly. In this section, we derive the upper a posteriori error estimates for the optimal
control problem allowing different meshes to be used for the states and the control.

For simplicity, we will only consider the case of quadratic objective functionals as
follows:

T 1 T 5 ﬁ T )
J(wy) = fo (8(y) +hw))dt = {5 fo ly = zalloe +3 fo lells g, } (41)

Here

1 (T 2
g(y) = 5 IO lly - Zd”o,@f
(4.2)

BT e
h(u) = ) . ||u||o,9ur
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where y is a positive regularity constant. By differential theory, we have
H (u)(v) = (Bu,v). (4.3)

Then the inequality (3.3) and (3.11) in optimality condition can be restated as follows:

T
f (Bu+B'p,v—-u),dt >0, YoveU,y, (4.4)
0

T
f (ﬂuh + B*ph, on — uh)udt >0, Vou,e UZd. (4.5)
0
In this paper, we consider the integration obstacle type control constraint:

Uy = {‘(JEX; v>0,te [O,T]}. (4.6)
Qu

By computation and from [28], we know that the solutions of inequality (4.4) and (4.5) yield

B B*
pu=-Bp+ max{O, '[g}“ 1P }, Puy = Py <—B*ph + max{O, fou—lph }>, 4.7)
Qu QU

where Py is the L*-projection from L*(€) to U".
And we will consider the special case of the differential operator of a and y:

ay =-div(AVy),  y(t, 1)y =-div(C(tT)Vy), (4.8)

where A = A(x) = (a;;(")),,, € (C* (ﬁ))nxn, such that there are constants ¢ > 0 satisfying

X'AX > ¢||X|[%:, YX €R" (4.9)

and C = C(x,1,7) = (cij(x,1,7)), € (C*(0, T;L2(Q))"").
In this case, we have the following bilinear form

a(z,w) = (az,w) = (-div(AVz),w) = (AVz, Vw),
4.10
c(t, T z,w) = (y(t, 7)z,w) = (-div(C(t, 7)Vz), w) = (C(t, T)Vz, Vw). (410
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4.1. Main Results
We first state the main results of this section.

Theorem 4.1. Let (y,u) and (yn, un) be the solutions of (OCP) and (OCP)h, respectively. Let p
and py, be the solution of the costate equations (3.2) and (3.10). Then there hold the a posteriori error
estimates

2 2 2
[ - ”h”iz(o,T;Lz(gu)) +ly - ]/h”Lw(o,T;LZ(Q)) +ly - yh”LZ(o,T;Hl(Q)) +lp _Ph”Lw(o,T;LZ(Q))

6
2
+ ||P ‘Ph”LZ(o,T;Hl(Q)) < CZ’L'Z'
i=1
4.11)
where n3, ..., 12 is defined as follows:
T 2
= f {Zf (B"pn— Pu(Bpn)) }df/
0 TUu Tu
T 5 T 2
13 = j Zhi[ <aph +div(A*Vpp) + f div(C*(7,t)Vpu(7))dT + yp — zd> dr bdt,
T t

ey

T 2
[(A*Vph) ‘n +f (C*(7, ) Vpu(T)) ~ndT] dldt,
T or t
T
0

d f ?
1= J‘ {;hi L <ayh - div(AVy) - fo div(C(t, 7)Vyn(t))dr - f - Buh> }dt,

T ‘ 5
71% = f ZhlJ‘ [(AVyh) ‘n+ f (C(t,T)Vyh(T)) ‘ndT] dl dt,
07 0

or

2
@)’

nt = vt - wo
4.12)

where 1 is a face of an element T, hy is the maximum diameter of I, [Vpy, - n] and [Vyy, - n] are the
normal derivative jumps over the interior face I, defined by

(Vo -], = ( Vpuhl,y - Vpulz) -,
(4.13)

[Vyn-nl, = ( Vol = Vuulz)-m,

where n is the unit normal vector on 1 = Tll N le outwards Tll. For later convenience, one defines
[Vpn-n], =0and [Vyy, - n], = 0 when I C 0Q.
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In the following subsections, we will prove Theorem 4.1. To this end, we first give some
lemmas in the following subsection. The proofs of Theorem 4.1 are put in the last subsection.

4.2, Some Lemmas

We have the following.

Lemma 4.2. Let (y,u) and (yn, un) be the solutions of (OCP) and (OCP)h, respectively. Let p and
pn be the solution of the costate equations (3.2) and (3.10). Then

2
lJoe - uh”iz(O,T;Lz(Qu)) < Crpi + Cllpn = p(un) ||L2(0,T;L2(Q))’ (4.14)

where p(uy,) is defined by the following system:

t
<%y(uh),w> +a(y(up), w) + foc(t,T;y(uh)(T),w(t))dT = (f + Bup,w), VYweV,
(4.15)

y(up)(0) = yi(x), x€Q, (4.16)

T
_<q, %P(uh)) +a(q,p(un)) + L c(t, £ q(t), p(up) (7))dt = (y(un) — za,q), VqeV.
(4.17)

Proof. It follows from (4.4) that we have
(Bu,u—up),; < —(B'p,u—up),. (4.18)

Then by (4.5) and (4.18)

T
Pllu- uh”%}(oj;[}(gu)) - '[0 [ﬂ(“ru —up)y — Pun,u- uh)u]dt
T T
< f [-(B'p, u—up)y — (Pun, u—up),]dt =I —(B*p + Pup, u — uy),dt
0 0
T T
= —j (B*pn + Pun, u — vy, dt - f (B*pn + Pun, vp — up) ,dt
0 0

T T
+ J‘ (B*pn — B*'p(un), u — up) ,dt + f (B*p(un) — B*p,u—uy,),dt
0 0



12 Discrete Dynamics in Nature and Society

T
< inf f (B*pn + Pun, v — u) ,dt
a”0

vheuﬁ’

T T
+ .[o (B*(pn — p(un)), u—up)dt + L (B*(p(un) —p), u — uy),dt

= I] + Iz + 13.
(4.19)
Since Py, is the Lz—projection, then, for any v € U4, we have
(Pov-v)p=0, YpeX" te(0,T]. (4.20)

Qu

Note that -[Qu v > 0and fQU(PhU - o) = 0. Then we have -[Qu Pyo >0, thus Pyv € ugd. So that
we can take vj, = Pyu in I and by (4.7), we have

T
I € J‘ (B*pn + Pun, Pou — u),,dt
0

- JT{ZJ [Ph <—B*ph+max{0, Jo, B'Ph }) +B*ph] (Phu—u)}dt
0 U Jru .[Qul

< LT{% fm (=Pu(Bpn) + B'pn) (Paut — ) }dt

(4.21)
T
= JO {ZI (=Pu(B"pn) + B pn) (Pn(u — un) - (u—uh))}df
<ce [ P,(B* B'pn)’ bdt+6 2
<O 1S [ R B ol
= C’ﬁ + 6”” - uh”iZ(O,T;LZ(Qu))’
L < Clp _p(uh)”iz(o,T;LZ(Q)) +06llu - uh”iZ(O/T;LZ(Qu))' (4.22)
From (4.15) and (3.1), we have for t € (0,T]
) t
ViU , - , t, T (y - ,w(t))d
(at(y y(un)) W> +a(y - y(un) w)+f00( 7 (y = y(un)) (1), w(t))dr w23

=Bu-uy),w), YweV
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and from (4.17) and (3.2)

9 T
- (45 (=) ) +alqp=pm) + | c(rq0), (= poa))dr

(4.24)
= (y-y(u),q), YqeV.
Then from (4.23), (4.24) and integrating by part
T
b= [ (ptun) = p, B~ ),
0
170
= f [(5@ = y(un)), p(un) - P) +a(y = y(un), p(un) - p)
0
t
+ IO c(t,7; (v = y(un) (1), (p(un) —p) (t))dT] dt
(4.25)
! i)
= fo [—y = y(un), = (p = p(un)) +a(y = y(un), p(un) = p)
T
+ L c(r.t; (y —y(un)) (), (p(un) - p) (T))dT] dt
T
= fo ~(y —y(un),y = y(un))dt < 0.
Following from (4.21)—(4.25), let 6 be small enough:
e - uh”iZ(O,T;LZ(Qu)) < Cni +Cllpn - p(un) ”iz((),T;LZ(Q))' (4.26)
The proof of Lemma 4.2 is completed. O

Lemma 4.3. Let (y,u) and (yn, uy) be the solutions of (OCP) and (OCP)h, respectively. Let p and
pn be the solution of the costate equations (3.2) and (3.10). Then there hold the a posteriori error
estimates

2 2 2
llyn - y(”h)”Lw(o,T;LZ(Q)) +{lyn - y(uh)”Lz(O,T;H’ @)t llpn = p(un) ||L°°(O,T;L2(£2))
; (4.27)
+||pn _p(uh)”iz(O,T;Hl(Q)) <CXmi
=2

Proof. Let

9 T
(B, 0) == (2, 53 (b= p) ) + a(o,pi = pun)) + [ (15000, (= plan) ()t
t
(4.28)
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and oy, be the average interpolation operator defined as in [27] and e = py, —p(uy). Then from
(3.10) and (4.17)

T
B (thg(ph _P(uh))) + a(qn, pn - pun)) + L e (7.t qu(t), (pn — p(un)) (7)) dr (4.29)

= (yn—y(un),qn), Yqn € vh,

So we have

a T
- (o 53 (= p(w) ) + o, pu = p()) + [ <m0, (o~ pl) (7))
a T
—<v — v, am) +a(v -, pr) + J; o(1, t; (v — o) (t), pr(T))dT
+ (v — o, %p(u;)) —a(v -y, p(uy))

T
_ f c(1,8; (0 - m,0) (), p(un) (1) )T + (g — y (), m40)

t

2
{Zj h2< tph—dw(A*Vph) f div(C*(t,t) Vpp(r))dT - yh+zd>

T 2] /2
2 LT i [V‘*V’“h) e f (C*(x,)Vpu()) - ndT] } lollg + (v = y(un), ).
(4.30)

By letting v = pj, — p(uy,) in (4.30) and from (2.2), we have
1d 2 2
=5 I =p@n)loq + cllpn - pGun)|1 o
2
{Z f h2< i — div(A°Vpy) - f div(C (@, Vpu(D)dr — yi + )
) oy 172
+> L hy [(A*VPh) ‘n +f (C*(r,t)Vpn(T)) '"dT] } llpr = p(un) ||, o
T T t

T
+ (yn —y(un), (pn —p(un))) - L c(7,t; (pn — p(un)) (), (pn — p(up)) (1)) dr.
(4.31)
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Integrating time from ¢ to T in (4.31) and by Schwartz inequality, Lemmas 3.3 and 3.4, we
have

1 T
o= padlia+e | llpu=pn)| gdr
T 5 T 2
< j Zhif <&ph +div(A*Vpy) + f div(C*(s, T)Vpnu(s))ds + yn — zd> dr
t T T T
T T 2 T s
+ f Zh’J [(A*Vph) N+ J (C*(s, 7)Vpu(s)) - nds] dr + SI lpn — p(un) ||1,Qd"r
t T or T t

T T T
< =yl +C [ [ N =pa) O} ods dr.
T

(4.32)
Letting 6 be small enough, we obtain
' 2
[ = I o
T 5 T 2
< Cf ZhiJ‘ <aph +div(A*Vpp) + f div(C*(s, T)Vpu(s))ds + yn - zd> dar
t T T T
(4.33)
T T 2
+ CI Zhlf [(A*Vph) n +f (C*(s,7)Vpn(s)) -nds] dr
tooT or T
T ) T (T )
< = ynlfiadr+C [ 1Gu-paa) @l adsar.
t t Jr
By Gronwall inequality and (4.30)—(4.33)
2 2 2 2
llpn - P(”h)”LZ(o,T;Hl(Q)) < Cry +Crp3 + Cllyn - ]/(”h)”LZ(o,T;LZ(Q))- (4.34)
Similarly, we have
2 2
lpn - P(”h)”Lw(o,T;LZ(Q)) < C<’1§. + 71% +|\yn - y(”h)”LZ(o,T;LZ(Q))>
T T 5
+ cf f | (n = p(un)) (7)||] o dt (4.35)
0Jt

< Crpy +Crpj + Cllyn - y(uh)”iz(o,T;Lz(Q))'
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Then from (4.30), (4.34), and (4.35)

- o ((3/08) (pn = p(un)), v)

LOTHNQ)  vel2(0,T;HHQ) 191l 220,7;0 @)

Er—

jOT ({—E(uh), v)+a(v,pn — p(un)) +ftTc(T, t;ot), (pn —p(un)) (T))d‘l')dt
= sup

vel2 (0TH (@) 1220, 7:0 @)
< Cr + Crps + Cllyn — y(un) ”LZ(O,T;LZ(Q)) +Cllpn - p(un) ||L2(0,T;H1(Q))

< Crmp+Crps + Cllyn - y(uh)”LZ(O,T;LZ(Q))'
(4.36)

Similarly by analysis of [|yn — v (un)ll 2o 7.11 () We let

t
(Q(un),v) = (a%(yh - y(uh)),v> v a(yn - y(un),v) + joc(t, 73 (yn — y(un)) (7), 0 ().
(4.37)

By (3.9) and (4.15)

t
<wh, 2(yh - y(uh))> +a(yn —y(up), wp) + f c(t, 75 (yn — y(un)) (1), wi(t))dr
ot 0 (4.38)

=0, VYw,e V"
So

t
(3 =), 0) + alwn = (), ) + [ et (v = y(an)) (@), 00)dr
0

t
= <%yh,7) —Jrhv>+a(yh,v —mﬂ))+f C(t,T}yh(T),(v —]rhv)(t))d'r - (f + Buy,v —Jrhv)
0

t 2
< {Z L hZ <%yh —div(AVyy) - fo div(C(t, T)Vyn)dr - f — Buh>

, oy 1/2
+; LT hz[(AVyh) -n+f0(C(t,T)Vyh) 'ndT] } 21,0

(4.39)
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By letting v = y, — y(up,) and applying Swartz inequality, we have

d
i llvn - yn)lloq + cllyn -y |1 o

NI~

; 2
< Z L h2 <%yh —div(AVyy) - fo div(C(t,7)Vyp)dr - f - Buh>
(4.40)

; 2
+ Z L hy [(AVyh) ‘n+ fo (Ct,7)Vyn) - nd’r]

t
+6||yn — y(un) ||§Q - fo c(t,7; (yn = y(un)) (1), yn — y(up)(t))dr.

By integrating time from 0 to ¢ in (4.40)

t
= i+ [l =y te
t d T 2
< C{f Zhi’[ (ayh —div(AVy;) —f diV(C(T,s)Vyh)ds—f—Buh> dr

0 T T 0
t T 2 t )

+I Zhl L [(AVyh) -n+f (C(1,8)Vyn) -nds] dt} +6I ln —y(uh)”llgdr
07 T 0 0

t AT 2
< [y =y I ads r+ Cllvo - i
(4.41)

Since 6 is small, then from (4.41) and Gronwall inequality we have

t
[ =y gt
t d T 2
< Cf Zhif <&yh —div(AVyy) —f div(C(t,s)Vyp)ds — f - Buh> dr  (4.42)
0 T T 0

t T 2 2
vef S [avm ne [ o) mas drclo-wi]
0 oT 0 ’

T

and we obtain

2
v =y @)1z om0 @) < C('li +13 + TZ§>,
(4.43)

llyn =y (un) ”iW(O,T;LZ(Q)) < C(’ZZ + 175 + 712)
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In the same way of getting (4.36), we also have

2

3
|| 5 (Yn =y () <C(B+mt+nd). (4.44)

L2(0,T;H(Q))

Then the desired results (4.27) follow from (4.34)—(4.36) and (4.43)—(4.44). O

4.3. Proof of Theorem 4.1

By Lemmas 4.2 and 4.3, we prove Theorem 4.1 in the following.

Proof. By using the triangle inequality, Lemmas 4.2 and 4.3, and from (4.29) and (4.38), [17-
19], using the following stability results

2 2
lv - y(”h)”Lw(o,T;LZ(g)) +[ly - y(uh)”LZ(O,T;H1 @) < Cllu - uh”iZ(O,T;LZ(Qu))’

2 2 2
”P - p(un) ||L°°(O,T;L2(Q)) + ”P - p(uh)”LZ(O,T;Hl(Q)) < C”]/ - y(un) ||L2(0,T;L2(Q)) (4.45)

2
< Cllw = unllia o 20y

we can easily obtain (4.11). The proof of Theorem 4.1 is completed. O

5. A Posteriori Error Estimates in Integral

Often we need sharper a posteriori error estimates. Then we need deriving the a posteriori
error estimates in LZ(O, T; LZ(Q))—norm. To this end we first state the main results in this

paper.

5.1. Main Results

We have the following results.

Theorem 5.1. Let (y,u) and (yn,un) be the solutions of (OCP) and (OCP)h, respectively. Let p
and py, be the solution of the costate equations (3.2) and (3.10). Then there hold the a posteriori error
estimates

5
2 2
[l - uh”iz(olT;Lz(Qu)) +ly - yh”LZ(O,T;LZ(Q)) +lp- Ph”LZ(o,T;LZ(Q)) S C<’ﬁ + Zzélz + ’l§>/
=
(5.1)
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where 12, m? is defined in Theorem 4.1 and

2
&= f {Zh4f < ph+d1v(A*Vph)+f le(C*(T,t)Vph(T)>dT+yh—Zd> }dt,
T T 2
&= | [(A*V;oh>-n+f (C*(Trt)VPh(T))‘"dT] dlt,
0 r or t (52)

J‘ {Zh4J‘ < tyh—dlv(AVyh) J‘dlv(C(t T)Vyn(r))dr - f - Buh> }dt,

T t 2
&= fo ;h? LT [(AVyh) ‘n+ fO(C(t, T)Vyu(T)) 'ndT:I dldt.

In order to prove Theorem 5.1, we need the following dual equations and lemmas.

5.2. Dual Equations and Some Lemmas

For given F € L2(0,T; L*(Q)) and the following equation:

%(I) —-div(AV¢) - It div(C(t,7)V¢(r))dr =F, (x,t) € Qx (0,T],
0

=0, te(T], 59
¢(x,0)=0, x€Q,
we have its dual equation:
;qj div(A*Vy) - I div(C*(r,t)Vg(r))dr = F, (x,1) € Qx (0,T],
(5.4)

‘IfaQ = O/ te (0/ T]/
¢(x,T)=0, xe€Q.

In order to derive a posteriori error estimates in L?-norm, it is necessary to have some stability
results of the dual equations. From [17-19, 29], we have the following stability results.



20 Discrete Dynamics in Nature and Society

Lemma 5.2. Assume that ¢ and  are the solution of (5.3) and (5.4), respectively. Then

”d)”Lw(O,T;LZ(Q)) < C”F“LZ(O,T;LZ(Q))’

||V¢||L2 0,T;L2(Q < C”F”LZ(O,T;LZ(Q))’
( (L))

[0

0
Ha‘ﬁ

Eom@) S ClIFll2 0,722 ()

< ClIFll 20,112/
12(0,T;L2(Q))

(5.5)
”‘P”LW(O,T;LZ(Q)) < C”F”LZ(O,T;LZ(Q))’

”V‘/’"LZ(O,T;LZ(Q)) < ClFllzor 2 @)

2
”D ¥l 0@ < ClFllr20,1502(2))

< C||F||L2(0,T;L2(Q))'
[2(0,T;L2(R2))

|5
ot

where D¢ = 0*¢p/0x;0x;, 1 < i, j < n, and D2y is defined similarly.
It follows from Lemmas 4.2 and 5.2 that we have the following upper bounds.

Lemma 5.3. Let (y,u) and (yn, uy) be the solutions of (OCP) and (OCP)h, respectively. Let p and
pn be the solution of the costate equations (3.2) and (3.10). Then there hold the a posteriori error
estimates

5
”yh - y(un) ”iZ(O,T;U(Q)) + ”Ph - p(un) ”iZ(O,T;LZ(Q)) < C<Z§i2 + 71£> (5.6)
2

i=

Proof. It follows from Lemma 4.2 that we only need to estimate ||p;, — p(up) ||i2 (OTL2(Q)"

Let ¢ be the solution of (5.3) with F = p;, — p(uy,) and ¢; = 7,¢ be the interpolation of
¢ in Lemma 3.2.

It follows from (5.3), (4.29) and by integrating by parts

T
=0 o = [ (PO G =) )

T 9 t
-[ [—(a(ph ~p(un)),§) + (i ~plan)) + [ 9, (- P(uh))(t))dT] a
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T a T
= f [—<7Phr¢ - 4’1) +a($=¢r,pn) + J- (7, t; (¢ = ¢1) (), pu(7))dT
0 t
3 T
ot A4 - - 7 - ,L; - 7 d
« (Gpun) = 91) =alb=drpn) - | e(rb@=d1) 0, pun) (0)dr
o T
_<5(Ph - P(uh)),¢1> +a(¢r, pn—p(un)) + ft c(r, t; ¢r(t), (pn - p(uh))(r))dr] dt
T 5 T
= fo {Z f <&ph +div(A*Vpy) + f div(C*(7,t)Vpu(T))dT + yp — zd> (p-¢1) }dt
T YT t

+ Io ; L)T [(A*Vph) . n+£ (C*(7,t)Vpnu(T)) - ndT] (¢ —¢r)di dt+jo (yn — y(un), ¢)dt

=i+ o+ ]
(5.7)

By Lemmas 3.2, 3.4, and 5.2, we obtain
T ) T 2
J1 < C(6) f Zhij <&ph +div(A*Vpy) + f div(C*(,t)Vpu(r))dT + yi — zd> dt
0 T T t
oo 2
+6 Io |¢|2,th < C(6)§§ + 6”Ph - P(uh)”LZ(O,T;LZ(Q))'

T T 2 T
T, < C(6) jo Zh? L [(A*Vph) N+ L (C*(7,t)Vpu(T)) -TldT] dldt + 6[0 |¢|0,th

< C(6)& + 6|lpn — p(un) ”i?(O,T;LZ(Q))'

(5.8)
By Schwartz inequality
Js < C©6)|lyn - y(un) ”iZ(O,T;LZ(Q)) +6||pn - P(uh)”iz(o,T;Lz(Q))' (5.9)
Letting 6 be small enough, it follows from (5.7)—(5.9)
3
[l = p(un) "iZ(O,T;LZ(Q)) < C;‘;z + Cllyn - y(un) ”iZ(O,T;LZ(Q))' (5.10)

Similarly, let ¢ be the solution of (5.4) with F = y;, — y(u;,) and ¢ = 7¢ be the interpolation
of ¢ in Lemma 3.2.
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From (4.38) and by integrating by parts, we have that

2
lyn =y Iz (0722

T
- [ 0, - v @)
T 9 T
= L [(a(yh - y(uh))rqf) +a(yn—y(un), ¢) + L c(r,t; (yn - y(uh))(t),qf(T))dT] dt
T t
( ~Yo, ¢ (0)> f [(%yh,qf—qn>+a(yh,qf—</f1)+foc(f17;yh(f), (<P—</f1)(t))dT]dt
T
9
- fo K&y(uh)rqf - </fr> +a(y(un), ¢ - 1)
f c(t, 75y (un)(7), (¢ - qff)(t))df]dH (6 - v0,9(0)
T a t
= '[ {Zf <ayh —-div(AVyy) —J div(C(r, t)Vyu(7))dT - f - Buh> (¢ — 1) }dt
0 T T 0

+ IOT ET: LT [(Avyh) n- JZ (C(t, T)Vyn(T)) - n] dr (g — r)dl dt

+ (yg - yo,(p(O)> =Dy + D, +Ds.
(5.11)

Similarly, it follows from Lemmas 3.2, 3.4, and 5.2 that

2
D; < C(6) j {Zh‘if ( yn—div(AVy,) - ’[dIV(C(T,t)Vyh(T))dT f- Buh> }dt
T 2 2 2
+6 . |‘I’|2,gdt < C&; +6||yn _y(”h)”LZ(o,T;LZ(Q))'

T t 2 L
D, < C(6) jo Zh? LT [(AVyh) ‘n- fO(C(t,T)Vyh(T)) -n] dldt + 6J‘0 |qf|2,9dt

< C& +6|lyn — y(un) ”iZ(O,T;LZ(Q))’

D5 < Cﬂé + 5”% - y(uh)”iz(o,T;Lz(Q))'
(5.12)
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Letting 6 be small enough, then from (5.11)-(5.12) we have
2
llyn - y(uh)”LZ(O,T;LZ(Q)) S C(ﬁ +&+ ’12) (5.13)
Then (5.6) follows from (5.10)—(5.13). The proof of Lemma 5.3 is completed. O

5.3. Proof of Theorem 5.1

From Lemmas 4.2 and 5.3, we can easily prove Theorem 5.1.

Proof. By triangle inequality, (4.45), Lemmas 4.2 and 5.3, we can easily prove (5.1) in the same
way of getting (4.11). The proof of Theorem 5.1 is completed. O

6. Conclusion

In this paper, we first briefly introduce optimal control problem governed by parabolic
integrodifferential equations and give the weak formulation for this optimal control problem.
For this formulation, we prove the existence and uniqueness of the solution. Then by the
theory of optimal control problem, we present the optimality conditions and semidiscrete
finite element approximation scheme. The upper a posteriori error estimates for first-
order derivative and L?(0,T;L?(Q))-norm are derived for both the state and the control
approximation for the case of an integral obstacle constraint. We will research on the upper
and lower a posteriori error estimates for full discrete finite element approximations of this
control problem.
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