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The dynamic complexities of a prey-predator system in the presence of alternative prey with
impulsive state feedback control are studied analytically and numerically. By using the analogue
of the Poincaré criterion, sufficient conditions for the existence and stability of semitrivial periodic
solutions can be obtained. Furthermore, the corresponding bifurcation diagrams and phase
diagrams are investigated by means of numerical simulations which illustrate the feasibility of
the main results.

1. Introduction

Since the pioneering work of Lotka and Volterra, the theoretical investigation of predator-
prey systems in mathematical ecology has advanced greatly. The theory of impulsive
differential equations is one of the theoretical components of this investigation. The study
of impulsive differential equations mainly concerns the properties of their solutions, such as
existence, uniqueness, stability, boundedness, and periodicity [1].

In fact, in the natural world, there is sometimes a need to control a population
to a reasonable level because otherwise this population might lead other populations to
decrease or even to become extinct [2]. These processes may need to be modeled using
impulsive systems rather than continuous systems because of abrupt jumps that occur
during their evolution. Generally speaking, there are three kinds of systems with impulsive
perturbations: systems with impulses at fixed times, systems with impulses at variable times,
and autonomous impulsive systems [3]. In recent years, most investigations of impulsive
differential equations have concentrated on systems with impulses at fixed times [4–12],
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while the other two kinds of impulsive differential equations have been relatively less
studied. However, in many practical cases, impulses often occur at state-dependent rather
than at fixed times. For example, it may be desired to control a population size by catching or
crop-dusting and releasing a predator when prey numbers reach a threshold value.

As is well known, significant theoretical development has recently been achieved in
the bifurcation theory of continuous dynamic systems [13–18]. This paper will also consider
the bifurcation behavior of systems with impulses. Recently, Lakmeche and Arino [19]
transformed the problem of finding a periodic solution into a fixed-point problem and
discussed the bifurcation of periodic solutions from trivial solutions, as well as obtaining
the existence conditions for a positive period-1 solution. Tang and Chen [20] obtained
a completed expression for a period-1 solution and discussed the bifurcation of period
solutions numerically using a discrete dynamic system determined by a stroboscopic map.
Many papers have been devoted to the analysis of mathematical models with state-dep-
endent impulsive effects. For instance, Tang and others have studied the dynamic behaviors
of predator-prey systems with impulsive-state feedback control and have determined the
existence and stability of positive periodic solutions using the Poincaré map and the
properties of the Lambert W function [21–26].

Through a long course of investigation, many authors have emphasized that the
presence of alternative foods can effect biological control through a variety of mechanisms.
For example, the presence of one prey population can have negative effects on another prey
population by enabling the population of a shared predator to increase, thus leading to
higher predation rates upon both prey items [27]. In contrast, the alternative prey can have a
positive effect on population densities of the focal prey, in that the alternative prey can reduce
predation on the focal prey because of predator preference for alternative prey resources [27].

This research uses the method of impulsive perturbations and the presence of alterna-
tive prey to investigate the following predator-prey model with state-dependent impulsive
effects:

dN

dT
= rN

(
1 − N

k

)
− α1NP

a +N
,

dP

dT
=

β1α1NP

a +N
+ d1P

(
1 − N

k

)
− γ1P, N /=H

ΔN = −cN, ΔP = eP + f, N = H,

(1.1)

where N(T), P(T) represent the densities or biomasses of the prey and the predator,
respectively at time T . rN(1 −N/K) is the logistic equation, which is often used to describe
the prey population increment in the absence of predator. The logistic equation has been
applied in a wide range of ecological system situations, especially predator-prey system, and
its theoretical assumptions permit population growth to be halted by a resource limitation,
where K is the environmental carrying capacity of the prey allowed by the limiting resource
and r denotes the intrinsic growth rate of the prey. α1NP/(a + N) is the Holling type II
functional response, which is used to describe the average feeding rate of a predator when
the predator spends some time searching for prey and some time, exclusive of searching,
processing each captured prey item, where α1 is the predation coefficient and a is the half-
saturation constant. Furthermore, it should be noted that the feeding rate is unaffected by
predator abundance, but the Holling type II functional response has been used and has stood
as the null model upon which predator-prey theory is based. d1P(1 −N/K) denotes that the
part of the predator population increments come from the alternative prey, where d1 is the
digestion factor relative to the alternative prey. For simplicity, it is compulsory to assume that
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the alternative prey has a high abundance so that the predator can feed it, but the feeding rate
of the alternative prey is affected by the prey N, that is to say when the value of N tends to
the environmental carrying capacity K, the mass of the alternative prey consumed will tend
to zero. γ1 is the mortality rate of the predator, respectively. β1 is a conversion factor, and it is
assumed that β1 < 1 because the whole biomass of the prey is not converted into the biomass
of the predator.

In practice, we can control the population size by catching (poisoning) the prey (i.e.,
the pest) and releasing the predator (i.e., the natural enemy) when the amount of the prey
reaches a threshold [28]. Because this situation does not occur at a fixed time, the usual kind
of fixed-time control strategy may not be effective. Therefore, a state-based feedback control
strategy is introduced in our paper. When the numbers of preyN reach a threshold valueH,
the decision maker of biological treatment technology must implement impulsive control
strategy that can better handle the relationship between the prey N and the predator P .
Hence, we not only harvest a certain number of the preyN, but also release a certain amount
of P by the use of indirect or direct way, where 1 > c > 0, e > 0, f ≥ 0.

It is convenient at the outset to rescale the system described above by introducing
N = ax, P = ray/α1, T = t/r; then system (1.1) becomes:

dx

dt
= x
(
1 − ax

K

)
− xy

1 + x
,

dy

dt
=

β1α1xy

r(1 + x)
+
(
d1

r

)
y
(
1 − ax

K

)
−
(
γ1
r

)
y, ax /=H

Δx = −cx, Δy = ey +
α1f

ra
, ax = H.

(1.2)

Letting K/a = k, β1α1/r = b, d1/r = d, γ1/r = m, c = p, e = q, α1f/ra = τ , H/a = h, then
system (1.2) can be written in the following form:

dx

dt
= x

(
1 − x

k

)
− xy

1 + x
,

dy

dt
=

bxy

1 + x
+ dy

(
1 − x

k

)
−my, x /=h

Δx = −px, Δy = qy + τ, x = h.

(1.3)

The rest of this paper is organized as follows. In Section 2, some lemmas that are
frequently used in the following discussions are presented, and the existence and stability
of a positive periodic solution of system (1.3) are stated and proved. In Section 3, the results
of numerical analysis are reported to illustrate the theoretical results. Finally, conclusions and
remarks are provided.

2. Analysis of the System

To discuss the dynamic behavior of system (1.3), a Poincaré map must be constructed. First,
consider the vector field of system (1.3). Let S0 = {(x, y)|x = (1 − p)h, y ≥ 0} and S1 =
{(x, y)|x = h, y ≥ 0}. Then the horizontal isocline y = (1 − x/k)(1 + x) intersects sections S0

and S1 at B(h, (1−h/k)(1−h)) andA((1−p)h, (1− (1−p)h/k)(1+(1−p)h)), respectively. The
segment AB is represented by y = (1 − x/k)(1 + x), where (1 − p)h < x < h, and sections S0

and S1 intersect y = 0 at C((1 − p)h, 0) and D(h, 0), respectively. It follows that Ω1 = Ω ∪ CD
and Ω = {(x, y)|0 < y < (1 − x/k)(1 + x), (1 − p)h < x < h}. It is easy to see that dx = 0, dy < 0
are satisfied at a point (x, y) ∈ AB. On the one hand, any orbit passing through segment
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AB enters Ω as t increases and then departs from Ω by passing through BD. On the other
hand, any orbit beginning with the point (x0, 0) ∈ CD ⊂ Ω1 keeps y(t) = 0 and tends to ∞.
However, for any point (x, y) ∈ Ω1, dx/dt > 0, which is a major condition for the following
discussion.

Next, choose sections S0 and S1 as Poincaré sections. First assume that the point
B+
k−1((1 − p)h, y+

k−1) is on section S0. Because of the nature of the vector field of system (1.3),
the trajectory with initial point B+

k−1 intersects section S1 at point Bk(h, yk), where yk depends
on y+

k−1, letting yk = g(y+
k−1). Then point Bk jumps to point B+

k((1− p)h, (1+ q)yk + τ) on S0 on
account of the impulsive effects. Hence, the following Poincaré map P is obtained:

y+
k =
(
1 + q

)
g
(
y+
k−1
)
+ τ. (2.1)

Second, consider the other Poincaré section. It is assumed that point Bk(h, yk) is on the
Poincaré section S1. Then B+

K((1 − p)h, (1 + q)yk + τ) is on section S0 because of the impulsive
influence, and the trajectory with initial point B+

k intersects the Poincaré section S1 at point
Bk+1(h, yk+1), where y+

k+1 rests with yk and the parameters q and τ . Then another Poincaré
map P0 can be obtained as follows:

yk+1 = g
((
1 + q

)
yk + τ

)
= F
(
q, τ, yk

)
. (2.2)

To investigate the properties of system (1.3), the following lemma is introduced.

Lemma 2.1 (see [29]). The T -periodic solution (x, y) = (ξ(t), η(t)) of the system

dx

dt
= P
(
x, y
)
,

dy

dt
= Q
(
x, y
)
, ϕ

(
x, y
)
/= 0,

Δx = ξ
(
x, y
)
, Δy = η

(
x, y
)
, ϕ

(
x, y
)
= 0

(2.3)

is orbitally asymptotically stable if the Floquet multiplier μ satisfies the condition |μ| < 1, where

μ =
n∏

k=1

Δk exp

[∫T

0

(
∂P

∂x

(
ξ(t), η(t)

)
+
∂Q

∂y

(
ξ(t), η(t)

))
dt

]
(2.4)

with

Δk =
P+
((
∂β/∂y

)(
∂φ/∂x

) − (∂β/∂x)(∂φ/∂y) + (∂φ/∂x))
P
(
∂φ/∂x

)
+Q
(
∂φ/∂y

)

+
Q+
(
(∂α/∂x)

(
∂φ/∂y

) − (∂α/∂y)(∂φ/∂x) + (∂φ/∂y))
P
(
∂φ/∂x

)
+Q
(
∂φ/∂y

)
(2.5)

and P , Q, ∂α/∂x, ∂α/∂y, ∂β/∂x, ∂β/∂y, ∂φ/∂x, ∂φ/∂y are calculated at points (ξ(tk), η(tk)),
P+ = P(ξ(t+

k
), η(t+

k
)) and Q+ = Q(ξ(t+

k
), η(t+

k
)), where φ(x, y) is a sufficiently smooth function that

grad φ(x, y)/= 0, and tk (k ∈ N) is the time of the k th jump.
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Lemma 2.2 (see [30]). Let F : R × R → R be a one-parameter family of the C2 map satisfying

(i) F(0, μ) = 0,

(ii) ∂F/∂x(0, 0) = 1,

(iii) ∂2F/∂x∂μ(0, 0) > 0,

(iv) ∂2F/∂x2(0, 0) < 0.

Then F has two branches of fixed points for μ near zero. The first branch is x1(μ) = 0 for all μ.
The second bifurcating branch x2(μ) changes its value from negative to positive as μ increases through
μ = 0 with x2(0) = 0. The fixed points of the first branch are stable if μ < 0 and unstable if μ > 0,
while those of the bifurcating branch have the opposite stability pattern.

Next, consider the case of system (1.3)without impulsive effect. From x(1−x/k)−xy/(1+x) =
0 and bxy/(1+x)+dy(1−x/k)−my = 0, it can be determined that system (1.3) has two boundary
equilibria P0(0, 0), P1(k, 0). Let d+b−d/k−m > 0,m−d > 0 and (d+b−d/k−m)2 > (4d/k)(m−d);
then there are two positive interior equilibria P ∗

1 (x
∗
1, y

∗
1), P

∗
2 (x

∗
2, y

∗
2), where

x∗
1 =
(

k

2d

)⎡
⎣
(
d + b − d

k
−m

)
+

√(
d + b − d

k
−m

)2

−
(
4d
k

)
(m − d)

⎤
⎦,

y∗
1 =
(
1 − x∗

1

k

)(
1 + x∗

1

)
,

x∗
2 =
(

k

2d

)⎡
⎣
(
d + b − d

k
−m

)
−
√(

d + b − d

k
−m

)2

−
(
4d
k

)
(m − d)

⎤
⎦,

y∗
2 =
(
1 − x∗

2

k

)(
1 + x∗

2
)
.

(2.6)

A direct calculation and stability analysis of these equilibrium points shows that P ∗
1 (x

∗
1, y

∗
1) is

a saddle, while P ∗
2 (x

∗
2, y

∗
2) is an equilibrium point with index +1, which is a stable positive focus when

(1 + 2x∗
2)/k > 1. Throughout this paper, it is assumed that d + b − d/k − m > 0, m − d > 0 and

(d + b − d/k −m)2 > (4d/k)(m − d) always hold on the basis of reasonable ecological practice.

The following discussion refers to system (1.3), that is, the system with impulsive
effect.

2.1. Case τ = 0

In this subsection, some basic properties will be derived for the following subsystem of
system (1.3), in which the predator y(t) is absent:

dx

dt
= x

(
1 − x

k

)
, x /=h,

Δx = −px, x = h.

(2.7)

Setting x0 = x(0) = (1 − p)h leads to the following solution of system (2.7): x(t) = k(1 −
p)h exp(t − nT)/(k − (1 − p)h + (1 − p)h exp(t − nT)). Let T = ln((k − (1 − p)h)/(k − h)(1 − p));
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then x(T) = h and x(T+) = (1−p)h. This means that system (1.3) has the following semi-trivial
periodic solution:

x(t) =
k
(
1 − p

)
h exp(t − nT)

k − (1 − p
)
h +
(
1 − p

)
h exp(t − nT)

,

y(t) = 0,

(2.8)

where t ∈ (nT, (n + 1)T], n ∈ N, which is implied by (ξ(t), 0).
Next, the stability of this semi-trivial periodic solution will be investigated.

Theorem 2.3. The semi-trivial periodic solution (2.8) is said to be stable if

0 < q <
(
1 − p

)d−m(k − (1 − p)h
k − h

)m−bk/(1+k)( 1 + h

1 + (1 − p)h

)−(bk/(1+k))
− 1. (2.9)

Proof. It is known that

P
(
x, y
)
= x

(
1 − x

k

)
− xy

(1 + x)
, Q

(
x, y
)
=

bxy

(1 + x)
+ dy

(
1 − x

k

)
−my,

α
(
x, y
)
= −px, β

(
x, y
)
= qy, φ

(
x, y
)
= x − h,

(
ξ(T), η(T)

)
= (h, 0),

(
ξ(T+), η(T+)

)
=
((
1 − p

)
h, 0

)
.

(2.10)

Then, using Lemma 2.1, by a straightforward calculation, it is possible to obtain

∂P

∂x
= 1 − 2

k
x − y

(1 + x)2
,

∂Q

∂y
=

bx

1 + x
+ d

(
1 − x

k

)
−m,

∂α

∂x
= −p, ∂α

∂y
= 0,

∂β

∂x
= 0,

∂β

∂y
= q,

∂φ

∂x
= 1,

∂φ

∂y
= 0,

Δ1 =
P+
((
∂β/∂y

)(
∂φ/∂x

) − (∂β/∂x)(∂φ/∂y) + ∂φ/∂x
)

P
(
∂φ/∂x

)
+Q
(
∂φ/∂y

)

+
Q+
(
(∂α/∂x)

(
∂φ/∂y

) − (∂α/∂y)(∂φ/∂x) + ∂φ/∂y
)

P
(
∂φ/∂x

)
+Q
(
∂φ/∂y

)

=
P+(ξ(T+), η(T+)

)(
1 + q

)
P
(
ξ(T), η(T)

) =
(
1 − p

)(
1 + q

)k − (1 − p
)
h

k − h
.

(2.11)
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Furthermore,

exp

[∫T

0

(
∂P

∂x

(
ξ(t), η(t)

)
+
∂Q

∂y

(
ξ(t), η(t)

))
dt

]

= exp

[∫T

0

(
1 − 2

k
ξ(t) +

bξ(t)
1 + ξ(t)

+ d −m − d

k
ξ(t)
)
dt

]

=
(

k − (1 − p)h
(k − h)(1 − p)

)1+d−m(k − (1 − p)h
k − h

)−(2+d)( (1 + h)(k − (1 − p)h)
(k − h)(1 + (1 − p)h)

)bk/(1+k)

.

(2.12)

Therefore, it is possible to obtain the Floquet multiplier μ by direct calculation as follows:

μ =
n∏

k=1

Δk exp

[∫T

0

(
∂P

∂x

(
ξ(t), η(t)

)
+
∂Q

∂y

(
ξ(t), η(t)

))
dt

]

=
(
1 − p

)(
1 + q

)k − (1 − p
)
h

k − h

(
k − (1 − p)h
(k − h)(1 − p)

)1+d−m(k − (1 − p)h
k − h

)−(2+d)

×
(
(1 + h)(k − (1 − p)h)
(k − h)(1 + (1 − p)h)

)bk/(1+k)

=
(
1 + q

)(
1 − p

)m−d
(
k − (1 − p)h

k − h

)(bk/(1+k))−m( 1 + h

1 + (1 − p)h

)bk/(1+k)

.

(2.13)

Hence, |μ| < 1 when (2.9) holds. This completes the proof.

Remark 2.4. When q∗=(1−p)d−m((k−(1−p)h)/(k−h))m−bk/(1+k)((1+h)/(1+(1 − p)h))−bk/(1+k)

−1, a bifurcation may occur if q = q∗ for |μ| = 1, and a positive periodic solution may appear
when q > q∗. Hence, the topic of bifurcation will be discussed in the following.

First, consider the Poincaré map (2.1), but with τ = 0. Set u = y+
n and u ≥ 0 small

enough. Then the map becomes the following form:

u 	−→ (1 + q
)
g(u) ≡ G

(
u, q
)
, (2.14)

where the function G(u, q) is continuously differentiable with respect to both u and q, g(0) =
0; then limu→ 0+g(u) = g(0) = 0.

Second, from the bifurcation of map (2.14), the following theorem can be obtained.

Theorem 2.5. A transcritical bifurcation occurs when q = q∗. Therefore, a stable positive fixed point
appears when the parameter q changes through q∗ from left to right. Correspondingly, system (1.3)
has a stable positive periodic solution if q ∈ (q∗, q∗ + δ) with δ > 0.
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Proof. The values of g ′(u) and g ′′(u) must be calculated at u = 0, where 0 ≤ u ≤ r(1 − p)h(k −
(1 − p)h)/kd ≡ u0; then system (1.3) can be transformed as follows:

dy

dx
=

Q
(
x, y
)

P
(
x, y
) , (2.15)

where

P
(
x, y
)
= x

(
1 − x

k

)
− xy

(1 + x)
, Q

(
x, y
)
=

bxy

(1 + x)
+ dy

(
1 − x

k

)
−my. (2.16)

Let (x, y(x;x0, y0)) be an orbit of system (2.15) and set x0 = (1 − p)h, y0 = u, 0 ≤ u ≤ u0; then

y
(
x;
(
1 − p

)
h, u
) ≡ y(x, u),

(
1 − p

)
h ≤ x ≤ h, 0 ≤ u ≤ u0. (2.17)

Using (2.17),

∂y(x, u)
∂u

= exp

[∫x

(1−p)h

∂

∂y

(
Q
(
s, y(s, u)

)
P
(
s, y(s, u)

)
)
ds

]
,

∂2y(x, u)
∂u2

=
∂y(x, u)

∂u

∫x

(1−p)h

∂2

∂y2

(
Q
(
s, y(s, u)

)
P
(
s, y(s, u)

)
)

∂y(s, u)
∂u

ds.

(2.18)

Clearly, it can be deduced that ∂y(x, u)/∂u > 0, and

g ′(0) =
∂y(h, 0)

∂u
= exp

(∫h

(1−p)h

∂

∂y

(
Q
(
s, y(s, 0)

)
P
(
s, y(s, 0)

)
)
ds

)

= exp

(∫h

(1−p)h

b

(1 + s)(1 − s/k)
+
d

s
− m

s(1 − s/k)
ds

)

=
(
1 − p

)m−d
(
k − (1 − p)h

k − h

)kb/(k+1)−m( 1 + h

1 + (1 − p)h

)kb/(k+1)

.

(2.19)

Furthermore,

g ′′(0) = g ′(0)
∫h

(1−p)h
m(s)

∂y(s, 0)
∂u

ds, (2.20)

where

m(s) =
∂2

∂y2

(
Q
(
s, y(s, 0)

)
P
(
s, y(s, 0)

)
)

=
s

(1 + s)(s(1 − s/k))2

(
bs

1 + s
+ d

(
1 − s

k

)
−m

)
,

s ∈ [(1 − p
)
h, h
]
.

(2.21)
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Using the previous assumption dy < 0 in Ω yields bs/(1 + s) + d(1 − s/k) −m < 0. It can be
determined that m(s) < 0, s ∈ [(1 − p)h, h).

Therefore,

g ′′(0) < 0. (2.22)

The next step is to check whether the following conditions are satisfied.

(a) It is easy to see that

G
(
0, q
)
= 0, q ∈ (0,∞). (2.23)

(b) Using (2.19),

∂G
(
0, q
)

∂u
=
(
1 + q

)
g ′(0) =

(
1+q
)(
1−p)m−d

(
k − (1 − p

)
h

k − h

)(kb/(k+1))−m(
1 + h

1 +
(
1 − p

)
h

)kb/(k+1)

,

(2.24)

which yields

∂G
(
0, q∗

)
∂u

= 1. (2.25)

This means that (0, q∗) is a fixed point with eigenvalue 1 of map (2.14).

(c) Because (2.19) holds,

∂2G
(
0, q∗

)
∂u∂q

= g ′(0) > 0. (2.26)

(d) Finally, inequality (2.22) implies that

∂2G
(
0, q∗

)
∂u2

=
(
1 + q∗

)
g ′′(0) < 0. (2.27)

These conditions satisfy the conditions of Lemma 2.2. This completes the proof.

2.2. Case τ > 0

This subsection discusses the existence of a positive periodic solution with τ > 0 using the
Poincaré map (2.2).

Case 1. h < x∗
2.

Theorem 2.6. For any q > 0 and τ > 0, system (1.3) has a positive period-1 solution.
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Proof. Choose a point A1((1 − p)h, ε) from section S0, where ε (ε < τ) is small enough. The
trajectory starting with initial point A1 intersects section S1 at point B1(h, ε0). Because of
impulsive effects, the trajectory jumps to pointA2((1−p)h, (1+q)ε0+τ) on section S0 and then
returns to point B2(h, ε2) on S1. For (1+ q)ε0 + τ > ε, pointA2 is above pointA1. Furthermore,
point B2 is above point B1, and ε2 > ε0. Hence, from (2.2), ε2 = F(q, τ, ε0), and furthermore,

ε0 − F
(
q, τ, ε0

)
= ε0 − ε2 < 0. (2.28)

Next, assume that the horizontal isocline l : y = (1−x/k)(1+x) intersects the Poincaré
section S0 atW((1−p)h, (1− (1−p)h/k)(1+(1−p)h)). The trajectory from the initial pointW
intersects the Poincaré section S1 at point V (h, v0) jumps to point V +((1 − p)h, (1 + q)v0 + τ),
and then returns to point V1(h, v1) on section S1. Assume that there exists a q0 > 0 such that
(1 + q0)v0 + τ = (1 − (1 − p)h/k)(1 + (1 − p)h); then point V + coincides with point W only for
q = q0, which is above point W for q > q0, while it is below point W for q < q0. However, for
any q > 0, point V1 is not above point V because of the properties of the vector field of system
(1.3), which means that v1 ≤ v0.

(a) If v1 = v0, then system (1.3) has a positive period-1 solution;

(b) If v1 < v0, then

v0 − F
(
q, τ, v0

)
= v0 − v1 > 0. (2.29)

It is easy to see that the Poincaré map (2.2) has a fixed point by (2.28) and (2.29), or in other
words, system (1.3) has a positive period-1 solution. This completes the proof.

Now the stability of this positive period-1 solution of system (1.3)will be discussed.

Theorem 2.7. For any q > 0, τ > 0, let (ξ(t), η(t)) be a positive order-1 T -periodic solution of
system (1.3) which starts from the point (h,ω). If the condition

∣∣μ∣∣ = (1 + q
)
Γ exp

(∫T

0
Ψ(t)dt

)
< 1 (2.30)

holds, where

Γ =
(
1 − p

)1 − (1 − p
)
h/k − ((1 + q

)
ω + τ

)
/
(
1 +
(
1 − p

)
h
)

1 − h/k −ω/(1 + h)
, (2.31)

then (ξ(t), η(t)) is orbitally asymptotically stable.

Proof. Assume that the periodic solution with period T passes through the points K+((1 −
p)h, (1 + q)ω + τ) and K(h,ω) in which ω ≤ v1 holds. Because the form and the period T of
the solution are not known, the stability of this positive periodic solution will be discussed
using Lemma 2.1. The difference between this case and that of Theorem 2.3 lies in that

(
ξ(T), η(T)

)
= (h,ω),

(
ξ(T+), η(T+)

)
=
((
1 − p

)
h,
(
1 + q

)
ω + τ

)
, (2.32)
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while other factors are the same. Then,

Δ1 =
P+
((
∂β/∂y

)(
∂φ/∂x

) − (∂β/∂x)(∂φ/∂y) + ∂φ/∂x
)

P
(
∂φ/∂x

)
+Q
(
∂φ/∂y

)

+
Q+
(
(∂α/∂x)

(
∂φ/∂y

) − (∂α/∂y)(∂φ/∂x) + ∂φ/∂y
)

P
(
∂φ/∂x

)
+Q
(
∂φ/∂y

)

=
P+(ξ(T+), η(T+)

)(
1 + q

)
P
(
ξ(T), η(T)

) =
(
1 + q

)
Γ,

(2.33)

where

Γ =
(
1 − p

)1 − (1 − p
)
h/k − ((1 + q

)
ω + τ

)
/1 +

((
1 − p

)
h
)

1 − h/k −ω/(1 + h)
. (2.34)

Let Ψ(t) = (∂P/∂x)(ξ(t), η(t)) + (∂Q/∂y)(ξ(t), η(t)); then

∣∣μ∣∣ = Δ1 exp

(∫T

0

(
∂P

∂x

(
ξ(t), η(t)

)
+
∂Q

∂y

(
ξ(t), η(t)

))
dt

)

=
(
1 + q

)
Γ exp

(∫T

0
Ψ(t)dt

)
.

(2.35)

If |μ| < 1, that is,

∣∣∣∣∣
(
1 + q

)
Γ exp

(∫T

0
Ψ(t)dt

)∣∣∣∣∣ < 1, (2.36)

then the periodic solution is stable. This completes the proof.

Remark 2.8. From the above, it is apparent that if there exists a q′ > q0 such that |u| = 1, a flip
bifurcation occurs at q = q′. If a flip bifurcation occurs, there exists a stable positive period-2
solution of system (1.3) for q′ > q0, which may also lose its stability when q increases.

Case 2 ((1 − p)h < x∗
2 < h < x∗

1). In this case, the following theorem can be proved.

Theorem 2.9. There exists a τ0 = g(h) > 0 such that for any τ > τ0 and q > 0, system (1.3) has
a positive period-1 or period-2 solution which has asymptotic orbital stability. Furthermore, system
(1.3) has no period-k solution (k ≥ 3).

Proof. The phase diagram of system (1.3) without impulses is shown in Figure 1(a). Assume
that the trajectory crosses S0 at pointsA((1−p)h, y1) andA1((1−p)h, y2), respectively, where
y2 < (1−(1−p)h/k)(1+(1−p)h) < y1, and is tangent to S1 at point B(h, y3), y3 = (1−h/k)(1+h).
For any y ∈ (y2, y1), the trajectory of system (1.3) without impulsive passing through point
((1 − p)h, y) will not intersect with S0 over time. Eventually, it will tend to the focus (x∗

2, y
∗
2).
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Hence, after several impulsive actions on S1, the trajectory of system (1.3) that passed through
points ((1−p)h, y)(y ∈ (y2, y1))will eventually tend to the focus, and then there is no positive
periodic solution (Figure 1(b)). Therefore, τ > y1 is a sufficient condition for a trajectory of
system (1.3) to intersect with S1 an infinite number of times due to impulsive effects, where
y1 = g(h) depends on the threshold value h.

Therefore, for any two points Gi(h, gi) and Dj(h, dj) at which 0 < gi < dj < (1 −
h/k)(1 + h), the points G+

i ((1 − p)h, (1 + q)gi + τ) and D+
j ((1 − p)h, (1 + q)dj + τ) are above

the point A. Then it follows from the vector field of system (1.3) without impulsive that
0 < dj+1 < gi+1 < (1 − h/k)(1 + h), that is,

gi+1 > dj+1 for 0 < gi < dj <

(
1 − h

k

)
(1 + h), τ > y1 >

(
1 +
(
1 − p

)
h
)(

1 −
(
1 − p

)
h

k

)
.

(2.37)

Now, for any y0 ∈ (0, (1 + h)(1 − h/k)), y1 = F(q, τ, y0), y2 = F(q, τ, y1), and yn+1 = F(q, τ, yn)
(n = 3, 4, . . .) by the Poincaré map (2.2). If y0 = y1, then system (1.3) has a positive period-1
solution. If y0 /=y1 and y0 = y2, system (1.3) has a positive period-2 solution.

Next, the general case will be discussed, that is, y0 /=y1 /=y2 /= · · · /=yk−1 (k ≥ 3) and
y0 = yk. Then system (1.3) has a positive period-k solution. In fact, this is impossible.

Case 1 (y0 < y1). From (2.37), y1 > y2. Therefore, the relationship among y0, y1, y2 is either
y1 > y0 > y2 or y1 > y2 > y0.

(1) y1 > y0 > y2: if y1 > y0 > y2, then from (2.37), y3 > y1 > y2. It is also true that
y3 > y1 > y0 > y2. Repeating this process yields:

0 < · · · < y2k < · · · < y4 < y2 < y0 < y1 < y3 < · · · < y2k+1 < · · · <
(
1 −
(
1 − p

)
h

k

)
(1 + h)

(2.38)

(2) y1 > y2 > y0 : following the same argument, if y1 > y2 > y0,

0 < y0 < y2 < y4 · · · < y2k < · · · < y2k+1 < · · · < y3 < y1 <

(
1 −
(
1 − p

)
h

k

)
(1 + h). (2.39)

Case 2 (y0 > y1). In this case, the relationship among y0, y1, y2 has two types as well: y0 >
y2 > y1 or y2 > y0 > y1.

(1) y0 > y2 > y1: if y0 > y2 > y1, then

0 < y1 < y3 < y5 < · · · < y2k+1 < · · · < y2k < · · · < y4 < y2 < y0 <

(
1 −
(
1 − p

)
h

k

)
(1 + h).

(2.40)
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Figure 1: (a) Phase diagram of system (1.3) without impulses; (b) phase diagram of system (1.3).

(2) y2 > y0 > y1: if y2 > y0 > y1, then

0 < · · · < y2k+1 < · · · < y3 < y1 < y0 < y2 < y4 < · · · < y2k < · · · <
(
1 −
(
1 − p

)
h

k

)
(1 + h).

(2.41)

If system (1.3) has a period-k solution (k ≥ 3), then y0 /=y1 /=y2 /= · · · /=yk−1 (k ≥ 3),
y0 = yk, which by Case 1 and Case 2, is a contradiction. Therefore, system (1.3) has no period-
k (k ≥ 3) solution. However, there is a stable period-1 or period-2 solution in this case. In
Case 1 of (1), limn→+∞y2k = y∗ and limn→+∞y2k+1 = y+, where 0 < y∗ < y+ < (1 + h)(1 − h/k).
Hence, y∗ = f(q, y+) and y+ = f(q, y∗). Therefore, system (1.3) has a stable period-2 solution
in this case. In similar manner, it can be determined that system (1.3) has a stable period-1
solution in Case 1 of (2) and Case 2 of (1). In Case 2 of (2), system (1.3) has a stable period-2
solution. In the above proof, τ > y1. This completes the proof.

By using the theoretical analysis, we obtain the threshold expression of some critical
parameters under the condition of the existence and stability of semi-trivial periodic solutions
as well as the transcritical bifurcation, which in turn provides a theoretical basis for the
numerical simulation.

3. Numerical Analysis

It is known that the continuous system corresponding to system (1.3) cannot be solved
explicitly, so system (1.3) must be investigated using numerical simulation. In this section,
the parameters are fixed as: k = 1.2, b = 1.8, d = 0.2, m = 0.6.

By direct calculation, +b − d/k −m ≈ 0.226 > 0, m − d = 0.4 > 0, (d + b − d/k −m)2 =
1.521 > 0.267 ≈ (4d/k)(m − d), x∗

2 ≈ 0.34, y∗
2 ≈ 0.96, and (1 + 2x∗

2)/k ≈ 1.4 > 1, and therefore
the interior equilibrium point P ∗

2 (x
∗
2, y

∗
2) is a stable positive focus, as shown in Figure 2.
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Figure 2: (a) Phase diagram of system (1.3) without impulses; (b) time series in x and y of system (1.3)
without impulsive.

For τ = 0, it is known that a semi-trivial periodic solution exists for system (1.3);
furthermore, it is stable when (2.9) holds. Set p = 0.6, h = 0.2; by Remark 2.4, q∗ ≈ 0.246.
Let q = 0.18; then the semi-trivial periodic solution is stable, and the solution from the initial
point (0.06, 0.05) of system (1.3) tends to the stable semi-trivial periodic solution as t increases
(Figure 3(a)). Now let q = 0.5; it is easy to see in Figure 3(b) that the semi-trivial periodic
solution has become unstable.

In the case of h < x∗
2, from Theorems 2.6 and 2.5, there exists a stable positive period-1

solution of system (1.3) for any q > 0 and τ > 0. Furthermore, from Remark 2.8, there may
be a positive period i (i > 1) which leads to the loss of stability as q increases, as shown in
Figures 4 and 5.

In fact, it is obvious that for system (1.3), there exists a positive periodic solution for
any q > 0 and τ > 0 or q ∈ (q∗, q∗ + δ) with δ > 0 and τ = 0 in Figures 6(a), 6(b), and 6(c).
Figure 6(a) shows the bifurcation diagram of system (1.3) plotted as a function of q in the
case of τ = 0; the bifurcation diagram of system (1.3) with τ > 0 is shown in Figure 6(b). On
the other hand, viewing τ as a bifurcation parameter in system (1.3), a different bifurcation
diagram for system (1.3) is obtained (Figure 6(c)).

In Figure 6(a), 6(b), and 6(c), it is easy to see that system (1.3) shows rich population
dynamic behavior consistent with the theoretical analysis, such as period-doubling bifur-
cations, a chaotic band, a periodic window, chaotic crises, period-halving bifurcations, and
so on. In Figure 6(a), it is obvious that there exists a semi-trivial solution which is stable
for q ∈ (0, 0.64), which implies that the population P goes extinction because of the fixed
release amount τ = 0. This result suggests that the value of the fixed release amount τ
can affect the coexistence of the population N and the population P . A fold bifurcation
occurs at q = 0.64, where a positive period-1 solution bifurcates from the periodic semi-
trivial solution. Furthermore, a positive period-2 solution bifurcates from the positive period-
1 solution through a flip bifurcation at q = 3.92, while the positive period-1 solution is stable
for q ∈ (0.64, 3.92). Finally, the period-doubling bifurcation leads to chaos. Furthermore, it
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Figure 3: Trajectories with initial point (0.06, 0.05) of system (1.3) with p = 0.6, h = 0.2 (a) q = 0.18, (b)
q = 0.5.
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Figure 4: (a) Existence of positive period-1 solution; (b) stability of positive period-1 solution.

is interesting to find from Figure 6(a) that the max amount of the population P gradually
increases as the value of q increases from 0.64 to 30. These results indicate that the fixed release
amount τ has a positive impact for the population P persistence and biological diversity in
real ecological communities. Nonetheless, it is worthwhile to notice that the max amount of
population P has not been greatly affected.

When τ > 0, as shown in Figure 6(b), there is no periodic semi-trivial solution of
system (1.3), and there exists no fold bifurcation. However, there is a positive period-1
solution, which is stable for q ∈ (0, 4.42), which implies that a low value of the fixed release
amount τ can promote the population P persistence. A period-2 solution appears due to
loss of stability at q = 4.42. Subsequently, a series of periodic-doubling bifurcations leads
to chaotic solutions. A periodic-halving bifurcation leads to period-3 solutions for q > 33.64.
According to Li and Yorke theorem, period-3 implies chaos, and chaotic solutions will appear
as q increases. Comparing Figure 6(a) with Figure 6(b), it is evident to be found that the
system (1.3) has different dynamical behaviors when the value of the fixed release amount
τ is 0 or 0.0175. On the other hand, in Figure 6(c), there is a route from chaotic solutions to
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Figure 5: (a) Existence of positive period-2 solution; (b) stability of positive period-2 solution.

stable periodic solutions through a cascade of period-halving bifurcations. Hence, it should
be stressed that the fixed release amount τ can not only promote population persistence, but
also affect complex population dynamic in the predator-prey system (1.3).

In the case of h > x∗
2, from Theorem 2.9, there exists some τ0 > 0 such that system

(1.3) has a stable positive period-1 or period-2 solution for τ > τ0 and any q > 0. Let h = 0.5
and τ = 0.8; this leads to a different bifurcation diagram of system (1.3) about the bifurcation
parameter q, which is shown in Figure 6(d). It is easy to see that stable positive period-1
and period-2 solutions exist, but that there is no period-k (k = 3, 4 . . .) solution. Assuming
q = 4, Figure 7 shows the phase diagram of a stable periodic solution and a time series
in y for system (1.3). These results show that the large values of the fixed release amount
τ can suppress the emergence of chaos, and thus it is interesting to observe that the large
values of the fixed release amount τ have an important effect on the system stability under
the condition of (1 − p)h < x∗

2 < h < x∗
1. Furthermore, when the value of h is different, the

system (1.3) has completely different dynamical behaviors.
Based on the above analysis, it is obvious that numerical results are consistent with

mathematical theoretical works. Moreover, it is also successful for impulsive state feedback
control strategy to maintain two species persistence, and thus it is worthwhile to point out
that the key factors for long-term complex dynamics of the system (1.3) are impulsive state
feedback control strategy, especially the fixed release amount τ .

4. Conclusions

In this research, a predator-prey model with impulsive state feedback control was built and
studied analytically and numerically. Mathematical theoretical investigations have addressed
the existence and stability of semi-trivial periodic solutions of system (1.3) and have proved
that positive periodic solutions come into being from semi-trivial periodic solutions through
a transcritical bifurcation, as described by bifurcation theory. These mathematical works in
turn provide a theoretical basis for the numerical simulation.

Numerical simulations indicates that complex population dynamics of the system
(1.3) depend on the parameters of impulsive state feedback control strategy and the con-
trolling threshold for the population N. With this framework, the direct and indirect effects
on population persistence and dynamical behavior of the system (1.3) caused by impulsive
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Figure 6: Bifurcation diagram of system (1.3) with p = 0.75, (a) h = 0.32, τ = 0, (b) h = 0.32, τ = 0.0175, (c)
h = 0.32, q = 14, (d) h = 0.5, τ = 0.8.
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Figure 7: Periodic solution of system (1.3)with p = 0.75, h = 0.5, τ = 0.8. (a) Phase diagram, (b) time series
of y.
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state feedback control strategy and the controlling threshold for the population N are
investigated by means of bifurcation analysis. It should be stressed that if there is not
the fixed release amount τ for the population P , the population P is not permanent for
q ∈ (0, 0.64), which implies a stable semi-trivial solution, but the low values of the fixed
release amount τ have a positive effect on the population persistence. Whatsoever, the large
values of the controlling threshold and the fixed release amount τ have a profound effect
on the population stability under the condition of other fixed parameters. It is worthwhile
to remark that the values of the fixed release amount τ have no negative effect on the
biomass of the population. In a word, impulsive state feedback control strategy can alter
population dynamics affecting the interaction strength among population, increasing strong
links according to population feature, which in turn illustrates that the impulsive control
strategy is feasible and meaningful.

These results have important implications for conservation management, especially
endangered biological species, and are expected to be of use in the study of the dynamic
complexity of ecosystems.
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