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The first and second order of accuracy stable difference schemes for the numerical solution of the
mixed problem for the fractional parabolic equation are presented. Stability and almost coercive
stability estimates for the solution of these difference schemes are obtained. A procedure of
modified Gauss elimination method is used for solving these difference schemes in the case of
one-dimensional fractional parabolic partial differential equations.

1. Introduction

It is known that various problems in fluid mechanics (dynamics, elasticity) and other areas
of physics lead to fractional partial differential equations. Methods of solutions of problems
for fractional differential equations have been studied extensively by many researchers (see,
e.g., [1–28] and the references therein).

The role played by stability inequalities (well posedness) in the study of boundary
value problems for parabolic partial differential equations is well known (see, e.g., [29–34]).
In the present paper, the mixed boundary value problem for the fractional parabolic equation

∂u(t, x)
∂t

+D1/2
t u(t, x) −

m∑

p=1

(
ap(x)uxp

)

xp

= f(t, x),

x = (x1, . . . , xm) ∈ Ω, 0 < t < T,

u(t, x) = 0, x ∈ S,

u(0, x) = 0, x ∈ Ω

(1.1)
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is considered. Here D1/2
t = D1/2

0+ is the standard Riemann-Liouville’s derivative of order 1/2
and Ω is the open cube in the m-dimensional Euclidean space

R
m :
{
x ∈ Ω : x = (x1, . . . , xm); 0 < xj < 1, 1 ≤ j ≤ m

}
(1.2)

with boundary S,Ω = Ω ∪ S, ap(x)(x ∈ Ω) and f(t, x)(t ∈ (0, T), x ∈ Ω) are given smooth
functions and ap(x) ≥ a > 0.

The first and second order of accuracy in t and second orders of accuracy in space
variables difference schemes for the approximate solution of problem (1.1) are presented. The
stability and almost coercive stability estimates for the solution of these difference schemes
are established. A procedure of modified Gauss elimination method is used for solving these
difference schemes in the case of one-dimensional fractional parabolic partial differential
equations.

2. Difference Schemes and Stability Estimates

The discretization of problem (1.1) is carried out in two steps. In the first step, let us define
the grid space

Ωh =
{
x = xp =

(
h1p1, . . . , hmpm

)
, p =

(
p1, . . . , pm

)
,

0 ≤ pj ≤ Mj, hjMj = 1, j = 1, . . . , m
}
,

Ωh = Ωh ∩Ω, Sh = Ωh ∩ S.

(2.1)

We introduce the Hilbert space L2h = L2(Ωh) of the grid function ϕh(x) = {ϕ(h1j1, . . . , hmjm)}
defined on Ω, equipped with the norm

∥∥∥ϕh
∥∥∥
L2(Ωh)

=

⎛

⎝
∑

x∈Ωh

∣∣∣ϕh(x)
∣∣∣
2
h1 · · ·hm

⎞

⎠
1/2

. (2.2)

To the differential operator Ax generated by problem (1.1), we assign the difference operator
Ax

h
by the formula

Ax
hu

h = −
m∑

p=1

(
ap(x)uh

xp

)

xp,jp
(2.3)

acting in the space of grid functions uh(x), satisfying the conditions uh(x) = 0 for all x ∈ Sh.
It is known that Ax

h
is a self-adjoint positive definite operator in L2(Ωh). Here,

ϕxp,jp =
1
hp

(
ϕ
(
h1j1, . . . , hj

(
jj + 1

)
, . . . , hmjm

) − ϕ
(
h1j1, . . . , hjjj , . . . , hmjm

))
,

ϕxp,jp =
1
hp

(
ϕ
(
h1j1, . . . , hjjj , . . . , hmjm

) − ϕ
(
h1j1, . . . , hj

(
jj − 1

)
, . . . , hmjm

))
.

(2.4)
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With the help of Ax
h, we arrive at the initial boundary value problem

dvh(t, x)
dt

+D1/2
t vh(t, x) +Ax

hv
h(t, x) = fh(t, x), 0 < t < T, x ∈ Ωh,

vh(0, x) = 0, x ∈ Ω

(2.5)

for a finite system of ordinary fractional differential equations.
In the second step, applying the first order of approximation formula

D1/2
tk

uk =
1√
π

k∑

r=1

Γ(k − r + 1/2)
(k − r)!

(
ur − ur−1

τ1/2

)
(2.6)

for

D1/2
tk

u(tk) =
1

Γ(1/2)

∫ tk

0
(tk − s)−1/2u′(s)ds (2.7)

(see [35]) and using the first order of accuracy stable difference scheme for parabolic
equations, one can present the first order of accuracy difference scheme with respect to t

uh
k(x) − uh

k−1(x)
τ

+D1/2
tk

uh
k(x) +Ax

hu
h
k(x) = fh

k (x), x ∈ Ωh,

fh
k (x) = fh(tk, x), tk = kτ, 1 ≤ k ≤ N, Nτ = T,

uh
0(x) = 0, x ∈ Ωh

(2.8)

for the approximate solution of problem (2.5). Here

Γ
(
k − r +

1
2

)
=
∫∞

0
tk−r+1/2e−tdt. (2.9)

Moreover, applying the second order of approximation formula

D1/2
tk−τ/2uk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2
√
2

3
√
π
√
τ
u0 +

2
√
2

3
√
π
√
τ
u1 +

√
2
√
τ

3
√
π

u′(0), k = 1,

√
6√

π
√
τ

{
4
5
u0 +

2
5
u1 +

2
5
u2

}
−
√
6
√
τ

5
√
π

u′(0), k = 2,

d
k−1∑

m=2
{[(k −m)b1(k −m) + b2(k −m)]um−2

+ [(2m − 2k − 1)b1(k −m) − 2b2(k −m)]um−1
+ [(k −m + 1)b1(k −m) + b2(k −m)]um}

+ c[−uk−2 − 4uk−1 + 5uk], 3 ≤ k ≤ N

(2.10)
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for

D1/2
tk−τ/2u

(
tk − τ

2

)
=

1
Γ(1/2)

∫ tk−τ/2

0

(
tk − τ

2
− s
)−1/2

u′(s)ds (2.11)

(see [27]) and the Crank-Nicholson difference scheme for parabolic equations, one can
present the second order of accuracy difference scheme with respect to t and to x and

uh
k(x) − uh

k−1(x)
τ

+D1/2
tk

uh
k(x) +

1
2
Ax

h

(
uh
k(x) + uh

k−1(x)
)
= fh

k (x), x ∈ Ωh,

fh
k (x) = f

(
tk − τ

2
, x
)
, tk = kτ, 1 ≤ k ≤ N, Nτ = T,

uh
0(x) = 0, x ∈ Ωh

(2.12)

for the approximate solution of problem (2.5). Here and in the future

d =
2√
π
√
τ
, c =

√
2

6
√
π
√
τ
, b1(r) =

√

r +
1
2
−
√

r − 1
2
,

b2(r) = −1
3

((
r +

1
2

)3/2

−
(
r − 1

2

)3/2
)
.

(2.13)

Theorem 2.1. Let τ and |h| =
√
h2
1 + · · · + h2

n be sufficiently small positive numbers. Then, the
solutions of difference scheme (2.8) and (2.12) satisfy the following stability estimate:

max
1≤k≤N

∥∥∥uh
k

∥∥∥
L2h

≤ C1 max
1≤k≤N

∥∥∥fh
k

∥∥∥
L2h

, (2.14)

where C1 does not depend on τ, h and fh
k , 1 ≤ k ≤ N.

Proof. We consider the difference scheme (2.8). We have that

uh
k(x) =

k∑

s=1

Rk−s+1Fh
s (x)τ, 1 ≤ k ≤ N, (2.15)

where

R =
(
I + τAx

h

)−1
, Fh

k (x) = fh
k (x) −D1/2

tk
uh
k(x),

D1/2
tk

uh
k(x) =

1√
π

k∑

m=1

Γ(k −m + 1/2)
(k −m)!

τ−1/2
[
−D1/2

tm
uh
m(x) + fh

m(x)
]
.

(2.16)
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Using formula (2.15), we can write

uh
k(x) =

k∑

s=1

Rk−s+1
[
−D1/2

ts
uh
s (x) + fh

s (x)
]
τ

= −
k∑

s=1

Rk−s+1D1/2
ts

uh
s (x)τ +

k∑

s=1

Rk−s+1fh
s (x)τ, 1 ≤ k ≤ N.

(2.17)

First, we will prove that

max
1≤k≤N

∥∥∥D1/2
tk

uh
k

∥∥∥
L2h

≤ Mmax
1≤k≤N

∥∥∥fh
k

∥∥∥
L2h

. (2.18)

Using formula (2.17), we get

uh
k(x) − uh

k−1(x)
τ

= −D1/2
tk

uh
k(x) + fh

k (x) −Ax
hu

h
k(x)

= −D1/2
tk

uh
k(x) + fh

k (x) +
k∑

s=1

Ax
hR

k−s+1D1/2
ts

uh
s (x)τ −

k∑

s=1

Ax
hR

k−s+1fh
s (x)τ.

(2.19)

Using formulas (2.16) and (2.19), we obtain

D1/2
tk

uh
k(x) =

1√
π

k∑

m=1

Γ(k −m + 1/2)
(k −m)!

(
uh
m(x) − uh

m−1(x)

τ1/2

)

=
1√
π

k∑

m=1

Γ(k −m + 1/2)
(k −m)!

τ1/2
[
−D1/2

tm
uh
m(x) + fh

m(x)
]

+
1√
π

k∑

s=1

k∑

m=s

Γ(k −m + 1/2)
(k −m)!

τ3/2Ax
hR

m−s+1D1/2
ts

uh
s (x)

− 1√
π

k∑

s=1

k∑

m=s

Γ(k −m + 1/2)
(k −m)!

τ3/2Ax
hR

m−s+1fh
s (x).

(2.20)

Now, let us estimate zk = ‖D1/2
tk

uh
k‖L2h

, 1 ≤ k ≤ N. Applying the triangle inequality and the
estimate [34]

∥∥∥Ax
hR

k
∥∥∥
L2h →L2h

≤ M

kτ
,
∥∥∥Rk
∥∥∥
L2h →L2h

≤ M, 1 ≤ k ≤ N, (2.21)
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we get

zk ≤ 1√
π

k∑

m=1

Γ(k −m + 1/2)
(k −m)!

τ1/2
[
zm +

∥∥∥fh
m

∥∥∥
L2h

]

+
1√
π

k∑

s=1

∥∥∥∥∥

k∑

m=s

Γ(k −m + 1/2)
(k −m)!

Ax
hR

m−s+1
∥∥∥∥∥
L2h →L2h

zsτ
3/2

+
1√
π

k∑

s=1

∥∥∥∥∥

k∑

m=s

Γ(k −m + 1/2)
(k −m)!

Ax
hR

m−s+1
∥∥∥∥∥
L2h →L2h

∥∥∥fh
s

∥∥∥
L2h

τ3/2

≤ M3

k−1∑

s=1

1
√
(k − s)τ

τ

[
zs +

∥∥∥fh
s

∥∥∥
L2h

]
+M4

[
zs +

∥∥∥fh
s

∥∥∥
L2h

]
τ1/2

(2.22)

for any k = 1, . . . ,N. Then, using the difference analogy of integral inequality, we get (2.18).
Second, applying formula (2.17), estimates (2.18) and (2.21), we obtain

∥∥∥uh
k

∥∥∥
L2h

=
k∑

s=1

∥∥∥Rk−s+1
∥∥∥
L2h →L2h

∥∥∥D1/2
ts

uh
s

∥∥∥
L2h

τ

+
k∑

s=1

∥∥∥Rk−s+1
∥∥∥
L2h →L2h

∥∥∥fh
s

∥∥∥
L2h

τ ≤ C1 max
1≤k≤N

∥∥∥fh
k

∥∥∥
L2h

.

(2.23)

Estimate (2.14) for the solution of (2.8) is proved. The proof of estimate (2.14) for the solution
of (2.12) follows the scheme of the proof of estimate (2.14) for the solution of (2.8) and rely
on the estimate

∥∥∥Ax
hB

kC2
∥∥∥
L2h →L2h

≤ 1
kτ

,
∥∥∥Bk
∥∥∥
L2h →L2h

≤ 1, 1 ≤ k ≤ N. (2.24)

Here,

B =
(
I − τ

2
Ax

h

)(
I +

τ

2
Ax

h

)−1
, C =

(
I +

τ

2
Ax

h

)−1
. (2.25)

Theorem 2.1 is proved.

Theorem 2.2. Let τ and |h| =
√
h2
1 + · · · + h2

n be sufficiently small positive numbers. Then, the
solutions of difference scheme (2.8) satisfy the following almost coercive stability estimate:

max
1≤k≤N

∥∥∥∥∥
uh
k
− uh

k−1
τ

∥∥∥∥∥
L2h

+ max
1≤k≤N

m∑

p=1

∥∥∥∥
(
uh
k

)

xpxp,jp

∥∥∥∥
L2h

≤ C2 ln
1

τ + |h| max
1≤k≤N

∥∥∥fh
k

∥∥∥
L2h

, (2.26)

where C2 is independent of τ, h and fh
k
, 1 ≤ k ≤ N.
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Proof. We will prove the estimate

max
1≤k≤N

∥∥∥∥∥
uh
k
− uh

k−1
τ

∥∥∥∥∥
L2h

≤ Mmin
{
ln

1
τ
, 1 +

∣∣∣ln
∥∥Ax

h

∥∥
L2h →L2h

∣∣∣
}
max
1≤k≤N

∥∥∥fh
k

∥∥∥
L2h

. (2.27)

Using formula (2.19) and estimate (2.21), we obtain

max
1≤k≤N

m∑

s=1

∥∥∥Ax
hR

k−s+1fh
s τ
∥∥∥
L2h

≤ Mmin
{
ln

1
τ
, 1 +

∣∣∣ln
∥∥Ax

h

∥∥
L2h →L2h

∣∣∣
}
max
1≤k≤N

∥∥∥fh
k

∥∥∥
L2h

,

max
1≤k≤N

m∑

s=1

∥∥∥Ax
hR

k−s+1D1/2
ts

uh
sτ
∥∥∥
L2h

≤ Mmin
{
ln

1
τ
, 1 +

∣∣∣ln
∥∥Ax

h

∥∥
L2h →L2h

∣∣∣
}
max
1≤k≤N

∥∥∥D1/2
tk

uh
kτ
∥∥∥
L2h

(2.28)

and estimate (2.18), the triangle inequality and equation (2.8), we get (2.27). From that it
follows:

max
1≤k≤N

∥∥∥Ax
hu

h
k

∥∥∥
L2h

≤ M1 min
{
ln

1
τ
, 1 +

∣∣∣ln
∥∥Ax

h

∥∥
L2h →L2h

∣∣∣
}
max
1≤k≤N

∥∥∥fh
k

∥∥∥
L2h

. (2.29)

Then, the proof of estimate (2.26) is based on estimates (2.27), (2.29), and the following
theorem on coercivity inequality for the solution of the elliptic difference problem in L2h.

Theorem 2.3. For the solutions of the elliptic difference problem

Ax
hu

h(x) = wh(x), x ∈ Ωh,

uh(x) = 0, x ∈ Sh

(2.30)

the following coercivity inequality holds (see [14, 36])

m∑

p=1

∥∥∥uh
xpxp,jp

∥∥∥
L2h

≤ C
∥∥∥wh

∥∥∥
L2h

, (2.31)

where C does not depend on h and wh.
Theorem 2.2 is proved.

Theorem 2.4. Let τ and |h| =
√
h2
1 + · · · + h2

m be sufficiently small positive numbers. Then, the
solutions of difference scheme (2.12) satisfy the following almost coercive stability estimate:

max
1≤k≤N

∥∥∥∥∥
uh
k − uh

k−1
τ

∥∥∥∥∥
L2h

+ max
1≤k≤N

1
2

m∑

p=1

∥∥∥∥
(
uh
k + uh

k−1
)

xpxp,jp

∥∥∥∥
L2h

≤ C3 ln
1

τ + |h| max
1≤k≤N

∥∥∥fh
k

∥∥∥
L2h

, (2.32)

where C3 does not depend on τ, h and fh
k
, 1 ≤ k ≤ N.
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The proof of Theorem 2.4 follows the proof of Theorem 2.2 and on the estimate (2.24)
and the self-adjointness and positive definiteness of operator Ax

h
in L2h and Theorem 2.3.

Remark 2.5. The stability estimates of Theorems 2.1, 2.2, and 2.4 are satisfied in the case of
operator

Au = −
n∑

k=1

ak(x)
∂2u

∂x2
k

+
n∑

k=1

bk(x)
∂u

∂xk
+ c(x)u (2.33)

with Dirichlet condition u = 0 in S. In this case, A is not self-adjoint operator in H.
Nevertheless, Au = A0u + Bu and A0 is a self-adjoint positive definite operator in H and
BA−1

0 is bounded inH. The proof of this statement is based on the abstract results of [14] and
difference analogy of integral inequality.

The method of proofs of Theorems 2.1, 2.2, and 2.4 enables us to obtain the estimate of
convergence of difference schemes of the first and second order of accuracy for approximate
solutions of the initial-boundary value problem

∂u(t, x)
∂t

−
n∑

p=1

ap(x)uxpxp +
n∑

p=1

bp(x)uxp +Dα
t u(t, x)

= f(t, x;u(t, x), ux1(t, x), . . . , uxn(t, x)),

x = (x1, . . . , xn) ∈ Ω, 0 < t < T,

u(0, x) = 0, x ∈ Ω,

u(t, x) = 0, x ∈ S

(2.34)

for semilinear fractional parabolic partial differential equations.

Note that, one has not been able to obtain a sharp estimate for the constant figuring
in the stability estimates of Theorems 2.1, 2.2, and 2.4. Therefore, our interest in the
present paper is studying the difference schemes (2.8) and (2.12) by numerical experiments.
Applying these difference schemes, the numerical methods are proposed in the following
section for solving the one-dimensional fractional parabolic partial differential equation. The
method is illustrated by numerical experiments.

3. Numerical Results

For the numerical result, the mixed problem

∂u(t, x)
∂t

+D1/2
t u(t, x) − ∂

∂x

(
(1 + x)

∂u(t, x)
∂x

)
= f(t, x),

f(t, x) =

(
3 +

16
√
t

5
√
π

+ π2t(1 + x)

)
t2 sinπx − πt3 cosπx, 0 < t < 1, 0 < x < 1,

u(t, 0) = u(t, 1) = 0, 0 ≤ t ≤ 1,

u(0, x) = 0, 0 ≤ x ≤ 1

(3.1)
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for the one-dimensional fractional parabolic partial differential equation is considered. The
exact solution of problem (3.1) is

u(t, x) = t3 sinπx. (3.2)

First, applying difference scheme (2.8), we obtain

uk
n − uk−1

n

τ
+

1√
π

k∑

r=1

Γ(k − r + 1/2)
(k − r)!

(
ur
n − ur−1

n

τ1/2

)

− 1
h

[
(1 + xn+1)

uk
n+1 − uk

n

h
− (1 + xn)

uk
n − uk

n−1
h

]
= ϕk

n,

ϕk
n = f(tk, xn), tk = kτ, xn = nh, 1 ≤ k ≤ N, 1 ≤ n ≤ M − 1,

uk
0 = uk

M = 0, 0 ≤ k ≤ N,

u0
n = 0, 0 ≤ n ≤ M.

(3.3)

We can rewrite it in the system of equations with matrix coefficients

AUn+1 + BUn + CUn−1 = Dϕn, 1 ≤ n ≤ M − 1,

U0 = 0̃, UM = 0̃.
(3.4)

Here and in the future 0̃ is the (N + 1) × 1 zero matrix and A = anD,C = cnD,

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 0
0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b11 0 0 · · · 0 0
b21 b22 0 · · · 0 0
b31 b32 b33 · · · 0 0
· · · · · · · · · · · · · · · · · ·
bN,1 bN,2 bN,3 · · · bN,N 0
bN+1,1 bN+1,2 bN+1,3 · · · bN+1,N bN+1,N+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

ϕn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ0
n

ϕ1
n

ϕ2
n
...

ϕN−1
n

ϕN
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×1

, Uq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0
q

u1
q

u2
q

...
uN−1
q

uN
q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×1

, q = n ± 1, n,
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an = −1 + xn+1

h2
, cn = −1 + xn

h2
,

b11 = 1, b21 = − 1√
τ
− 1
τ
, b22 =

1√
τ
+
1
τ
+
2 + xn+1 + xn

h2
,

b31 = −Γ(1 + 1/2)√
πτ

, b32 =
Γ(1 + 1/2) − Γ(1/2)√

πτ
− 1
τ
, b33 =

1√
τ
+
1
τ
+
2 + xn+1 + xn

h2
,

bij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Γ(i − 2 + 1/2)√
πτ(i − 2)!

, j = 1,

Γ
(
i − j + 1/2

)
√
πτ
(
i − j
)
!

− Γ
(
i − j − 1 + 1/2

)
√
πτ
(
i − j − 1

)
!
, 2 ≤ j ≤ i − 2,

Γ(1 + 1/2) − Γ(1/2)√
πτ

− 1
τ
, j = i − 1,

1√
τ
+
1
τ
+
2 + xn+1 + xn

h2
, j = i,

0, i < j ≤ N + 1

(3.5)

for i = 4, 5, . . . ,N + 1 and

ϕk
n =

[
3 +

16
√
kτ

5
√
π

+ π2(kτ)(1 + nh)

]
(kτ)2 sin(πnh) − π(kτ)3 cos(πnh). (3.6)

So, we have the second-order difference equation with respect to nmatrix coefficients.
This type system was developed by Samarskii and Nikolaev [37]. To solve this difference
equation we have applied a procedure for difference equation with respect to k matrix
coefficients. Hence, we seek a solution of the matrix equation in the following form:

Uj = αj+1Uj+1 + βj+1, UM = 0, j = M − 1, . . . , 2, 1, (3.7)

where αj(j = 1, 2, . . . ,M) are (N + 1) × (N + 1) square matrices and βj(j = 1, 2, . . . ,M) are
(N + 1) × 1 column matrices defined by

αj+1 = −(B + Cαj

)−1
A, (3.8)

βj+1 =
(
B + Cαj

)−1(
Dϕj − Cβj

)
, j = 1, 2, . . . ,M − 1, (3.9)

where j = 1, 2, . . . ,M − 1, α1 is the (N + 1) × (N + 1) zero matrix and β1 is the (N + 1) × 1 zero
matrix.
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Second, applying difference scheme (2.12), we obtain

uk
n − uk−1

n

τ
+D1/2

tk−τ/2u
k
n −

1
2

[
(1 + xn)

uk
n+1 − 2uk

n + uk
n−1

h2
+
uk
n+1 − uk

n−1
2h

+(1 + xn)
uk−1
n+1 − 2uk−1

n + uk−1
n−1

h2
+
uk−1
n+1 − uk−1

n−1
2h

]
= ϕk

n,

ϕk
n = f

(
tk − τ

2
, xn

)
, tk = kτ, xn = nh, 1 ≤ k ≤ N, 1 ≤ n ≤ M − 1,

uk
0 = uk

M = 0, 0 ≤ k ≤ N,

u0
n = 0, 0 ≤ n ≤ M,

(3.10)

where

D1/2
tk−τ/2u

k
n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2
√
2

3
√
π
√
τ
u0
n +

2
√
2

3
√
π
√
τ
u1
n +

√
2
√
τ

3
√
π

u′(0, xn), k = 1,

√
6√

π
√
τ

{
4
5
u0
n +

2
5
u1
n +

2
5
u2
n

}
−
√
6
√
τ

5
√
π

u′(0, xn), k = 2,

d
k−1∑

m=2

{
[(k −m)b1(k −m) + b2(k −m)]um−2

n

+ [(2m − 2k − 1)b1(k −m) − 2b2(k −m)]um−1
n

+ [(k −m + 1)b1(k −m) + b2(k −m)]um
n }

+ c
[−uk−2

n − 4uk−1
n + 5uk

n

]
, 3 ≤ k ≤ N

(3.11)

for any n, 1 ≤ n ≤ M − 1. We get the system of equations in the matrix form

AUn+1 + BUn + CUn−1 = Dϕn, 1 ≤ n ≤ M − 1,

U0 = 0̃, UM = 0̃,
(3.12)
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where A = anF,C = cnF,

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
1 1 0 · · · 0 0
0 1 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 0
0 0 0 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b11 0 0 · · · 0 0
b21 b22 0 · · · 0 0
b31 b32 b33 · · · 0 0
· · · · · · · · · · · · · · · · · ·
bN,1 bN,2 bN,3 · · · bN,N 0
bN+1,1 bN+1,2 bN+1,3 · · · bN+1,N bN+1,N+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 0
0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

ϕn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ0
n

ϕ1
n

ϕ2
n
...

ϕN−1
n

ϕN
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×1

, Uq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

U0
q

U1
q

U2
q

...
UN−1

q

UN
q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×1

, q = n ± 1, n,

an = −1
2

(
1 + xn

h2
+

1
2h

)
, cn = −1

2

(
1 + xn

h2
− 1
2h

)
,

b11 = 1, b21 = − 2
√
2

3
√
πτ

− 1
τ
+
1 + xn

h2
, b22 =

2
√
2

3
√
πτ

+
1
τ
+
1 + xn

h2
,

b31 =
4
√
6

5
√
πτ

, b32 =
2
√
6

5
√
πτ

− 1
τ
+
1 + xn

h2
, b33 =

2
√
6

5
√
πτ

+
1
τ
+
1 + xn

h2
,

b41 = d[1b1(1) + b2(1)], b42 = d[−3b1(1) − 2b2(1)] − c,

b43 = d[2b1(1) + b2(1)] − 4c − 1
τ
+
1 + xn

h2
, b44 = 5c +

1
τ
+
1 + xn

h2
,

b51 = d[2b1(2) + b2(2)], b52 = d[−5b1(2) − 2b2(2) + 1b1(1) + b2(1)],

b53 = d[3b1(2) + b2(2) − 3b1(1) − 2b2(1)] − c,

b54 = d[2b1(1) + b2(1)] − 4c − 1
τ
+
1 + xn

h2
, b55 = 5c +

1
τ
+
1 + xn

h2
,
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bij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[(i − 3)b1(i − 3) + b2(i − 3)], j = 1,

d[(5 − 2i)b1(i − 3) − 2b2(i − 3) + (i − 4)b1(i − 4) + b2(i − 4)], j = 2,

d
[(
i − j + 1

)
b1
(
i − j
)
+ b2
(
i − j
)
+
(
2j − 2i + 1

)
b1
(
i − j − 1

)

−2b2
(
i − j − 1

)
+
(
i − j − 2

)
b1
(
i − j − 2

)
+ b2
(
i − j − 2

)]
,

3 ≤ j ≤ i − 3,

d[3b1(2) + b2(2) − 3b1(1) − 2b2(1)] − c, j = i − 2,

d[2b1(1) + b2(1)] − 4c − 1
τ
+
1 + xn

h2
, j = i − 1,

5c +
1
τ
+
1 + xn

h2
, j = i,

0, i < j ≤ N + 1

(3.13)

for i = 6, 7, . . . ,N + 1 and

ϕk
n =

[
3 +

16
√
kτ

5
√
π

+ π2(kτ)(1 + nh)

]
(kτ)2 sin(πnh) − π(kτ)3 cos(πnh). (3.14)

So, we have again the second-order difference equation with respect to n matrix coefficients.
Therefore, applying the same procedure of modified Gauss elimination method (3.7) and
(3.8) difference equation (3.12).

Finally, we give the results of the numerical analysis. The numerical solutions are
recorded for different values of N and M and uk

n represents the numerical solutions of these
difference schemes at (tk, xn). The error is computed by the following formula:

EN
M = max

1≤k≤N, 1≤n≤M−1

∣∣∣u(tk, xn) − uk
n

∣∣∣. (3.15)

Table 1 is constructed for N = M = 20, 40, and 80, respectively.
Thus, by using the Crank-Nicholson difference scheme, the accuracy of solution

increases faster than the first order of accuracy difference scheme.

4. Conclusion

In this study, the first and second order of accuracy stable difference schemes for the numer-
ical solution of the mixed problem for the fractional parabolic equation are investigated.
We have obtained stability and almost coercive stability estimates for the solution of these
difference schemes. The theoretical statements for the solution of these difference schemes
for one-dimensional parabolic equations are supported by numerical example in computer.
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Table 1: Error analysis.

Method N = M = 20 N = M = 40 N = M = 80
Difference scheme (2.8) 0.0040 0.0020 0.0010
Difference scheme (2.12) 0.0006726 0.0001678 0.00004187

We showed that the second order of accuracy difference scheme is more accurate comparing
with the first order of accuracy difference scheme.
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