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A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced,
which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities
of the dynamic multiswarm particle swarm optimizer (PSO) and the stochastic exploitation of the
cooperative artificial bee colony algorithm (CABC) for solving the function optimization. In the
proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a
dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage,
the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage,
we make use of the particle swarm optimization global model, which has a faster convergence
speed to enhance the global convergence in solving the whole problem. To verify the effectiveness
and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested
to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization
algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence
property and has strong ability to escape from the local suboptima when compared with several
other peer algorithms.

1. Introduction

Optimization can be viewed as one of the major quantitative tools in network of decision
making, in which decisions have to be taken to optimize one or more objectives in some
prescribed sets of circumstances. Typical single objective bound constrained optimization
problems can be expressed as

Min f(x), x = [x1, x2, . . . , xD], xi ∈ [xmin,xmax] with i = 1, 2, . . . , D, (1.1)
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where D is the number of variables (the dimension of the search space) and the xmin and
xmax are the upper and lower bounds of the search space. In view of the practical utility of
optimization problems, there is a need for efficient and robust computational algorithms,
which can numerically solve in computers the mathematical models of medium as well
as large size optimization problems arising in different fields. Evolutionary algorithms
have emerged as a revolutionary approach for solving complex search and optimization
problems. The success of most of the Heuristic optimization algorithms depends to a large
extent on the careful balance of two conflicting goals, exploration (diversification) and
exploitation (intensification). While exploration is important to ensure that every part of the
solution domain is searched enough to provide a reliable estimate of the global optimum,
exploitation, on the other hand, is important to concentrate the search effort around the
best solutions found so far by searching their neighbourhoods to reach better solutions.
The search algorithms achieve these two goals by using local search methods, global search
approaches, or an integration of both global and local strategies: these algorithms are
commonly known as hybrid methods. Hybrid algorithms are chosen as the topic of the
present paper because they are a growing area of intelligent systems research, which aims
to combine the desirable properties of different approaches to mitigate their individual
weaknesses.

In the recent years, the hybridization technique based on particle swarm optimization
(PSO) and artificial bee colony (ABC) was hotly researched. El-Abd [1] proposed a
hybridization approach between ABC and SPSO. This is achieved by incorporating an ABC
component into SPSO, which updates the pbest information of the particles in every iteration
using the ABC update Equation; penalty guided support vector machines based on hybrid
of particle swarm optimization and artificial bee colony algorithm to mine financial distress
trend data [2]; Shi et al. [3] developed a hybrid swarm intelligent algorithm based on particle
swarm optimization (PSO) and artificial bee colony (ABC). Turanoğlu and Özceylan [4]
used particle swarm optimization and artificial bee colony to optimize single input-output
fuzzy membership functions; the obtained results show that PSO and ABC methods are
capable and effective to find optimal values of fuzzy membership functions in a reasonable
time.

Honey bees are among themost closely studied social insets. Their foraging behaviour,
learning, memorizing, and information sharing characteristics have recently been one of the
most interesting research areas in swarm intelligence [5]. According to many researched
results on the local variants of the PSO [6], PSO with small neighbourhoods performs better
on complex problems. Ballerini pointed out that the interaction ruling animal collective
behavior depends on topological rather thanmetric distance [7–9] and proposed a newmodel
for self-organized dynamics and its flocking behaviour. In this paper, we propose a new
optimization method, called dynamic multistage hybrid swarm intelligence optimization
algorithm (DM-PSO-ABC).

The rest of the paper is organized as follows. Section 2 briefly introduces the original
PSO algorithm and ABC algorithm and describes the related hybrid techniques of the
particle swarm optimization (PSO) and artificial bee colony algorithm (ABC) in recent years.
Section 3 discusses a new method named dynamic multistage DM-PSO-ABC algorithm.
Section 4 tests the algorithms on the benchmarks, and the results obtained are presented and
discussed. Finally, conclusions are given in Section 5.
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2. The Original Algorithm

2.1. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is inspired by social behaviour simulation and was
originally designed and developed by Kennedy and Eberhart [10]. It is a population-based
search algorithm that was on the basis of the simulation of the social behaviour of birds within
a flock. In the PSO, individuals are particles and are “flown” through hyperdimensional
search space. They simulated birds’ swarm behaviour and made each particle in the swarm
move according to its experience and the best experience of particle. Each particle represents a
potential solution to the problem and searches around in amultidimensional search space. All
particles fly through the D-dimensional parameter space of the problem while learning from
the historical information gathered during the search process. The particles have a tendency
to fly towards better search regions over the course of search process. The velocity vid and
position xid updates of the dth dimension of the ith particle are presented below:

vid(t + 1) = w × vd(t) + c1 × r1 ×
(
pbid(t) − xid(t)

)
+ c2 × r2 ×

(
gbd(t) − xid(t)

)
, (2.1)

xid(t + 1) = xid(t) + vid(t), (2.2)

where c1 and c2 are the acceleration constants and r1 and r2 are two uniformly distri-
buted random numbers in [0, 1]. xi = (xi1, xi2, . . . , xid) is the position of the ith par-
ticle, vi = (vi1, vi2, . . . , vid) represents the velocity of the ith particle, pbesti = (pbesti1,
pbesti2, . . . ,pbestid) is the best previous position yielding the best fitness value for the ith
particle, gb = (gb1, gb2, . . . , gbD) is the best position discovered by the whole population, and
w is the inertia weight used to balance between the global and local search abilities.

There are twomainmodels of the PSO algorithm, called global model and local model.
The twomodels differ in the way of defining the neighborhood for each particle. In the global
model, the neighborhood of a particle consists of the particles in the whole swarm, which
share information between each other. On the contrary, in the local model, the neighborhood
of a particle is defined by several particles. The two models give different performances on
different problems. van den Bergh and Engelbrecht [11] and Poli et al. [12] pointed out that
the global model has a faster convergence speed but also has a higher probability of getting
stuck in local optima than the local model. On the contrary, the local model is less vulnerable
to the attraction of local optima but has a slower convergence speed than the global model.
In order to give a standard form for PSO, Bratton and Kennedy proposed a standard version
of PSO (SPSO) [13]. In SPSO a local ring population topology is used, and the experimental
results have shown that the local model is more reliable than the global model on many test
problems. The velocity update of the local PSO is

vid(t + 1) = w × vd(t) + c1 × r1 ×
(
pbid(t) − xid(t)

)
+ c2 × r2 × (lbd(t) − xid(t)). (2.3)

The population topology has a significant effect on the performance of PSO. It
determines the way particles communicate or share information with each other. Population
topologies can be divided into static and dynamic topologies. For static topologies,
communication structures of circles, wheels, stars, and randomly assigned edges were tested
[14], showing that the performance of algorithms is different in different problems depending
on the topology used. Then, Kennedy andMendes [15] have tested a large number of aspects
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of the social-network topology on five test functions. After that, a fully informed PSO (FIPS)
algorithmwas introduced byMendes et al. [16]. In FIPS, a particle uses a stochastic average of
pbests from all of its neighbors instead of using its own pbest position and the gbest position
in the update equation. A recent study [17] showed that PSO algorithms with a ring topology
are able to locate multiple global or local optima if a large enough population size is used.

For dynamic topologies, Suganthan [18] suggested a dynamically adjusted neighbor
model, where the search begins with an lbest model and is gradually increased until the
gbest model is reached. Janson and Middendorf [19] proposed a dynamic hierarchical PSO
(HPSO) to define the neighborhood structure where particles move up or down the hierarchy
depending on the quality of their pbest solutions. Liang et al. [20] developed a comprehensive
learning PSO (CLPSO) formultimodal problems. In CLPSO, a particle uses different particles’
historical best information to update its velocity, and for each dimension, a particle can
potentially learn from a different exemplar.

2.2. Artificial Bee Colony Algorithm (ABC)

Recently, by simulating the behaviour of honey bee swarm intelligence, an efficient bee colony
(ABC) algorithm is proposed [21, 22]. Due to its simplicity and ease of implementation,
the ABC algorithm has gained more and more attention and has been used to solve
many practical engineering problems. In the basic ABC algorithm [18–21], it classifies
foraging artificial bees into three groups, namely, employed bees, onlookers, and scouts.
An employed bee is responsible for flying to and making collections from the food source
which the bee swarm is exploiting. An onlooker waits in the hive and decides on whether
a food source is acceptable or not. This is done by watching the dances performed by the
employed bees. A scout randomly searches for new food sources by means of some internal
motivation or possible external clue. In the ABC algorithm, each solution to the problem
under consideration is called a food source and represented by an n-dimensional real-valued
vector where the fitness of the solution corresponds to the nectar amount of the associated
food resource. As with other intelligent swarm-based approaches, the ABC algorithm is an
iterative process. The approach begins with a population of randomly generated solutions
(or food sources); then, the following steps are repeated until a termination criterion is met
[23, 24].

In the employed bees phase, artificial employed bees search for new food sources
having more nectar within the neighbourhoods of the food source in their memory. They find
a neighbour food source as defined in (2.4), providing that its nectar is higher than that of the
previous one; the bee memorizes the new position and forgets the old one. Then evaluate its
fitness as defined in (2.5). After producing the new food source, its fitness is calculated, and
a greedy selection is applied between it and its parent. After that, employed bees share their
food source information with onlooker bees waiting in the hive by dancing on the dancing
area:

vij = xij + ϑij ×
(
xij − xkj

)
, (2.4)

where k ∈ {1, 2, . . . ,BN}, BN is the number of food sources which is equal to the number
of employed bees in each subgroup, and j ∈ {1, 2, . . . , D} are randomly chosen indexes.
Although k is determined randomly, it has to be different from i. ϑij is a random number
between [−1, 1]. It controls the production of a neighbour food source position around xij
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and the modification represents the comparison of the neighbour food positions visually by
the bee. Equation (2.4) shows that as the difference between the parameters of the xij and xkj

decreases, the perturbation on the position xij decreases, too:

Fitness(i) =

⎧
⎨

⎩

1
1 + f(i)

, if f(i) ≥ 0,

1 + abs
(
f(i)
)
, otherwise.

(2.5)

In the onlooker bees’ phase, artificial onlooker bees probabilistically choose their food
sources depending on the information provided by the employed bees as defined in (2.6) and
(2.7). For this purpose, a fitness-based selection technique can be used, such as the roulette
wheel selection method. After a food source for an onlooker bee is probabilistically chosen, a
neighbourhood source is determined, and its fitness value is computed. As in the employed
bees phase, a greedy selection is applied between two sources:

prob(i) =
0.9 ∗ Fitness(i)
max(Fitness)

+ 0.1, (2.6)

prob(i) =
Fitness(i)
∑SN

n=1 Fitness
. (2.7)

In the scout bees’ phase, employed bees whose solutions cannot be improved through
a predetermined number of trials, called “limit”, become scouts, and their solutions are
abandoned. Then, the scouts start to search for new solutions, randomly using (2.8). Hence,
those sources which are initially poor or have beenmade poor by exploitation are abandoned,
and negative feedback behaviour arises to balance the positive feedback:

xij = xmind + rand (0, 1) × (xmax j − xmin j
)
. (2.8)

3. A Novel Multistage Hybrid Swarm Intelligence
Optimization Algorithm

As mentioned in the previous sections, researchers confirm that the PSO algorithm should
be taken into account as a powerful technique for handling various kinds of optimization
problems, but it is vulnerable to premature convergence and low stability in the process
of evolution. According to many researches that PSO with small neighborhoods performs
better on complex problems. The particles will enhance their diversity with a randomized
regrouping schedule by dynamically changing neighborhood structures. We allowmaximum
information exchange among the particles to enhance the diversity of the particles.
Cooperative ABC algorithm has the mechanism of labor’s division and cooperation, the
different search strategies can cooperate together to achieve global optimization, and it has
strong ability in global optimization, but when close to the global optimal solution, the search
speed slowed, so the population diversity reduced and particles were apt to be trapped in
local optimal solution. In order to make full use of and balance the exploration of the solution
search equation of ABC and the exploitation of the proposed solution search equation of PSO,
we propose a novel dynamic multistage hybrid DM-PSO-ABC based on the compensation by
combining the evolution ideas of the PSO and ABC algorithm.
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In the proposed hybrid DM-PSO-ABC algorithm, the different strategies in the three
phases collaborate to cope with different situations in the search space. Firstly, we used local
version of PSO with a new neighborhood topology of the small neighborhoods to maintain
the population diversity; secondly, we adjusted the initial allocation of pheromone in the
cooperative ABC algorithm based on a series of suboptimal solutions; obtained in the fore
stage, we make use of these advantages of the parallel, positive feedback and high accuracy
of solution of cooperation ABC to implement solving of the whole problem. In the third
stage, we make use of the PSO global model that has a faster convergence speed to enhance
the global convergence. In Pseudocode 1, the main steps of DM-PSO-ABC algorithm are
given.

3.1. Rough Searching by the Multiswarm PSO with a Randomized
Regrouping Schedule

In the first stage of the DM-PSO-ABC, small neighbourhoods are used. The population
is divided into small-sized swarms. Each subswarm uses its own members to search for
better regions in the search space. The small-sized swarms used their own best historical
information in the searching phase; they can easily converge to a local optimum because
of PSO’s speedy convergence behaviour. Hence, a randomized regrouping schedule is
introduced so that the particles will enhance their diversity by dynamically changing
neighbourhoods’ structures. For every L generation, the population is regrouped randomly
and starts searching using a new configuration of small subswarm. Here L is called the
regrouping period. In this way, the information obtained by each subswarm is exchanged
among the whole swarms. Simultaneously the diversity of the population is also increased.
In DM-PSO-ABC, in order to constrain a particle within the search range, the fitness value of
a particle is calculated, and the corresponding pbest is updated only if the particle is within
the search range. Since all pbests and lbests are within the search bounds, all particles will
eventually return within the search bounds.

In Figure 1, we use three swarms with ten particles in each swarm to show the
regrouping schedule. First, the thirty particles are divided into three swarms randomly. Then
the three swarms use their own particles to search for better solutions. In this period, they
may converge to near a local optimum. Then the whole population is regrouped into new
swarms. The new swarms begin their search. This process is continued until a stop criterion
is satisfied. With the randomly regrouping schedule, particles from different swarms are
grouped in a new configuration so that each small swarms search space is enlarged, and
better solutions are possible to be found by the new small swarms.

In order to achieve better results on complex problems, the dynamic multigroup
particle swarm optimizer is designed to make the particles have a large diversity, and
consequently the convergence speed will be slow. Even after the global region is found, the
particles will not converge to the global optimization very fast in order to avoid premature
convergence. How to maintain the diversity and get the good result at the same time is a
problem. Hence, In order to alleviate this weakness and give a better search in the better local
areas, an ABC local search is added into the dynamic multiswarm particle swarm optimizer.
For every L generation, the pbests of ten randomly chosen particles will be used as the
starting points of cooperation ABC local search. We calculate the fitness values of all the
pbests for each refined solution and replace the nearest ones with the refined solutions if the
refined solution is better.
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A dynamic Multi-stage hybrid swarm intelligence optimization algorithm

m: Each swarm’s population size
S: Swarms’ number
L: Regrouping period
Max gen: Max generations, stop criterion
Step 1 Generate initialm ∗ n particles and set up parameters for each particle;

Initialize the position of all particles X = (X1, X2, . . . , XN), and their fitnesses, and
the velocity of all particles V = (V1, V2, . . . , VN); the best local position of all particles
pbest = (pbest1,pbest2, . . . ,pbestN);

Step 2 Update all particles using local version PSO with Dynamic multi-group
For i = 1 : 0.95 ∗Max gen

Update each swarm using (2.2), (2.3) local version PSO, pbests and lbests updating
If mod(i, L) == 0
Regroup the swarms randomly
End

Step 3 local search carried out in each small swarm by the artificial bee colony
the population of food sources (solutions) is initialized by the current lbests in each
sub-swarm
For each component j ∈ (1, 2, . . . , D)

Employed Bees’ Phase
For each employed bee i

Replace the j component of the lbest by using the j component of bee i
Calculate the [f newlbest (lbest1, lbest2, . . .,xij , . . .,lbestD)]
If (f newlbest better than f lbest)

Then newlbest replaced lbest
For employed bee i produce new food source positions Vi by using (2.4)
Calculate the value fitness by using (2.5)
Apply greedy selection mechanism
End For.

End For
Calculate the probability values pi for the solutions Xi by (2.6) and (2.7) using the
roulette wheel selection rule;

Onlooker Bees’ Phase
For each onlooker bee i
Chooses a food source depending on pi
Replace the j component of the lbest by using the j component of bee i
Calculate the f[newlbest](lbest1, lbest2, . . . , xij , . . .,lbestD)
If f(newlbest) better than f(lbest)
Then newlbest replaced lbest
For onlooker bee i produce new food source positions Vi by using (2.4)
Calculate the value fitness
Apply greedy selection mechanism
End For

End For
Scout Bees’ Phase

If there is an employed bee becomes scout
Then replace it with a new random source positions by using (2.8)
Memorize the best solution achieved so far
Compare the best solution with lbest and Memorize the better one.

Step 4 Update all particles using global version PSO
For i = 0.95 ∗Max gen : Max gen
Update all particles using global version PSO, pbests and gbest updating

End

Pseudocode 1: Pseudocode of DM-PSO-ABC.
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Regroup

Figure 1: DM-PSO-ABC’s configuration of small swarms.

3.2. Detailed Searching in Each Small Swarm by the Cooperative
Artificial Bee Colony

In the second stage, we present an extended ABC algorithm, namely, the cooperative article
bee colony, which significantly improves the original ABC in solving complex optimization
problems. In the ABC algorithm, the goal of each individual bee is to produce the best
solution. From expression (2.4), we can see that the new food source is produced by a random
neighborhood of current food position and a random single dimension of D-dimensional
vector. This will bring about a problem that an individual may have discovered a good
dimension, but the fitness of the individual is computed by using D-dimensional vector;
hence we know it is very probable that the individual is not the best solution in the end,
and the good dimension which the individual has found will be abandoned. To produce a
good solution vector, all the populations must cooperate. And the information from all the
populations needs to be used. Therefore, we apply cooperative search to solve the problem
in the ABC algorithm and propose the cooperative ABC algorithm. We set a super best
solution vector, namely, lbest, and its each component of D-dimensional is the best in each
subswarm. For lbest: (lb1, lb2· · · lbd), lbi corresponds to the ith component of the lbest.
In the initialization phase, we evaluate the fitness of the initial food source positions and
set the position which has the best fitness as the initial lbest. In the employed bees’ and
onlooker bees’ phase, we use the j component of each individual to replace the corresponding
component of the lbest to find the best position of the j component. lbests do not influence
the employed and onlooker bees finding new food sources. It is a virtual bee. It just saves the
best one of each component. After all phases, the best solution achieved by all individuals
and the lbest will be compared.

In this stage, the population of food sources (solutions) is initialized by each small
swarm’s lbest which is generated in the first stage called nectar information of the food
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Figure 2: Illustration of local search phase for a population with 10 particles.

sources (solutions); the employed bee is to perform a neighbourhood search around a given
food source. Therefore, the employed bee takes the exploitation search of the algorithm.

An illustration for the cooperative ABC local search phase for a swarm of 10 particles
is given in Figure 2. Five pbests “•” pbest1, pbest3, pbest5, pbest7, and pbest9 are randomly
chosen as the start points for the local search, and 3 local optima x∗

1, x
∗
2, and x∗

4 are achieved
after the local search. The nearest three pbests “©” pbest2, pbest4, pbest6, pbest8, pbest10 are
replaced by x∗

1, x
∗
2, and x∗

4 “�”, respectively, provided the refined solutions are better.

3.3. Rapid Convergence by the Global Version of PSO

The success of PSO in solving one specific problem crucially depends on the choice of suitable
strategies; the particles can play different roles (exploitation and exploration) during the
two-stage search progress before; in the third stage, we make use of the PSO global model
in dealing with global optimization problems including the improved capability of high
convergence speed and good generality for the whole problem.

3.4. The Framework of DM-PSO-ABC

In order to achieve better results on multimodal problems, Liang et al. [20] designed an
improved algorithm in such a way that the particles have a larger diversity by sacrificing
the convergence speed of the global PSO. Even after the globally optimal region is found,
the particles will not converge rapidly to the globally optimal solution. Hence, maintaining
the diversity and obtaining good solutions rapidly at the same time are a challenge which is
tackled by integrating the neighbourhood search phase of artificial bee colony in the DMS-
PSO to obtain the DM-PSO-ABC; the population of food sources (solutions) is initialized
by the current lbest in each subswarm; the position of a food source represents a possible
solution to the problem, and the nectar amount of a food source corresponds to the quality
(fitness) of the associated solution. Thereafter, the nectar of food sources is exploited by
employed bees and onlooker bees, and this continual exploitation will ultimately cause them
to become exhausted. Except the ABC phase in each subswarm, the process of the paper
[16] is also retained. In this way, the strong exploration abilities of the basic PSO and the
exploitation abilities of the ABC can be fully exploited. The flowchart of the proposed DM-
PSO-ABC is presented in Figure 3.
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and gbest of the population, set gen = 0, Fes = 0

d = d + 1 i = i + 1

gen = gen + 1

d < D

d = 1

i = 1

Mod (gen, L) == 0

S = 1

S = S + 1

i < ps

Fit(xi) > Fit (pbesti)

xid(t + 1) = xid(t) + vid(t)
vid(t + 1) = min(Vmax, max ((Vmax,vid(t + 1)))

vid(t + 1) = w × vd(t) + c1 × r1 × (pbestid(t) − xid(t)) +
c2 × r2 × (lbestd(t) − xid(t))

lbesti = Xi

Fit(xi) > Fit(lbest(xi))

Y

Y

Fes < Max gen

S < number of subswarm

Fes < 0.95∗Max gen

Pbesti = Xi

X ∈ [Xmin, Xmax]

Figure 3: The flowchart of the DM-PSO-ABC.
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4. Experimental Results and Discussions

4.1. Test Function

To investigate how DM-PSO-ABC performs in different environments, we chose 16 diverse
benchmark problems [25–27]: 2 unimodal problems, 6 unrotated multimodal problems, 6
rotated multimodal problems, and 2 composition problems. All problems are tested with 10
and 30 dimensions. The properties and the formulas of these functions are presented briefly
described in Table 1.

Note that the rotated functions are particularly challenging for many existing
optimization algorithms. In case of rotations, when one dimension in the original vector
�x is changed, all dimensions of the rotated vector will be affected. To rotate a function,
first an orthogonal matrix should be generated. The original variable x is left multiplied
by the orthogonal matrix M to get the new rotated variable y = M ∗ x. This variable

y is used to calculate the fitness value f . IF =
[ m11 m12 ··· m1D

m21 m22 ··· m2D··· ··· ··· ···
m1D m2D ··· MDD

]
x = [x1, x2, . . . , xD]

T and

y = [y1, y2, . . . , yD]
T , then yi = mi1x1 +mi2x2 + · · · +miDxD, i = 1, 2, . . . , D.

When one dimension in x vector is changed, all dimensions in vector ywill be affected.
Hence, the rotated function cannot be solved by just D one-dimensional searches. In this
paper, we used Salomon’s method to generate the orthogonal matrix.

Composition functions are constructed using some basic benchmark functions to
obtain more challenging problems with a randomly located global optimum and several
randomly located deep local optima. The Gaussian function is used to combine the simple
benchmark functions and blur the function’s structures. The composition functions are
asymmetrical multimodal problems, with different properties in different areas. The details
of how to construct this class of functions and six composition functions are presented in
[27]. The composition functions are characterized by nonseparable search variables, rotated
coordinates, and strong multimodality due to a huge number of local optima. They blend
together the characteristics of different standard benchmarks.

4.2. Parameter Settings for the Involved Algorithms

Experiments were conducted to compare five algorithms including the proposed DM-PSO-
ABC algorithm on the 16 test problems with ten dimensions and 30 dimensions. The
algorithms and parameters settings are listed below:

(i) DMS-PSO [25];

(ii) ABC [21];

(iii) fully informed particle swarm (FIPS) [16];

(iv) CLPSO [20];

(v) DM-PSO-ABC.

The DM-PSO-ABC parameters are set as follow: w = 0.729, c1 = c2 = 1.49445, L = 5. Vmax

restricts particles’ velocities and is equal to 20% of the search range. To solve these problems,
the number of subswarms is set at 10 which is also the same setting as in the DMS-PSO
[25]. To tune the remaining parameters, nine selected test functions are used to investigate
the impact of them. They are 10-dimensional test functions: f1, f2, f3, f4, f5, f6, f9, f10, f11.
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Table 2: Parameter tuning of subswarm size (S).

f
S

3 5 8 10 15
f1 1.22E − 078 2.33E − 086 1.78E − 093 1.23E − 094 1.19E − 098
f2 2.15E − 001 3.28E − 001 2.35E + 000 7.77E − 002 2.11E + 000
f3 4.49E − 015 8.88E − 016 4.44E − 015 8.88E − 016 4.44E − 015
f4 0 0 0 0 0
f5 0 0 0 0 0
f6 0 0 0 0 0
f9 4.44E − 015 4.44E − 015 8.88E − 016 4.44E − 015 4.44E − 015
f10 9.86E − 003 6.96E − 010 2.22E − 007 1.84E − 016 9.92E − 003
f11 2.98E + 000 2.98E + 000 1.99E + 000 1.01E + 000 2.98E + 000

Table 3: Parameter tuning of the regrouping period (L).

f
L

3 5 8 10 15
f1 1.06E − 088 4.59E − 094 2.01E − 093 1.23E − 093 1.00E − 094
f2 3.45E + 000 2.43E − 002 3.31E − 001 7.77E − 002 2.19E + 000
f3 4.44E − 015 8.88E − 016 4.44E − 015 8.88E − 016 8.88E − 016
f4 0 0 0 0 0
f5 0 0 0 0 0
f6 0 0 0 0 0
f9 4.44E − 015 8.88E − 016 4.44E − 015 4.44E − 015 4.44E − 015
f10 5.16E − 005 4.88E − 010 7.39E − 003 1.82E − 007 9.93E − 003
f11 1.99E + 000 2.98E + 000 1.98E + 000 1.48E + 000 1.99E + 000

Experiments were conducted on these nine 10-dimensional test function, and themean values
of 30 runs are presented. The population size is set at 100, and the max iteration is set at 2000.

(1) Subswarm S

For each subswarm, the results of investigation on the selected test problems are shown in
Table 2. In this table, the mean values of nine problems with different parameter settings
are given. Based on the comparison of the results, the best setting is 10 particles for each
subswarm. This is also the setting for the ABC population size. Hence, in DM-PSO-ABC the
population size is 100 as there are 10 subswarms.

(2) Regrouping Iterations

For the regrouping iterations L, it should not be very small because we need to allow enough
number of iterations for each subswarm to search. It should not also be too large because
function evaluations will be wasted when the subswarm could not further improve. Table 3
presents the results of tuning L. Based on the results, the best value for L is 5.
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4.3. Experimental Results and Discussions

4.3.1. Comparison Regarding Mean and Variance Values

For each function, the DMS-PSO-ABC, the DMS-PSO, the FIPS, the CLPSO, and the ABC are
run 30 times. The maximum function evaluations Max Fes are set at 100,000 for 10D, and
200,000 for 30D. The computer system is Windows XP (SP1) with Pentium (R) 4 3.00GHz
CPU, 4GBRAM running theMatlab 7.1. For each function, we present themean (the standard
deviation) of the 30 runs in Tables 4 and 5.

Table 4 presents the means and variances of the 30 runs of the five algorithms on the
10D 16 test functions. The best results among the five algorithms are shown in bold. From
the results, we observe that for the Group A unimodal problems, since DM-PSO-ABC has
local search by ABC (exploit), it converged faster than other algorithms; we observe that
DM-PSO-ABC has good performance in the multimodal groups. The f4 is a good example,
as it traps all other algorithms in local optima. The DM-PSO-ABC successfully avoids falling
into the deep local optimum which is far from the global optimum. And the DM-PSO-ABC
achieved the same best result as the CLPSO and the DMS-PSO on functions 5, 6, 7, and 8.
The DM-PSO-ABC performs much better on rotated multimodal problems than others. On
the two composition functions with randomly distributed local and global optima, DM-PSO-
ABC performs the best.

From the results in Table 5, all 30D functions become more difficult than their 10D
counterparts, and the results are not as good as in 10D cases, although we increased the
maximum number of iterations from 2000 to 5000. The results of composition functions are
not affected much. DM-PSO-ABC surpasses all other algorithms on functions 1, 2, 3, 5, 6, 7,
10, 12, 13, 15, and 16 and especially significantly improves the results on functions 5, 6, and
7. This implies that the DM-PSO-ABC is more effective in solving problems with dynamic
multiswarm, and a local selection process of ABC may learn from different exemplars.
Due to this, the DM-PSO-ABC explores a larger search space than the DMS-PSO and ABC
algorithms. The larger search space is not achieved randomly. Instead, it is based on the
historical search experience. Because of this, the DM-PSO-ABC performs comparably to or
better than many algorithms on most of the problems experimented in this paper.

Comparing the results and the convergence graphs in Figure 4, among these five
algorithms, DMS-PSO converges fast. But DM-PSO-ABC’s local search ability is better than
DMS-PSO. The ABC’s performance is seriously affected after rotation, especially in the end
of evolution; the population’s diversity is rapidly reduced. CLPSO does not perform the
best for unimodal f1 and simple multimodal problems f2; FIPSO with a U-ring topology
of local versions; it presents good performance on some unrotated multimodal problems
and converges faster when compared to DM-PSO-ABC. However, although DM-PSO-ABC’s
performance is also affected by the rotation, it still performs the best on four rotated problems.
It can be observed that all PSO variants and ABC failed on the rotated Schwefel function, as
it becomes much harder to solve after applying rotation.

4.3.2. Comparison Regarding the t-Test Results

By analyzing the results on 10D and 30D problems, one can conclude that the DM-PSO-ABC
benefits from both the DMS-PSO and the ABC and the global PSO algorithms by integrating
the faster convergent speed of the ABC as well as the stronger exploration ability of the DMS-
PSO to tackle diverse problems in 16 functions. Therefore, it performs significantly better than
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Table 6: DM-PSO-ABC differs from other algorithms with bilateral t-testing method.

Algorithm F

f1 f2 f3 f4 f5 f6 f7 f8

DMS-PSO 5.559 (+) 1.231 (−) 1.046 (−) 1.235 (−) 23.530 (+) 7.903 (+) 8.406 (+) 0.642 (−)
ABC 7.484 (+) 2.035 (−) 2.517 (+) 3.017 (+) 8.826 (+) 7.912 (+) 11.071 (+) 5.463 (+)
CLPSO 2.903 (+) 0.737 (−) 1.445 (−) 2.932 (+) 1.956 (−) 1.620 (−) 1.935 (−) 1.679 (−)
FIPS 4.032 (+) 1.94 (−) 1.874 (−) 4.728 (+) 3.476 (+) 6.946 (+) 4.632 (+) 3.336 (+)

f9 f10 f11 f12 f13 f14 f15 f16

DMS-PSO 0.521 (−) 5.034 (+) 2.152 (−) 2.634 (+) 3.445 (+) 3.078 (+) 1.563 (−) 1. 643 (−)
ABC 1.624 (−) 9.525 (+) 2.845 (+) 2.967 (+) 2.907 (+) 3.864 (+) 2.086 (+) 2.069 (+)
CLPSO 3.743 (+) 4.974 (+) 2.004 (−) 1.735 (−) 1.764 (−) 1.863 (−) 1.964 (−) 1.896 (−)
FIPS 0.864 (−) 7.452 (+) 0.042 (−) 1.466 (−) 1.644 (−) 0.975 (−) 2.097 (+) 2.184 (+)

the two constituent approaches. Furthermore, most results are markedly improved by the
proposed DM-PSO-ABC. The DMS-PSO-ABC can perform robustly with respect to scaling of
the dimensions, rotation, and composition of difficult multimodal test problems.

Because a lot of experimental data were produced in this group contrast test, resulting
in analyzing the performance of these algorithmswithmany difficulties, so we adopt bilateral
t-testing method to analyze the experimental data; hence, we can objectively evaluate the
difference between DM-PSO-ABC algorithm and the other algorithms. Reference [28] is
conducted at the 5% significance level in order to judge whether the results obtained with
the best performing algorithm differ from the final results of the rest of the competitors in
a statistically significant way. Set the significance level α = 0.05, because each function run
30 times, so the number of degrees of freed df = 29. From the t-distribution table, we can
get t0.05(29) = 2.045. t = d/Sd, d Is the mean of Inspection data differential, Sd the standard
error of d, the result of t in Table 6, |t| < t0.05(29), and mark “+” indicates that DM-PSO-ABC
performs statistically better than the corresponding algorithm. On the other hand, the “−”
mark indicates that the corresponding algorithm is better than DM-PSO-ABC. The last line is
the sum of benchmark function whose optimization results have significant differences.

As revealed by Table 6, DM-PSO-ABC performs statistically better than the DMS-PSO
in f1, f5, f6, f7, f10, f12, f13, f14; DM-PSO-ABC performs statistically better than the ABC f1,
f3, f4, f5, f6, f7, f8, f10, f14, f11, f12, f13, f14, f15, f16; DM-PSO-ABC performs statistically better
than the CLPSO f1, f4, f9, f10. There are 7 functions DM-PSO-ABC performs statistically
better than the FIPS in f1, f4, f5, f6, f7, f8, f10, f15, f16. We also note that, in all benchmark
instances, the performance of DM-PSO-ABC is statistically superior to the performance of
the four other state-of-the-art algorithms. This difference in performance must be attributed
to multistage search mechanisms, a fact that substantiates the usefulness of the modifications
incorporated in DM-PSO-ABC.

5. Conclusion

This paper proposes a hybridization of dynamic multigroup particle swarm optimizer with
the artificial bee colony (DM-PSO-ABC). Using the dynamic multi-swarm particle swarm
optimizer with a randomized regrouping schedule and a local search of ABC algorithm, we
periodically generate the nectar information of the food sources (solutions) based on the
current pbests in each subswarm after particles’ positions have been updated. The nearest
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pbest is replaced by the new nectar if the new nectar vector has better fitness by ABC
algorithm. The DM-PSO-ABC attempts to take merits of the DMS-PSO and the ABC in
order to avoid all particles getting trapped in inferior local optimal regions. The DM-PSO-
ABC enables the particles to have more diverse exemplars to learn from as we frequently
regroup the subswarms. From the analysis of the experimental results, we observe that the
proposed DM-PSO-ABCmakes good use of the information in past solutions more effectively
to generate frequently better quality solutions when compared to the other peer algorithms.
The novel configuration of DM-PSO-ABC does not introduce additional complex operations
beyond the original PSO and ABC. In fact, the DM-PSO-ABC eliminates the parameters in
the original PSO, which normally need to be adjusted according to the properties of the test
problems. In addition, the DM-PSO-ABC is simple and easy to implement.
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