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Recently, Kim introduced the fermionic p-adic integral on Z,. By using the equations of the

fermionic and bosonic p-adic integral on Z,, we give some interesting identities on Bernoulli and
Euler numbers.

1. Introduction/Preliminaries

Let p be a fixed odd prime number. Throughout this paper, Z,, Q,, and C, will denote the
ring of p-adic integers, the field of p-adic rational numbers, and the completion of algebraic
closure of Q,, respectively. Let N be the set of natural numbers and Z, = NU {0}. The p-adic
absolute value | - |, is normally defined by |p|, = 1/p.

Let UD(Z,) be the space of uniformly differentiable functions on Z, and C(Z,) the
space of continuous function on Z,. For f € C(Z,), the fermionic p-adic integral on Z, is
defined by Kim as follows:

pN-1
Lai(f) = fz f)dp(x) = lim Zéf(x)(—l)", (see [1]). (1.1)

The following fermionic p-adic integral equation on Z, is well known (see [1-3]):
I,l (fl) + I,l (f) = 2f(0), (12)

where fi(x) = f(x +1).
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From (1.1) and (1.2), we can derive the generating function of Euler polynomials as
follows:

; 2 " [*e] tn
J‘ e( +y)fd#_1 (y) = me t = Z()En(x)a/ (1’3)
n=|

Zp

where E,(x) is the nth ordinary Euler polynomial (see [1-4]). In the special case, x = 0,
E,(0) = E, is called the nth ordinary Euler number.
By (1.3), we get Witt’s formula for the nth Euler polynomial as follows:

f (x+y)"du-1(y) = En(x), for neZs,. (1.4)
ZP
Thus, by (1.4), we have
Ex) = E+x" = Y (M), 15
x x _g%(:l>x: ! (1.5)

with the usual convention about replacing E" by E,, (see [5, 6]). From (1.3), we note that

(E+1)" +Ey =260, (1.6)
where &y ,, is the Kronecker symbol (see [3]). By (1.2) and (1.4), we get
fzp (x+y+1)"dpa(y) + IZ,, (x+y) dpa(y) = 2x". (17)
Thus, by (1.4) and (1.7), we have
E.(x+1)+E,(x) =2x", forné€Z,. (1.8)

Equation (1.8) is equivalent to

. 1n—1 n
x —En(x)+§§<l>151(x). (1.9)

From (1.6), we can derive the following equation:

En(2) =2-E,(1) =2+E, - 26y,, forneZ,. (1.10)

For f € UD(Z,), the bosonic p-adic integral on Z, is defined by

pN-1
L(f) = fz F(x)dpr(x) =Nh£nwpl—N xzzof(x), (see [4]). (1.11)
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From (1.11), we can easily derive the following I;-integral equation:

L(f1) =I(f)+f(0), (see[4, 7, 8]), (1.12)

where fi(x) = f(x +1) and f'(0) = df (x) /dx|x=o.
It is well known that the Bernoulli polynomial can be represented by the bosonic p-adic
integral on Z, as follows:

+ t X < tn
J‘ e(x y)td//ll (y) = et — 16 t = E Bn(x)ml (113)
n=0 :

p

where B, (x) is called the nth Bernoulli polynomial (see [4, 7-13]). In the special case, x = 0,
B,(0) = B, is called the nth Bernoulli number. By the definition of Bernoulli numbers and
polynomials, we get

n
Bu(x) = f (x+y)'dm(y) = D, (7) x"'By. (1.14)
Zp 1=0
Thus, by (1.13) and (1.14), we see that

By=1, (B+1)" =B, = 61, (1.15)

with the usual convention about replacing B" by B, (see [1-22]).
By (1.11), we easily get

f (1-x+y)"du(y) = (-1)" J (x+y)"dp(y)- (1.16)
z, z,
From (1.13), (1.14), and (1.16), we have

B,(1-x)=(-1)"B,(x) forneZ,. (1.17)

By (1.15), we get
B,(2) =n+B,(1) =n+ B, + 61- (1.18)
Thus, by (1.17) and (1.18), we have
(-1)"Bn(-1) =B,(2) =n+B, + 61, (see [4]). (1.19)

From (1.12) and (1.13), we get

fz (x+1+y)" du(y) - fz (x+y) " dm (y) = (n+1)x". (1.20)
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Thus, by (1.13) and (1.20), we have

Buii(x+1) = By(x) = (n+1)x" forneZ,. (1.21)

Equation (1.21) is equivalent to the following equation:
x"—LG:CH-l)B(x) forneZ 1.22
Cn+14\ 1 : ” (1.22)

In this paper we derive some interesting and new identities for the Bernoulli and Euler
numbers from the p-adic integral equations on Zj.

2. Some Identities on Bernoulli and Euler Numbers

From (1.1), we note that
[ -z =0t enanawm). 1)
ZP ZP
By (1.14) and (2.1), we get
E,(1-x)=(-1)"E,(x), wheren€Z,. (2.2)

In the special case, x = -1, we have
E,(2) = (-1)"E,(-1) =2+ E, — 26¢ 1, (2.3)

Let us consider the following fermionic p-adic integral on Z, as follows:

P P

n 1

_ ! > <" ' 1) 3 (}() By Lp dp (x) (2.4)

n+ 1% k=0
1 &/n+1\ /1
- () 2 () e

Therefore, by (1.4) and (2.4), we obtain the following theorem.

Theorem 2.1. For n € Z,, one has

(D)o 29
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It is known that B,(x) = (-1)"B,(1 — x). If we take the fermionic p-adic integral on
both sides of (1.22), then we have

[ st =3 [ B
z 1=0 Z

P

' Bl =0

|

> (2.6)
| .
|

S0 (LR ICERT

1) (ll(> Bk (-1)*Ex(-1).

From (2.2) and (2.6), we note that

J. x"dp . (x) = (—1)1211 (i)Bl—kEk 2)

Zy 1=0

2.7)

1l
N
+ | =
—_
M=

1
2B;(1) + Z(Ii) Bi_kEx — 2Bl>

(03
(

)

) E (e
)
)

1
l
Z <k) Bl—kEk + 261,1> .

Therefore, by (1.4) and (2.7), we obtain the following theorem.

Theorem 2.2. Forn € Z,, one has

E, = n112<n;1>(_1)1<2<£>3,_k15k+251,,>. (2.8)

n
1=0 k=0

Corollary 2.3. For n € N, one has

5 <n;—1>(—1)l<kzl:=0 ( ! ) B,_kEk>_ 29)
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Let us take the bosonic p-adic integral on both sides of (1.9) as follows:

[ o - fzp <En (x) + %ZE; (}e (x)) dpus (x)

n <7>E"" fz Ky ) + %,z;<7>i<llc>ﬁ" IZ () (210)

1=0 k=0

n n 1 n-1 n 1 l
= E,.. 1B+ = < ) ( >El—kBk-
i <l> 2; l kzz(:) k

Thus, by (1.14) and (2.10), we obtain the following theorem.

Theorem 2.4. For n € Z., one has

(;{) Ei_Bx. (2.11)

On the other hand, by (2.2) and (2.10), we get

[ xdeo = ay
Z

P ZP

Ea(1 = x)dpur (x) + %lz; (e jz E/(1 - x)dpur ()
- <—1)"§ (1) jzp (1= 0)ldpu (x)
OB -
= "i( > w1 (=)' By(=1) + %E(?) (—1)lkZ;)<ll<>Elk(—1)kBk(—1)

1=0

o3 (1) BB + Z( ) 1)2( VEriB@)

1=0

- (- 1)"li(’l’> Eu(l+ B+ 61)) + 2 Z( ) 1)2( VEL(k + B+ 61



Discrete Dynamics in Nature and Society 7

n 171
= (-1)"nEu1 (1) + (<1)" S (") EuiiBy + (=1)"nE 1 + = (~DIE1 (1)
n 1 %(!) 1D] n 1+ 2%( > I-1

%"_ZO< >(—1)lkzl:_0<]l(> Ej kB + %"*1 <rll> (-1)'1Ei

=1

= ()"0 Byt = 260,00 + (1" 3 () B + (-1,
1=0

1 n-1
v <1>( D12 + Ey - So11) + Z( >( 1 Z( )El—kBk
1=0
5
+5 (_1) lEl—l/
24 l
2.12)
where n € N with n > 2. Therefore, by (2.12), we obtain the following theorem.
Theorem 2.5. For n € N with n > 2, one has
But =~ L - 20— 1) Egya(-1) —2"2_1(2"‘1)15 B
2n-1 = 2n-2 24 I 2n-1-1D]
2.13)
12n 2 2 1
Z( " )( 1)12( )Ez_kBk.
By (1.9) and (1.22), we get
f j X"y dp (x)dp (y)
ZP
1 < m+1 1 n-1 n
B HZP <m + 1%( k >Bk(x)> (En(l/) + E;(l)El(y)>dﬂ—l(X)dﬂl(y)
1 &/m+1
- m+1Z k By (%) En (y) dp-1(x)dpa (v)
k=0 z,
1 m n-1 1 (214)
m+ n
(e ) (D], BeEdn@an b

ez () (D) (et
" 2m D) kogio;)(ml: DIOIG G

Therefore, by (1.4), (1.14), and (2.14), we obtain the following theorem.
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Theorem 2.6. For m € Z. and n € N, one has

(2.15)

srmoasm (") () ()6

ST e
2(m+ 1) gt:zkég(m’: 1) <1> (f) C)Bk iEi- fzp xldp (x)
RS

" 2(m1+ 1) kio loi)g(mlj 1> <7> @ C) BrcibiiBisy

(2.16)
Therefore, by (2.16), we obtain the following corollay.
Corollary 2.7. For m € Z, and n € N, one has
=225 00)
Epin = . . ) Bk—iEn—jEiy;
(2.17)

‘() (e

For f € C(Z,), p-adic analogue of Bernstein operator of order n for f is given by
B0 = 37 () ()40 =07 = () Bt (.19)

where By ,(x) = (})x*(1 - x)"_k for n,k € Z, is called the Bernstein polynomial of degree n
(see [8]). From the definition of By ,(x), we note that B,k , (1 — x) = By, (x).
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9

Let us take the fermionic p-adic integral on Z, for the product of x™ and By ,(x) as

follows:

[ wmBadis e = = (") jZ By (x) Bion (x)dji 1 (x)

Zy 1=0 P

DS (Y (D [ ey

]

p

1 n-k

P

S () ()

From (2.18), we note that

J; X" B (x)dp_1(x) = (Z

QEC e
5

N

[ ama- )
Z

/4
n-k

) B

~

Therefore, by (2.19) and (2.20), we obtain the following theorem.

Theorem 2.8. For m,n, k € 7., one has

j=0 j=0 i=

In particular,

m 1
(m + 1)Em+n = Z <m;_ 1) <;>Blej+n‘
0

1=0 j=

n-k m | n-k
n-k j 1 dAm+1\ /1 /n-k
(7oL L ()7

22y izo(—l)iB,_]. (ml+ 1) <;> <n : k> IZ Iy (x)

(2.19)

(2.20)

(2.21)

(2.22)



10 Discrete Dynamics in Nature and Society

By (1.17) and the symmetric property of By ,(x), we get

| B () = [ 2Bt - X))

Zy Zy

-1 1;:;(—1)’ (" Iz,, Bi(1 - )By on(l - )l (x)
_ ni k+ )1 lz’"(; ]EZ(]) z":O 1) <ml+ 1> C) (1:) B fzp (1= )7y ().
(2.23)

From (1.4) and (2.2), we note that
f (1-x)"dp-1(x) = (-1)"En(-1) = Ex(2) = 2+ Ey — 260,n. (2.24)
ZP

By (2.23) and (2.24), we see that

1

f X" By (x)dp-1(x) = ni;i)l gzg(—l)i+l <ml+ 1) <;> <Ilc) Bi_j(2 + Eitjen-k — 2604 jen-k)-

Z, =
(2.25)
From (2.20) and (2.25), we have
n-k
—k .
Z(n : >(_1)]Em+k+j
A
260k T (m+1\ /1 oo (m+1
2t g (7Y (- 2 S (7
=0 j= 1=0
1 U i+ m+1 1 k
+m+1ZZZ(_1) l( I ><]-><i>Bl—jEi+j+n—k (2.26)
1=0 j=0i=0
260k S, yifm+1\ (/1 2 .
L1 iz’:z":(_l)m m+ 1\ (1\(K\p -
m+1 - 1 ] i I-jLi+j+n-k-

Therefore, by (1.19) and (2.26), we obtain the following theorem.
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Theorem 2.9. For m,n, k € N with n > k, one has

LS (O

(Bms1 +m+1+ (=1)"Byi1).

n-k
(1)Em++ =
FZO( J > Y 1 (2.27)
2
m+1

In particular,

@+ 2)Eannr +2) = 3 SO () (s 2w

1=0 j=0i=0
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