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A network model of credit risk contagion is presented, in which the effect of behaviors of credit
risk holders and the financial market regulators and the network structure are considered. By
introducing the stochastic dominance theory, we discussed, respectively, the effect mechanisms
of the degree of individual relationship, individual attitude to credit risk contagion, the individual
ability to resist credit risk contagion, the monitoring strength of the financial market regulators,
and the network structure on credit risk contagion. Then some derived and proofed propositions
were verified through numerical simulations.

1. Introduction

In the financial market, behavioral factors of credit risk holders and financial market regula-
tors have very important effect on credit risk contagion, especially the investor sentiment. The
market behavioral approach recognizes that investors are not “rational” but “normal”, and
that systematic biases in their beliefs induce them to trade on nonfundamental information,
called “sentiment” [1]. Some financial economists also recognize that the market has mood
swings. The link between asset valuation and investor sentiment soon became the subject of
considerable deliberation among financial economists. Theories departing from rational asset
pricing often posits the influence of investor sentiment [2], and investor sentiment will lead
to fluctuate in prices, and generate risk. Some theoretical studies offer models to establish
the relationship between investor sentiment and asset prices [2–4]. These models contain
two types of investors: rational arbitrageurs who are sentiment free and irrational traders
prone to exogenous sentiment [5]. Baker and Stein [6] find that total sentiment, particularly
the global component of total sentiment, is a contrarian predictor of country-level market
returns. Baker and Wurgler [5, 7] deem that broad waves of sentiment have greater effects
on hard to arbitrage and hard to value stocks, and these stocks will exhibit high “sentiment
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beta” [8]. Hence, sentiment to the extent influences valuation, taking a position opposite to
prevailing market sentiment, can be both expensive and risky.

Some theoretical studies show that investor sentiment has very important effect on
investor personal investment decisions [9]. Baker and Wurgler [7] point out that sentiment-
basedmispricing is based on an uninformed demand of some investors, the noise traders, and
a limit to arbitrage. Since it is unknown how long buying or selling pressures from overly
optimistic or pessimistic noise traders will persist, mispricing can be persistent. Similarly,
there are many other significant studies in this area, such as Hertel et al. [10], Loewenstein et
al. [11], Yuen and Lee [12], and Raghunathan and Corfman [13]. Recently, theoretical studies
have found that investor sentiment is contagious across markets [14]. Actually, the effect of
agent behaviors of credit risk holders and financial market regulator on credit risk contagion
have been taken into account [15, 16]. Therefore, our paper will contribute to understanding
the effect of behaviors of credit risk holders and financial market regulators on credit risk
contagion across credit risk holders or markets.

Over the past few years, theoretical studies found that the network structure also
have very important effect on risk contagion. Some theoretical studies have found some
common structural characteristics, such as the small-world properties, the power-law
degree distribution, the degree correlation, and individual heterogeneity [17–21]. Actually,
the effects of these networked structural characteristics are significant on risk contagion.
They can influence the complexity of risk contagion and the speed and efficiency of risk
contagion among investors or markets. Allen and Gale [22] demonstrate that the spread of
contagion risk depends crucially on the pattern of interconnectedness among banks. When
the interbank connectedness is complete, the impact of a shock is readily attenuated, and
there is no contagion risk. However, when the interbank connectedness is incomplete, the
system is more fragile, and contagion risk is probably to occur.

With the development of network theory, modeling the complex structure of the
financial system to analyze contagion risk in the financial system is a kind of trend. For
random network in banking systems, Iori et al. [23] study banking systems with homoge-
neous and heterogeneous banks, respectively.With homogeneous banks, an interbankmarket
unambiguously stabilizes the system. While with heterogeneous banks, knock-on effects
become possible, but the stabilizing role of interbank lending remains, and consequently
the interbank market plays an ambiguous role. For the tiered structure in banking systems,
Teteryatnikova [24] constructs tiered banking networks and finds the advantages of tiering
within the banking system in terms of both the resilience of the banking network to systemic
shocks and the extent of necessary government intervention should a crisis evolve. Li [25]
develops an analytical model of contagion risk in banking systems with tiered structure.
He find that increasing interbank connections is conducive to handling banking crisis and
reducing the effect of contagion risk, but its positive effect is limited; raising bank reserve
ratio will enhance the stability of individual banks to a certain extent, but it may immediately
lead to liquidity problems for banks that have less excess reserves, causing the occurrence
of contagion risk; an excessive drive for risk assets with high return may bring high risk to
banks and lead to instability of banking systems; the bank risk preference is crucial to the
stability of banking systems, and the radicalness of it may lead to greater systemic instability.
Similarly, there are many other significant studies in this area, such as Nier et al. [26],
Canedo and Jaramillo [27], Georg and Poschmann [28], and Gai and Kapadia [29]. These
theoretical studies look at contagion risk in banking systems via direct linkages between
banks. However, there are other many studies analyzing contagion risk via indirect linkages.
Dasgupta [30] discusses how linkages between banks represented by cross-holding deposits
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can be a source of contagious breakdowns. De Vries [31] shows that there is interdependence
between banks’ portfolios given the fat tail property of the underlying assets, and it carries the
potential of systemic breakdowns. Vivier-Lirimont [32] finds that only very dense networks,
where banks are only a few links away from one another, are compatible with a Pareto
optimal allocation. Babus [33] considers a model where banks form links with one another,
whereby the contagion risk is greatly reduced. The network is formed endogenously and
serves as an insurance mechanism. The prior literatures show that the network structure can
affect risk contagion. With the development of network theory, network theory will be a new
approach to studying credit risk contagion in the financial system, which will contribute to a
better and deeper understanding to credit risk contagion.

In recent years, the contagion effect of credit risk again and again emerge, and that
have serious effect on the financial market and economic development. Credit risk contagion
is increasingly becoming a key factor that threats the stability of the financial market. If we
abstract credit risk holders for the network node and abstract complex relations between
credit risk holders for the connections between nodes or edge, then many credit risk holders
can constitute a complex network. We call it “social network” in the following. Among
the social network, behaviors of credit risk holders and financial market regulators, the
complex connections between credit risk holders and the structural characteristics of the
social network play a key role in the process of credit risk contagion. Therefore, in this
paper, we build a network model of credit risk contagion. We will likewise consider the
effect of behaviors of credit risk holders and financial market regulators, the complex
connections between credit risk holders, and the structural characteristics of the social
network on the process of credit risk contagion. Our aim is to understand how the effect
of the aforementioned factors on the process of credit risk contagion in the financial market.

The remainder of this paper is organized as follows. In Section 2, the network model
of credit risk contagion is presented. In Section 3, we conduct a series of theoretical deducing
and analysis. In Section 4, the effect of behaviors of credit risk holders and financial market
regulator and the social network structure on credit risk contagion are discussed through
numerical simulation. Finally, we conclude the paper in Section 5.

2. The Model

2.1. The Assumptions and Notation

Consider the effect of behaviors of credit risk holders and financial market regulators, the
complex connections between credit risk holders, and the structural characteristics of the
social network on credit risk contagion, we have to define these factors which are involved in
our model. As we know, the correlation of credit risk assets in the financial market is the basis
to credit risk contagion and fluctuations in prices. According to the individual correlation in
credit risk assets, we assume that the complex connections between credit risk holders can
be divided into the direct linkages and the indirect linkages in the financial market, and
this complex connection is divisible continuous variables. Meanwhile, we assume that the
structure of the social network is constant. In other words, we do not consider the effect of
node deleting in this paper. Therefore, we abstract credit risk holders for a node on complex
network and abstract complex relations between credit risk holders for the connections
between nodes or edge. Moreover, we assume that the number of individualsN is limited in
the social network, N = 1, 2, . . . , n.
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Let

(i) λ be the contagion rate of credit risk in the financial market, and λ ∈ [0, 1];

(ii) βk(t) be individuals rate that are infected credit risk at time t;

(iii) μ be the monitoring strength of the financial market regulators, and μ ∈ [1,+∞);

(iv) δ be the connection degree between credit risk holders in the financial market, and
δ ∈ (0,+∞). Moreover, 0 < δ < 1 represents the correlation degree of indirect
linkages between two individuals, and δ ≥ 1 represents the correlation degree of
direct linkages between two individuals. Meanwhile, the greater the δ, the stronger
the correlation degree;

(v) ξ be the effect strength of credit event, and ξ ∈ [0, 1];

(vi) γ(ξ) be the mental attitude or sentiment to the effect of credit risk contagion, and
0 ≤ γ(ξ), γ ′(ξ) > 0, and γ ′′(ξ) > 0;

(vii) θ be the individual ability to resist credit risk contagion in financial market, and
θ ∈ [1,+∞).

2.2. Definition of the Model

Generally speaking, credit risk tends to infect these nodes that the degree of node is bigger,
and the connection degree is higher to these individuals that have been infected credit risk.
This leads to the speed of credit risk contagion that is much faster in the financial market. Let
P(k) represent degree distribution that the degree of nodes is equal to k in the social network,
then 〈k〉 =

∑
k kP(k), where 0 < k < n. Therefore, the probabilityΘ(k′, t), that individuals are

infected credit risk by other individuals that have been infected credit risk, and their degrees
that are equal to k′ can be described by the following equation:

Θ
(
k′, t

)
= P

(
k′ | k) =

∑
k′ k′P(k′)βk′(t)

〈k〉 , (2.1)

where βk′(t) is the share of individual that the degree is equal to k′ in the social network.
Equation (2.1) implies the contagion probability Θ(k′, t) depends on the social network
structure, and it is monotone increasing with the increase in k′, P(k′), and βk′(t). According
to Eboli [34] and Lopez [35], credit risk contagion could be treated as a Markov process
in the social network. Hence, the increasing rate of βk(t) can be described by the following
differential equation:

dβk(t)
dt

=
λkδγ(ξ)

[
1 − βk(t)

]

μθ

∑
k kP(k)βk(t)

〈k〉 − ηβk(t), (2.2)

where η is the speed that individuals restore to the health status after being infected credit
risk. Let α = λ/η represent the effectively contagion rates of credit risk contagion. Therefore,
when dβk(t)/dt = 0, we can obtain the rate that individuals are infected credit risk, and their
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degrees are equal to k under the equilibrium state of the system of credit risk contagion as
follows:

βk(t) =
α
(
kδγ(ξ)/μθ

)(∑
k kP(k)βk(t)/〈k〉

)

1 + α
(
kδγ(ξ)/μθ

)(∑
k kP(k)βk(t)/〈k〉

) (2.3)

or

βk(t) =
α
(
kδγ(ξ)/μθ

)
Θ(k, t)

1 + α
(
kδγ(ξ)/μθ

)
Θ(k, t)

. (2.4)

According to the complex network theory and the finance theory, we know 0 	
βk(t) 	 1 in the incomplete financial market. In other words, any credit events can cause
credit risk contagion in the financial market, but the situation is never occurring that all
of credit risk holders are infected credit risk. Thus, we plug (2.1) into (2.4) and can get an
autonomous equation

Θ(k, t) =
α
(
δγ(ξ)/μθ

)

〈k〉
∑

k

k2P(k)Θ(k, t)
1 + α

(
kδγ(ξ)/μθ

)
Θ(k, t)

. (2.5)

Equation (2.5) describes the influencing factors of the probability Θ(k, t) under the
equilibrium state of the system of credit risk contagion. Let Θ = Θ(k, t). Obviously, Θ = 0 is
trivial solution of (2.5). However, the trivial solution is not focus of our attention in our study
of credit risk contagion, our attention is nontrivial solution, namely,Θ/= 0. According to (2.5),
we can get the nonzero threshold of the system of credit risk contagion as follow:

αc =
〈k〉

〈(
δγ(ξ)/μθ

)
k2
〉 or αc =

〈k〉
(
δγ(ξ)/μθ

)〈k2〉 . (2.6)

According to the complex network theory, we know 〈k〉 	 〈k2〉 in the social network.
As we know, 0 	 δγ(ξ)/μθ 	 1 under the incomplete financial market, then 〈k〉 	
(δγ(ξ)/μθ)〈k2〉 	 〈k2〉. Therefore, 0 < αc = 〈k〉/(δγ(ξ)/μθ)〈k2〉 → 0. This can explain
why only parts of credit event can cause credit risk contagion in the financial market, but is
not all. Meanwhile, which imply why an influential credit event is very easy to cause credit
risk contagion, and trigger “butterfly effect”.

3. The Theoretical Analysis of Model

3.1. The Impact Analysis of Behavioral Factors

The effects of the complex connection between credit risk holders and its relationship
degree are very important on credit risk contagion. Let Θ∗ and βk

∗, respectively, denote the
probability that individuals are infected credit risk, and the share of individuals that they are
infected credit risk and their degrees are equal to k under the equilibrium state of credit risk
contagion; and Θ∗ ∈ (0, 1); βk

∗ ∈ (0, 1).
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Figure 1: The equilibrium relationship graph of credit risk contagion system.

Theorem 3.1. For any network that its degree is equal toK, when the system of credit risk contagion
is in equilibrium status, the system of credit risk contagion emerge the following properties.

(1) Under the incomplete market, the equilibrium probabilityΘ∗ > 0 of the system of credit risk
contagion is unique.

(2) Under the incomplete market, the effect scale of credit risk contagion is monotonic increasing
concave function on the degree δ of individual relationship, the effect strength ξ of credit
event, and individual attitude r(ξ) to credit risk contagion. Meanwhile, it is also monotonic
diminishing convex function on the monitoring strength μ of the financial market regulators
and the individual ability θ to resist credit risk contagion.

Proof. Let

fK(Θ) =
∑

k

α
(
δγ(ξ)/μθ

)
k2P(k)Θ

〈k〉(1 + α
(
δγ(ξ)/μθ

)
kΘ

) . (3.1)

We can get fK
′(Θ) = ∂fK(Θ)/∂Θ =

∑
k(α(δγ(ξ)/μθ)k

2P(k)/〈k〉(1 + α(δγ(ξ)/μθ)
kΘ)2) > 0, fK

′′(Θ) = ∂2fK(Θ)/∂δ2 = −∑
k(2α

2[δγ(ξ)/μθ]2k3P(k)/〈k〉(1 + α(δγ(ξ)/μθ)kΘ)3)
< 0. Thus, fK(Θ) is a monotonic increasing concave function on Θ. Because fK(1) =
∑

k(α(δγ(ξ)/μθ)k
2P(k)/〈k〉(1 + α(δγ(ξ)/μθ)k)) <

∑
k(α(δγ(ξ)/μθ)k

2P(k)/〈k〉α(δγ(ξ)/
μθ)k)) = 1, and fK(0) = 0. Hence, Θ =

∑
k(α(δγ(ξ)/μθ)k

2P(k)Θ/〈k〉(1 + α(δγ(ξ)/μθ)kΘ))
have a fixed point at least and have two fixed point in the interval [0, 1] at most, as
Figure 1. Meanwhile, for the network of credit risk holders under the incomplete market,
we can get 0 < 〈k〉/〈k2〉 → 0, and α(δγ(ξ)/μθ) > 〈k〉/〈k2〉. Thus fK

′(Θ)|Θ=0 > 1.
According to Figure 1, we know thatΘ =

∑
k(α(δγ(ξ)/μθ)k

2P(k)Θ/〈k〉(1+α(δγ(ξ)/μθ)kΘ))
have unique equilibrium value Θ∗ in the interval [0, 1], and Θ∗ > 0. According to (2.4),
we can get ∂βk(t)/∂δ = α(kγ(ξ)/μθ)Θ/[1 + α(kδγ(ξ)/μθ)Θ]2 > 0, and ∂2βk(t)/∂δ2 =
−(2α[(kγ(ξ)/μθ)Θ]2/[1 + α(kδγ(ξ)/μθ)Θ]3) < 0. Thus βk(t) is monotonic increasing concave
function on the degree δ of individual relationship.

Similarly, we have ∂βk(t)/∂γ(ξ) > 0, ∂2βk(t)/∂(γ(ξ))
2 < 0, ∂βk(t)/∂ξ > 0, ∂2βk(t)/∂ξ2 <

0, ∂βk(t)/∂μ < 0, ∂2βk(t)/∂μ2 > 0, ∂βk(t)/∂θ < 0, and ∂2βk(t)/∂θ2 > 0. Thus, the effect scale
of credit risk contagion is monotonic increasing concave function on the effect strength ξ of
credit event and individual attitude r(ξ) to credit risk contagion, and it is also monotonic
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diminishing convex function on the monitoring strength μ of the financial market regulators
and the individual ability θ to resist credit risk contagion.

From Theorem 3.1, we can find that under the incomplete market, individual attitude
to credit risk contagion, the degree of individual relationship, and the effect strength of credit
event can increase the speed and effect scale of credit risk contagion and cause “butterfly
effect”. But the monitoring strength of the financial market regulators and the individual
ability to resist credit risk contagion can reduce or restrain the speed and effect scale of credit
risk contagion. Therefore, Theorem 3.1 has important theoretical and practical value to the
financial market regulators that they can make effective monitoring strategy to credit risk
contagion.

3.2. Effect of Network Structure

We use first- and second-order stochastic dominance of degree distribution, respectively, to
denote the change of the average degree and the heterogeneity of network (e.g., [36]). Let
P and P ′, respectively, represent the degree distributions of two networks. If P first-order
stochastic dominates P ′, which is equivalent to having

∑
k F(k)P(k) >

∑
k F(k)P

′(k) for any
monotonic decreasing function F(k), this implies 〈k〉 > 〈k′〉. If P second-order stochastic
dominates P ′, which is equivalent to having

∑
k F(k)P(k) >

∑
k F(k)P

′(k) for any concave
function F(k), this implies that P ′ has a higher difference than P . Therefore, we assume that
the degree distributions of network K and K′ are, respectively, P and P ′, and their average
degrees are, respectively, 〈k〉 and 〈k′〉. According to the stochastic dominance standards of
the social networks, we could get the following propositions.

Theorem 3.2. When α(δγ(ξ)/μθ) > 〈k〉/〈k2〉, if the average degree 〈k′〉 of the networkK′ is great-
er than the average degree 〈k〉 of the networkK, Θ∗′ is greater than Θ∗ under the equilibrium state of
credit risk contagion.

Proof. We assume that Theorem 3.2 cannot be tenable. In other words, if the average degree
〈k′〉 of the network K′ is greater than the average degree 〈k〉 of the network K, Θ∗′ ≤ Θ∗.
According to (2.5) and (3.1), we can get

Θ∗ ≥ Θ∗′ = fK′(Θ∗). (3.2)

According to Theorem 3.1, we know that the equilibrium probability Θ∗ > 0 is unique
when α(δγ(ξ)/μθ) > 〈k〉/〈k2〉.

Let

F(k) =
α
(
δγ(ξ)/μθ

)
k2Θ

〈k〉(1 + α
(
kδγ(ξ)/μθ

)
Θ
) . (3.3)

We can get ∂F(k)/∂k = α(δγ(ξ)/μθ)kΘ(2 + α(δγ(ξ)/μθ)kΘ)/〈k〉(1 + α(kδγ(ξ)/
μθ)Θ)2 > 0, thus F(k) is a monotonic decreasing function on k. According to Jackson [36],
if the average degree 〈k′〉 of the network K′ is greater than the average degree 〈k〉 of the
network K, then P first order-stochastic dominates P ′. Therefore, if the average degree 〈k′〉
of network K′ is greater than the average degree 〈k〉 of network K, which is equivalent to
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∑
k F(k)P

′(k) >
∑

k F(k)P(k), this implies that we have fK′(Θ) > fK(Θ) for any Θ > 0. Thus
we can get fK′(Θ∗) > fK(Θ∗) for allΘ∗ > 0. In contrast to (3.2), we findΘ∗ ≥ fK′(Θ∗) > fK(Θ∗).
This conflicts with Θ∗ = fK(Θ∗). Thus our hypothesis is tenable; namely, Theorem 3.2 is
true.

Corollary 3.3. When α(δγ(ξ)/μθ) > 〈k〉/〈k2〉, if the heterogeneity of networkK′ is higher than the
heterogeneity of networkK,Θ∗ is greater thanΘ∗′ under the equilibrium state of credit risk contagion.

Proof. We assume that Corollary 3.3 cannot be tenable. In other words, if the heterogeneity of
network K′ is higher than the heterogeneity of network K, Θ∗ ≤ Θ∗′ under the equilibrium
state of credit risk contagion. According to (2.5) and (3.1), we can get

Θ∗ ≤ Θ∗′ = fK′(Θ∗). (3.4)

According to Theorem 3.1, we know that Θ∗ > 0 is unique when α(δγ(ξ)/μθ) >
〈k〉/〈k2〉. According to (3.3), we have ∂2F(k)/∂k2 > 0, thus F(k) is a concave function on
k. According to Jackson [36], if the heterogeneity of the network K′ is higher than the
heterogeneity of the network K, then P second-order stochastic dominates P ′. Therefore, if
the heterogeneity of network K′ is higher than the heterogeneity of network K, which is
equivalent to having

∑
k F(k)P(k) >

∑
k F(k)P

′(k), this implies that we have fK(Θ) > fK′(Θ)
for any Θ > 0. Thus we can get fK(Θ∗) > fK′(Θ∗) for all Θ∗ > 0. In contrast to (3.2), we can
get Θ∗ ≤ fK′(Θ∗) < fK(Θ∗). This conflicts with Θ∗ = fK(Θ∗). Thus our hypothesis is tenable;
namely, Corollary 3.3 is true.

Corollary 3.4. When α(δγ(ξ)/μθ) > 〈k〉/〈k2〉, if the average degree 〈k′〉 of the network K′ is
greater than the average degree 〈k〉 of the network K, β∗

′
k is greater than β∗k under the equilibrium

state of credit risk contagion.

Proof. According to Theorem 3.2, we can get Θ∗′ > Θ∗ when the average degree 〈k′〉 of the
network K′ is greater than the average degree 〈k〉 of the network K. Which is equivalent to
β∗′(k) > β∗(k) and

∑
k β

∗′(k) >
∑

k β
∗(k) for any k > 0. Thus we can get

β∗
′

k >
∑

k

β∗(k)P ′(k). (3.5)

According to (2.4), we can get ∂βk(t)/∂k = α(δγ(ξ)/μθ)Θ/(1 + α(kδγ(ξ)/μθ)Θ)2 > 0.
This implies that βk(t) is a monotonic decreasing function on k. According to Jackson [36], if
the average degree 〈k′〉 of the network K′ is greater than the average degree 〈k〉 of network
K, we can get

∑
k β

∗(k)P ′(k) >
∑

k β
∗(k)P(k) = β∗

k
. Combining (3.5), we have β∗

′
k
> β∗

k
.

From Theorem 3.2 and Corollary 3.4, we find that the denser the network, the stronger
the contagion effect of credit risk. The main reason is that the denser the network, the
higher the interactive frequency between credit risk holders, and the stronger the behavior
consistency and the convergence effect between credit risk holders in the social network.
These will enhance the contagion speed and effect scale of credit risk contagion. According to
Corollary 3.3, we find that the higher the heterogeneity of individuals in the social network,
the less the contagion probability of credit risk. This main reason is that the higher the
heterogeneity network, the greater the difference of the degree distributions of nodes, and
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Figure 2: Effect of behavior factors to credit risk contagion.

the stronger the communication obstacles between credit risk holders, and the larger the
resistance that information spread in the social network. Thus these can reduce the contagion
probability of credit risk in the social network.

4. Numerical Simulation Analysis

To conduct numerical simulation analysis of credit risk contagion, it is necessary to assign a
value to parameters of model. First, we choose WS network, exponential network, and BA
network to conduct numerical simulation, where the probability of long distance connection
of nodes in WS network is equal to 0.05, the degree distributions of exponential network is
P(k) ∝ e−εk/2m, and the degree distributions of BA network is P(k) ∝ 2m2/k3 (e.g., [37, 38]).
Second, let N = 1000, and let m0 = m = 5. Therefore, we can observe the effect of the degree
of individual relationship, the effect strength of credit event, individual attitude to credit risk
contagion, the monitoring strength of the financial market regulators, the individual ability
to resist credit risk contagion, and the network structure of credit risk contagion.

Figure 2 shows the effect of behaviors of credit risk holders and financial market
regulator on the scale of credit risk contagion. In Figures 2(a) and 2(b), we find that the
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Figure 3: Effect of the network structure on credit risk contagion.

contagion speed of credit risk is significantly increasing with the increase in the degree
of individual relationship and individual attitude to credit risk contagion. Meanwhile, the
contagion speed of credit risk is the fastest in WS network, but is the slowest in BA network.
This reason is that the direct correlation edges between credit risk holders are much more
in WS network, thus the probability of the formation is greater on “psychological group,”
and the probability of the behavior convergence effect is also higher. However, the direct
correlation edges between credit risk holders are much less in BA network, thus the speed
of information dissemination and the probability of the communication between individuals
are lower, and the inhibitory action to credit risk contagion is stronger. These will emerge
that the contagion speed of credit risk is faster in WS network than in BA network. In Figures
2(c) and 2(d), we find that the monitoring strength of the financial market regulators and the
individual ability to resist credit risk contagion have strong inhibitory action to credit risk
contagion, and this kind of inhibitory action in BA network is more significant than in WS
network. The reason is that the direct correlation edges between credit risk holders are much
less in BA network, and the difference of the degree distributions of nodes is higher. But these
features are the opposite to WS network. Meanwhile, the inhibitory action of the individual
ability to resist credit risk contagion is more significant than the monitoring strength of the
financial market regulators. In addition, Figure 2 also shows that the lower the heterogeneity
of the network, the higher the effect scale of credit risk contagion. This reason is that the
lower heterogeneity of correlation edge is conducive to information dissemination in WS
network, but the higher heterogeneity of correlation edge restrains and hinders information
dissemination in BA network.

Figure 3 shows the effect of the network structure on the scale of credit risk contagion.
In Figure 3(a), we find that the larger the degree of node, the faster the contagion speed of
credit risk, and the higher the rate that individuals are infected credit risk. The reason is that
the larger the degree of nod, the more closely between credit risk holders. Thus the frequency
of communication and the speed of information spread is higher, forming “psychological
group” is the easier, and the convergent effect between credit risk holders is stronger.
Therefore, the probability and speed of credit risk contagion is also higher. In Figure 3(b),



Discrete Dynamics in Nature and Society 11

Table 1: Sensitivity analysis of the effect scale on credit risk contagion.

Behavior The effect scale βk of credit risk contagion
WS network Exponential network BA network

Factors Variables 〈k〉 = 5 〈k〉 = 10 〈k〉 = 15 〈k〉 = 5 〈k〉 = 10 〈k〉 = 15 〈k〉 = 5 〈k〉 = 10 〈k〉 = 15

0.1 0.0253 0.0348 0.0457 0.0207 0.0298 0.0401 0.0186 0.0271 0.0369

δ

0.5 0.0923 0.1378 0.1839 0.0857 0.1252 0.1713 0.0614 0.1006 0.1435
0.8 0.1012 0.1429 0.1891 0.0902 0.1287 0.1749 0.0798 0.1098 0.1581

1 0.1286 0.1901 0.2714 0.1269 0.1782 0.2534 0.0964 0.1473 0.2193

5 0.1709 0.2635 0.3927 0.1439 0.2301 0.3427 0.1293 0.2167 0.3286

10 0.2216 0.3164 0.4279 0.1825 0.2742 0.3841 0.1587 0.2573 0.3654

1 0.2216 0.3164 0.4279 0.1825 0.2742 0.3741 0.1587 0.2573 0.3654

θ
5 0.2023 0.2892 0.4018 0.1527 0.2374 0.3486 0.1279 0.2289 0.3376
10 0.1892 0.2594 0.3742 0.1203 0.2081 0.3149 0.0937 0.1989 0.3096

15 0.1687 0.2281 0.3563 0.1076 0.1769 0.2843 0.0824 0.1671 0.2789

20 0.1434 0.2074 0.3287 0.0947 0.1476 0.2571 0.0697 0.1294 0.2491

0.1 0.2023 0.2892 0.4018 0.1527 0.2374 0.3486 0.1279 0.2289 0.3376

r(ξ)
0.5 0.2217 0.3044 0.4179 0.1639 0.2509 0.3627 0.1387 0.2432 0.3601
1 0.2308 0.3203 0.4351 0.1766 0.2658 0.3767 0.1496 0.2594 0.3761

2 0.2481 0.3389 0.4527 0.1907 0.2831 0.3923 0.1621 0.2763 0.3943

5 0.2643 0.3576 0.4876 0.2174 0.3017 0.4129 0.1889 0.2944 0.4037

we find that the denser the network, the stronger the contagion effect of credit risk. This is
consistent with Corollary 3.4.

To more clearly depict the sensitivity how the effect of behavior factors of credit risk
holders on credit risk contagion. Let μ = 10 and α = 0.4, we conduct numerical calculation,
and the results are as Table 1. According to Table 1, we find that the results of sensitivity
analysis are consistent with simulation analysis. This further verified the correctness of the
aforementioned propositions.

5. Conclusion

In this paper, we discussed the effects of behavioral factors of credit risk holders and
financial market regulators, the social network structure on credit risk contagion through
the theoretical analysis and numerical simulation, and we obtain a series of important
conclusions through numerical simulations and sensitivity analysis as follows.

(1) Under the incomplete market, the equilibrium contagion probability of credit risk
is unique, its value is a positive, and the effect scale of credit risk contagion is a
monotonic increasing concave function on the degree of individual relationship,
the effect strength of credit event, and individual attitude to credit risk contagion.
Meanwhile, it is also a monotonic diminishing convex function on the monitoring
strength of the financial market regulators and the individual ability to resist credit
risk contagion.

(2) The greater the average degree of the network, the greater the contagion probability
and effect scale of credit risk contagion.
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(3) The greater the heterogeneity of the network, the less the contagion probability and
effect scale of credit risk contagion.

These conclusions have important theoretical and practical value in the credit risk
management. Certainly, there are still much works worth further research. For example, the
weakening of assumptions, considering the effect of node deleting, and so forth. Therefore,
our future study will focus on these issues.
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