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We investigate formulas for closely related series of the forms: vol/ U + ©),
> o (1) " Uansn/ Uansb + c)z, S oUo(an+b) /(U§n+b + c)2 for certain values of a, b, and c.

1. Introduction

Let p be a nonzero integer such that A = p? + 4#0. The generalized Fibonacci and Lucas
sequences are defined by the following recurrences:

Up = pun + Uy, (1 1)

Vis = an + Vi,

where Uy =0, Uy = 1 and Vj = 2, V; = p, respectively. When p = 1, U,, = F,, (nth Fibonacci
number) and V,, = L,, (nth Lucas number).

If « and f are the roots of equation x? — px — 1 = 0, the Binet formulas of the sequences
{U,} and {V,} have the forms:

u, = [24 _ﬂ , Vn:an"‘ﬁn/ (12)
a-p
respectively.
In [1], Backstrom developed formulas for closely related series of the form:
S L 1.3
Fapp + ¢’ (1.3)

n=0
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for certain values of a, b, and c. For example, he obtained the following series:

& 1 K5
“ Fopa +Fx 2Lk’

(\/5 - 5Ft/Lt> (1.4)
i 1 _ T, t even,
“ Fenayksat + Fx (\/5_ Lt/Ft>
——%, todd,
2Lk

where K represents an odd integer and t is an integer in the range —(K —1)/2 to (K - 1)/2
inclusive. Also, he gave the similar results for Lucas numbers.
In [2], Popov found in explicit form series of the form:

& 1 & 1
Fonip ¢’ Z Fun+chn+d Z F? + F?

an+b cn+d

(1.5)
n=0

for certain values of a, b, ¢, and d.
In [3], Popov generalized some formulas of Backstrom [1] related to sums of reciprocal
series of Fibonacci and Lucas numbers. For example,

[ p
s+nr 171171/ — < 1/
& - u,us
A Z 9) sy, ) ) (1.6)
0 Venttyrizs — ( q) @ a <1
urus 7 ﬂ 7
where s and r are integers.
In [4], Gauthier found the closed form expressions for the following sums:
U 1 +1)n
Z ( ) f(Zk 1) Comn>1,
= S (k+1)n fin
(1.7)

i (- 1) " fek+1)n

12 , mn20,

k=0 (k+1

where for x # 0 an indeterminate, the generalized Fibonacci and Lucas polynomials { f,,},, and
{1, }, are given by the following recurrences:

fo2z=xfuaa+ fn, f0=0, =1 n2>0, (1.8)
lnop =xlpi +1,, lh=2,L=x, 120,

respectively.
In this paper, we investigate formulas for closely related series of the forms:
< 1 ( 1) uan+b & u2(an+b)
T Z > (19)
n=0 " antb 0 (Uansp + C) n=0 (Uan+b + C)

for certain values of a, b and c.
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2. On Some Series of Reciprocals of Generalized Fibonacci Numbers

In this section, firstly, we will give the following lemmas for further use.

Lemma 2.1. Let n be an arbitrary nonzero integer. For integer m > 1,

VZ

i (- 1) "U 2k+1)n 1 <V_r% (m+1)n > 2.1)
2 2 2 ’ :
k=1 u(k+1)nukn AUy U u(m+1)n
and for integer m > 0,
2
zm: -D"Uereyn Y 22)
> ) .
k=0 V(k+1)ndn 4u V(m+1)n

Proof. We give the proof of Lemma 2.1 as the proofs of the sums in [4], using the following

equalities:
Uksyn 1( Vien N Viki)n )
UgsiynUkn 2 \Ukn  Ugesyn /)’
U k+1yn 1 <U(k+1)n U, )
ViesynVin 2\ Vike)n
o (2.3)
-0 u, 1<an B V(k+l)n)
UgsynUkn 2 \Ukn  Uks)n
(-1)*u, l<u(k+1)n B ukn)
k+1)ndn 2 k+1)n Vin
. ) O
Lemma 2.2. For arbitrary integers n and t,
— (1) = AU U,
(2.4)
Vo + (_1)n_tv2t = Vut Virt,
ui - (_1)n—tu% = un—tun+tr
(2.5)
- (-1)"VE = AU Uy

Proof. From Binet formulas of sequences {U,} and {V,

Theorem 2.3. For an odd integer t,

i 1
= Ugneny + U

2 Gt

U(2n+1 1= Uy

'}, the desired results are obtained. [

1 (2 V2t _ 2 - V2(m+1)t>
T2vi\ Uy Uogmrry /)’
(2.6)
1 <2 + V2t _ 2+ VZ(m+1)t>
T 2Vi\ Uy Wognrye /-
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Proof. By replacing n with (2n + 1)t in (2.5), we have

u%2n+1)t U7 = Uolp ey,

or
1 _ Uppay - Uy

Upniy +Ur  Uamlopaeny |

(2.7)

(2.8)

Taking r = (2n + 1)t and s = t in the equality ViU, = U,.s + (-1)°U,_; [5], the equality (2.8) is

rewritten as follows:

1 IRV NG u,
Upnay + Uy Vi \ Uoe  Upueny UomUo(nanye

We have the sum

n=1 n=1

For an odd integer ¢, we have
()
i\ Uzt Unmaryt Uz Uagmeny”

and taking s = 2nt and r = 2t in identity [5]:

us+er - usVs+r = 2(_1)511”

we get

Z 1 i <V2nt ~ VZ(n+1)t> 1 (ﬁ ~ V2(m+1)t>
uZntu2(n+1)t 2y S \Uowe Uy 22Uy \Uz  Ungmsryt /)

=1

Substituting (2.11) and (2.13) in (2.10), we have the desired result.

For example, if we take t =1 and p = 1 in (2.6), we have

B 1 Py -1
“~ Fop +1 Foims1y

Note that

m
F Fy,.
2(m+1) Z F2n+1 T1 ,; 2n

m m ( 1)1‘ m 1
P P Z U Y
Upns) + u, Uzm u2(n+1)t = Upntla ey

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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Corollary 2.4. For an odd integer t,

(1 ( ‘/(m+1)t Vi > .
— -— m is even,
m 1 2V, (m+1)t
Pe—————
= Upnpay + Uy 1 ( U (1)t ) < odd
_— , mis odd,
2Vt (m+1)t
(2.16)
( A( - (mﬂ)t) m is even
g 1 2V, \ ’
_ =
=1 Uninye = Us 1 Vi)t ,
m is odd.
[ 2V, C Ugney )’

Proof. Using the equalities V3, = V2 -2(-1)" = AU2 +2(-1)" and Uy, = U,V,, in Theorem 2.3,
the results are obtained. O

Corollary 2.5. Let t be an odd integer. For |f/a| <1,t >0and |a/p| < 1,t <0,

® 1 1 < . Vt)
S Uegnap+Ur 2V, u;)’

(2.17)
Sl (L)
“ Ugpay-Ur 2Vi\ Vi A/’
and for |p/al <1,t <0and|a/p| <1,t >0,
= 1 -1 Vi
v (A _f),
nZ:l Uony +Uy 2V, < U,
(2.18)
Sl (U, L)
p— u(2n+1)t -u; 2V,\V:; A/
Proof. Since
VA ‘E <1l,a>0, |— <1l,a<0,
. Vantb a ﬁ
lim = (2.19)
n—oo an+b
VN "[—5 <1,a<0, ‘E <1,a>0,
a p
the results are easily seen by equalities (2.16). O

Theorem 2.6. For an integer m > 1 and an arbitrary nonzero integer t,

2

i -D)"Ugnay 1 (V_f V(m+1)t> (2.20)
27 4A2U 2 2 ) :
"= (Viney - (<1)"V;) AU U

(m+1)t
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Proof. By replacing n with (2n +1)t/2 and t with t/2 in (2.4), we have

Vansnyt — (1) Vi = AU U syt

or 1 1

Vanyt — (-1)™V; AU U iy

Multiplying equality (2.22) by (—1)"tll(2n+1)t /U (1), We get

(1)U ans1yt B (1)U ans1yt

= 2172 :
U U (n41yt <V(2n+1)t - (—1)ntVt> AU UGy,

We have the sum:

i (-1)"U naye 13 (-D)"Ugnay
A T T
n=1 untu(n+1)t<v(2n+1)t - (—1)ntVt> AT UnUi

Using the equalities (2.1) and (2.21), the proof is obtained.
Corollary 2.7. For an arbitrary nonzero integer t,

i (1)U @ns1yt 1 <V_t2 B A>
2 4N 2 '
n=1 <V(2n+1)t - (—1)th> t\U;

Proof. Taking m — oo in Theorem 2.6 and using (2.19), the result is easily obtained.

Theorem 2.8. For an integer m > 0 and an arbitrary nonzero integer t,

2
u(m+1)t

i (1)U 241yt B
2 2 :
n=0 <V(2n+l)t + (_1)ntvt> 4utv(m+1)t

Proof. The proof of the theorem is similar to the proof of Theorem 2.6.

Corollary 2.9. For an arbitrary nonzero integer t,

i (~1)"U @ns1yt 1
n 27 4AUL
n=0 <V(2n+1)t +(-1) tVt) !

Proof. Taking m — oo in Theorem 2.8 and using (2.19), the result is easily obtained.

For example, if we take t =3 and p = 1 in (2.27), we have

& (-1)"F30ney 1

n=0 (La@n+1) + (—1)n4)2 40°

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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Theorem 2.10. For an integer m > 1 and an arbitrary nonzero integer t,

2
= U one)t 1 <V_22t_ V2(m+1)t>

z 2 T4y u? u?
=l <u%2n+l)t - ut2> 2\ X

2
Usns1) 1 <V22t V2(m+1)t>

2= IA2 T T2 )
<V2 Vt2> 402U

m+1)t

(2.29)

M=

Il
—_

uz u:
@n+l)t 2

n 2(m+1)t

Proof. The proof of theorem is similar to the proof of Theorem 2.6. O

Corollary 2.11. For an arbitrary nonzero integer t,

i Uo2n+1)t 1 V_22t_
>2 4U U%t ’

n=1 (u2 - utZ

(2n+1)t

i Uz 2n+1)t _ 1 <V_22t B A>.
B Vam-ve) W\

(2n+1)t

(2.30)

Proof. Taking m — oo in Theorem 2.10 and using (2.19), the result is easily obtained. O

For example, if we take ¢ = 2 in the equality (2.30), we have

i Usns) 1

2~ 3 2.31)
~ AU (
n=t <V22(2n+1) -Vi > 4
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