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We discuss a discrete mutualism model with variable delays of the forms Ni(n + 1) =
Ni(n)exp{ri(n)[(K;(n) + a1(n)Na(n — pa(n)))/1 + Nao(n — pa(n))) — N1(n — vi(n))]}, Na(n +
1) = Na(n) exp{ra(n)[(Kz2(n) + aa(n)N1(n — p1(n)))/ (1 + Ni(n - p1(n))) — Na(n — v2(n))]}. By
means of an almost periodic functional hull theory, sufficient conditions are established for the
existence and uniqueness of globally attractive almost periodic solution to the previous system.
Our results complement and extend some scientific work in recent years. Finally, some examples
and numerical simulations are given to illustrate the effectiveness of our main results.

1. Introduction

All species on the earth are closely related to other species. In a simple view, the interaction
between a pair of species can be classified into three typical categories: predation (one gains
and the other suffers) (+,—), competition (-, -), and mutualism (+,+) (see [1]). In recent
years, the concern for mutualism is growing, since most of the world’s biomass is dependent
on mutualism (see [1, 2]). For example, microbial species influence the abundances and
ecological functions of related species (see [3-5]). Many bacterial species coexist in a
syntrophic association (obligate mutualism); that is, one species lives off the products of
another species. So far, mathematical models for mutualisms have often been neglected in
many ecological textbooks.

The variation of the environment plays an important role in many biological and
ecological dynamical systems. As pointed out in [6, 7], a periodically varying environment
and an almost periodically varying environment are foundations for the theory of natural
selection. Compared with periodic effects, almost periodic effects are more frequent. Hence,
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the effects of the almost periodic environment on the evolutionary theory have been the
object of intensive analysis by numerous authors, and some of these results can be found
in [8-12]. On the other hand, discrete time models governed by difference equations are
more appropriate than the continuous ones when the populations have nonoverlapping
generations. Discrete time models can also provide efficient computational models of
continuous models for numerical simulations. In the last ten years, the dynamic behavior
(the existence of positive periodic or almost periodic solutions, permanence, oscillation, and
stability) of discrete biological systems has attracted much attention. We refer the reader to
[13-19] and the references cited therein.
In paper [15], Wang and Li considered the following discrete mutualism model:

Ni(n+1) = Ni(n) exp{rl (n) [K1 (1) + &1 () Na (n) - Nl(n)] },

1+ Nz(n)

K> (n) + ax(n) Ny (n)
T+Ni(n) Nz(")] }

(1.1)

Ny(n+1) = Na(n) exp{rz(n) [

where N; (i = 1,2) are the density of ith mutualist species. By using the main result obtained
by Zhang [20], they studied the existence and uniformly asymptotically stability of a unique
almost periodic solution of system (1.1).

In biological phenomena, the rate of variation in the system state depends on past
states. This characteristic is called a delay or a time delay. Time delay phenomena were
first discovered in biological systems. They are often a source of instability and poor
control performance. Time-delay systems have attracted the attention of many researchers
[8, 10, 12, 16, 18, 21-23] because of their importance and widespread occurrence. Specially, in
the real world, the delays in differential equations of biological phenomena are usually time-
varying. Thus, it is worthwhile continuing to study the existence and stability of a unique
almost periodic solution of the discrete mutualism model with time varying delays.

In this paper, we investigate a discrete mutualism model with variable delays of the
form

Ky (n) + a1 (n)Ny(n - pa(n))
1+ Ny(n—pa(n))

Ky(n) + ay(n)Ni(n - p1(n))
1+ Ni(n—pi(n))

Nl(n+1)=N1(n)exp{r1(n)[ —Nl(n—vl("))]}/

(1.2)

Ny(n+1) =N2(n)exp{r2(n)[ —Nz(n—vz(n))]},

where all coefficients of system (1.2) are almost periodic sequences, and y; and v; are two
nonnegative integer valued sequences, i = 1, 2.

In recent years, there are some research papers on the dynamic behavior (existence,
uniqueness, and stability) of almost periodic solution of discrete biological models with
constant delays (see [24-26]). However, there are few papers concerning the discrete
biological models with variable delays such as system (1.2). Motivated by the previous
reason, our purpose of this paper is to establish sufficient conditions for the existence and
uniqueness of globally attractive almost periodic solution of system (1.2) by means of an
almost periodic functional hull theory.
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For any bounded sequence { f(n)} defined on Z, f* = sup,,{ f(n)}, L =infuez{f(n)}.

Let [a,b], e [a,b]NZ, forall a,b eR.

Throughout this paper, we assume that

(Hy) {ri(n)}, {ai(n)}, {Ki(n)}, {ui(n)}, and {v;(n)} are bounded nonnegative almost
periodic sequences such that

0<rl<r(n)<r’, 0<K'<Kijn)<K!Y O<a<ain)<a, i=1,2. (1.3)

Let p def max;=12 (g, v}'}. We consider system (1.2) together with the following initial
condition:

Ni(6) = 9:i(6) >0, 6 € [-p,0],,9:(0)>0,i=1,2. (1.4)

One can easily show that the solutions of system (1.2) with initial condition (1.4) are defined
and remain positive for n € Z*.

The organization of this paper is as follows. In Section 2, we give some basic definitions
and necessary lemmas which will be used in later sections. In Section 3, global attractivity
of system (1.2) is investigated. In Section 4, by means of an almost periodic functional hull
theory, some sufficient conditions are established for the existence and uniqueness of almost
periodic solution of system (1.2). Three illustrative examples are given in Section 5.

2. Preliminaries

Now, let us state the following definitions and lemmas, which will be useful in proving our
main result.

Definition 2.1 (see [27]). A sequence x : Z — R is called an almost periodic sequence if the
e-translation set of x

Efe,x}={t€Z:|x(n+1)-x(n)|<e, VneZ} (2.1)

is a relatively dense set in Z for all € > 0; that is, for any given e > 0, there exists an integer
I(e) > 0 such that each interval of length I(e) contains an integer 7 € E{e, x} such that

|x(n+71)-x(n)|<e, Vnez. (2.2)

7 is called the e-translation number or e-almost period.

Definition 2.2 (see [27]). Let f : ZxD — R, where Disan opensetin C := {¢ : [-7,0], — R}.
f(n, @) is said to be almost periodic in n uniformly for ¢ € D, or uniformly almost periodic
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for short, if for any € > 0 and any compact set S in ) there exists a positive integer I(e, S) such
that any interval of length I(e, S) contains an integer 7 for which

|f(n+7.¢) - fF(n¢)| <e

Vnez ¢ES. (2.3)
7 is called the e-translation number of f(n, ¢).
Definition 2.3 (see [27]). The hull of f, denoted by H(f), is defined by
H(f) = {g(n, x): klim f(n+ 1, x) = g(n,x) uniformly on Z x S} (2.4)

for some sequence {7}, where S is any compact set in D.

Definition 2.4. Suppose that (N1, N,) is any solution of system (1.2). (N1, N) is said to be a
strictly positive solution on Z if for n € Z,

0 <inf Nj(n) <sup N;(n) <oco, i=1,2.
nez nez

(2.5)

Lemma 2.5 (see [27]). {x(n)} is an almost periodic sequence if and only if for any sequence {h; } C
Z there exists a subsequence {hy} C {hi} such that x(n + hy) converges uniformly on n € 7Z as
k — +oo. Furthermore, the limit sequence is also an almost periodic sequence.

Let
def 1 u u u u def 1 u u u u
h= ﬁeXp{rl (K +af) (v} +1) -1}, F = r_lexp{rz (K3 +a3)(vy +1) -1},
! 2

1+F2

I gl Il
def 1KY r Ky
A = — U ,
LT EAr Ry P i
Il Il
r K r Kiv
B; Cl=efA1exp{ 1 —r{‘Flexp[ri‘Fwi‘— 11 1]},
1+F2

1+F
e (2.6)
1 1 11l u
det 1K, nKyvy
A,k — it
2 rg(1+F1)eXP{1 F 2

I 1 Il au
def K, u wp . KM
B, = A -1 F Fv — ,
] 2 exp{ 1+ Pl vy Fr eXp |1, 2V, 1+ Pl

£ % min{AL B}, f» E min{Ay, By).

In paper [28], Chen obtained the permanence of system (1.2) as follows.
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Lemma 2.6 (see [28]). Assume that (H;) holds; then every solution (N1, N2) of system (1.2)
satisfies

fi <lim niilgoN,-(n) <lim supN;(n) <F;, i=1,2. (2.7)

n—oo

In this section, we obtain the following permanence result of system (1.2).

Lemma 2.7. Assume that (Hy) holds; then every solution (N1, N») of system (1.2) satisfies

gi <lim inf N;(n) <lim sup N;(n) < G;, (2.8)
where
Gi = (KI' +a) exp{ri' (K + ) (v + 1)},
2.9)
aer K K “ . (
8 = 717G, P 1+G2_G1 (Vi+1)p, i=12

Proof. Let (N1, N2) be any positive solution of system (1.2) with initial condition (1.4). From
the first equation of system (1.2), it follows that

Ki(n) + ay(n)Na(n - #2("))] }

Ni(n+1) gNl(n)eXP{fl(")[ 1+ No(n - pp(n))

— Ni(n) exp{r1 (n) [1 - Nﬁ(i’)ﬂz(n)) N “11 T?\]]\Zi"__#’: ES;)] } (2.10)
< Ni(n) exp{ri(n) [Ki(n) + a1 (n)]}
< Ni(m) exp{r (K +af)},
which yields that
Ni(n—vi(n)) 2 Ny (n) exp{—r (K¥ + a¥) v, (2.11)
which implies that
N +1) < Ny(n) explra (n) [(KY + ) - Ni(m) expl{~ri (K +at)vt]]}. (212)
First, we present two cases to prove that
lim sup Ny () < Gi. (2.13)

n— oo
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Case I. There exists Iy € Z* such that N1(lp + 1) > N1(lp). Then, by (2.12), we have
(K} +aff) = Ni(lo) exp{-r{ (K} + af)v}'} >0, (2.14)
which implies that N1 (lp) < (K} + af) exp{r{ (K} + af)v{} < Gy. From (2.12), we get

Ni(lo +1) < Ny(lo) exp{r(K* + &)} < (K* + %) exp{r* (K" + a*) (v* + 1)} €' G,.
(2.15)

We claim that

N1(Tl) < Gl, Vn > lo. (216)

In fact, if there exists an integer ko > Iy + 2 such that Ny (ko) > G1, and letting k; be the
least integer between [y and ko such that Ny (k1) = maxj,<u<k, {N1(n)}, then ki > Iy + 2 and
Ni(k1) > Ni(ky — 1), which implies from the argument as that in (2.15) that

Nl(kl) <G < Nl(ko) (217)

This is impossible. This proves the claim.
Case II. N1(n) > Ni(n+1), for all n € Z*. In particular, lim, _, .N1(n) exists, denoted by N.
Taking limit in the first equation of system (1.2) gives

lim

n—oo

[Kl(n) +a1(n)Na(n — pp(n))

1+ Nz (n - pa(m)) _Nl(""’l(”))] =0 (2.18)

Hence, N; < (K% + af) < Gy. This proves the claim.
So, limsup,, _,  Ni(n) < Gi. In view of the second equation of system (1.2), similar to
the previous analysis, we can obtain

lim sup N(n) < G,. (2.19)

n— oo
For arbitrary e > 0, there exists ng € Z* such that
Ni(n) <Gj+e forn>mng, i=1,2. (2.20)
For n > ngy + p, from the first equation of system (1.2), we have

Ki(n)
1+ Na(n - pa(n))

Ni(n+1) > Ni(n) exp{rl(n)I: —Nl(n—vl(n))]}

(2.21)
oK
> Ny(n)expqr{ —1+(G2+€)—(G1+e) .
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Here, we use the inequality Ki/[l +(Gy+€)] - (Gy+e€) < Ki -G < Kl1 - K} <£0. So,

Kl
Ni(n—-vi(n)) < Ni(n) exp{—ri‘ [Wi*’e) - (G1 + e)]v’l‘}, (2.22)

which yields from the first equation of system (1.2) that

K! K!
Ni(n+1) >N;y(n) exp{rl(n) [m— Ni(n) exp (—r{‘ [m - (G + e)] vi‘)jl }

Vn > ng + p.
(2.23)
Next, we also present two cases to prove that
lim niEfOONl (n) > g1 (2.24)

Case I. There exists Iy > ng + p such that Ni(lp + 1) < Ni(lp). Then, we have from (2.23) that

N = G “) <o 225
1+ (Gy+e) 1(lo) exp| -7y m—( 1+e)|v ) <0, (2.25)

which implies that

s K Jo K c . -
Nl(O)_meXP ry m—( 1+e) v ). (2.26)

In view of (2.21), we can easily obtain that

Nilp+1) > K u K G vy bt 2.27
1(lo + )_mexp r m—( 1+e)|(vi+1) ¢t = gi(e). (2.27)

We claim that

Ni(n) > gi(e) for n>I. (2.28)

By way of contradiction, assume that there exists a ¢y > Iy such that Ni(cp) < gi(e).
Then, ¢y > Ilp + 2. Let ¢; > Iy + 2 be the smallest integer such that Ni(cp) < gi(€). Then
Ni(c1 — 1) > Ni(c1). The previous argument produces that Ni(c1) > gi1(¢€), a contradiction.
This proves the claim.
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Case 1I. We assume that Ny(n) < Ni(n + 1), for all n > ng + p. Then, lim,,_, ,N1(n) exists,

denoted by N,. Taking limit in the first equation of system (1.2) gives

lim

n— oo

[Kl(n) + a1 (n)No(n — pp(n))

1+ Na(n — pia(n)) _Nl("“’l(”))] =0. (2.29)

Hence, N, > Ki/(l + (G2 +¢€)) 2 gi(e) and lim,_,0g1(€) = g1 This proves the claim.
So, liminf, ., ,N1(n) > gi. In view of the second equation of system (1.2), similar to
the previous analysis, we can obtain

lim niilwaz(n) > . (2.30)

So, the proof of Lemma 2.7 is complete. O

Example 2.8. Consider the following discrete mutualism model with delays:

Ni(n+1) = Ny(n) exp{O.l [0'002110]'33(15 20 _ N (- 1)] }
(2.31)
Na(n+1) = Na(n) exp{O.l [0'002110]'3?(1”]7 1) Ny - 1)] }

Corresponding to system (1.2), r; = 0.1, K; = 0.002, a; =0.001, y; =0, v; =1,i=1,2. By
calculation, we obtain

Fi1=F,=368, fi=f,=18x10" (2.32)
By Lemma 2.6, one has
1.8 x107* <lim inf N;(n) < lim sup N;(n) <3.68, i=1,2. (2.33)
n—oo n—oo

Further, we could calculate

G =Gy=3x107°, ¢ =g=~=1994x107. (2.34)
By Lemma 2.7, one also has

1.994 x 107° < lim inf Nj(n) <lim sup N;(n) <3x107°, i=1,2. (2.35)

N
n—oo n— o0

For system (2.31), it is easy to see that Lemma 2.7 gives a more accurate result than
Lemma 2.6 (see Figure 1).
By Lemmas 2.6 and 2.7, we can easily show the following.
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x1073

2.001

2.0005

1.9995
1.999

Ni(n) or Na(n)

1.9985

1.998

1.9975

Figure 1: System (2.31) with N;(-1) =

N1(0) =

6 7 8 9 10,
=0.002.

N(-1) = N2(0)

Theorem 2.9. Assume that (H1) holds; then every solution (N1, N2) of system (1.2) satisfies

max| f;, gi} *

n—oo

3. Global Attractivity

Define a function y : [0, 00), —

d_ef 0/
x(n) = {1,

Let

def 1
01 = expymax| r;
def
Oy = expymax T2

def
U1 = max

1+my

1+m1

Ku + lX1M2
1+my

Ku + L'(ZMl

def
Uy = max Tom
1

{0,1} as follows:

Ku + (x”MZ

+ ale

= ml <lim 1nf Ni(n) <lim sup Nj(n) < M; def min{F;, G;}, Vne€Z, i=1,2.

(2.36)
if n=0,
o (3.1)
if ne[1,00),.
Ku + LX“MZ
- [P m )}
+ tsz1
-] [ )}
K! +almy (3.2)
-m e e 1
! 1+ M2 !
KL +abmy M
B VA N
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Theorem 3.1. Assume that (H,) holds. Suppose further that
(Hy) there exist two positive constants A1 and Ay such that min{©;,©,} > 0, where
2
©; €'\, min r, M r{‘] — Loy (P x (W) v <vi‘ -l + 1>M1 — Lyoyor (7)) (W) v

X202 (1) x (V) K5 — a2|“<,43 — i+ 1)1;;41\42 Aot (Pq — b+ 1>|1<2 T

[1+m]? [1+m]?

7

€ : 2 u U U\ AU u u U\ U
@, €, min [réf M, rZ] ~2202(13)" X ()91 (1 = b + 1) Mz = a0 (1) X ()

Doy () X OF) 1Ky -l (=g + 1)VIML darf (g = g + 1) 1Ky -

[1+ms]? [1+ my]?

(3.3)

Then, system (1.2) is globally attractive, that is, for any positive solution (N1, N2) and (W1, W2) of
system (1.2),

Jim (N1 - Wa()] =0, lim [Na(n) - Wa(m)] = 0. (G4)

Proof. In view of condition (H;), there exist small enough positive constants € and A such that

(S . 2 u u u u u
O1(e) d:f{)Ll min |7}, 3 - rl] — Lio1(€) () x ()i (v = 4 + 1) (M +e)

Xa02(e) () (V)K= " (e = iy + 1) v (Mo + )

[1+m1 —6']2

_)Lzré‘ (ﬂ;’ - ‘ull + 1>|K2 -

[1+m; —e]?

- Moi(e)vi(e) (ri‘)zx(vl")vi‘} >\,
(3.5)

O;(e) dzef{)tz min [ré, - ré‘] — L0 (e) (1) y (v ) vt <v2” -Vl + 1) (M, +¢€)

2
Mz + €
Aio1(e) (ri‘)zx(vi‘)|K1 - a1|”<‘u’1‘ - yll + 1>vf(M1 +¢€)
[1+my—e]?
Aart (= py + 1)Ky = e |

[1 +m2—€]2

— L02(e)va(e) () x (V2w } >\,
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where

1 +al(M; +e)

- e)]’r{[ K3 +af (M3 +€) (- e)})}/

o1 (€) def exp { max <ri

l+my—¢€ 1+my—¢€
def 3 +ay (M +e) 3 +ay (M +e)
oz (€) = exp{max(ré 1+2ml_€ (mz—e)],r2 1+2m e (mz—e)]>},

1+af(M;y+e) Ki+a’1(m2—e)

Ti M re  Mite)

f
v1(€) e max{

I
l

Suppose that (N1, N>) and (Wy, W) are two positive solutions of system (1.2). By
Theorem 2.9, there exists a constant K > 0 such that

—(ml—e)‘,

1+mp—¢

y+ay (M +e€)
1+m—¢€

Ké+alz(m1—e)
1+M;+e

- (M2 +e€)

va(€) def max{ - (my - e)l,

(3.6)

m;—e€ < N;j(n), Win)<M;+e VYVn>Ky i=1,2. (3.7)

Let

Vii(n) = [In Ny (n) - In Wi (n)]. (3.8)

In view of system (1.2), we have

Viin+1) = |InNi(n+1) —-InWy(n+1)|

= |[In N1(n) —In Wi (n)] - 1 (n)[N1(n — v (n)) — Wi (n—v1(n))]

Ki(m) -ai(n)  Ki(n) - ai(n) ”

o [1 +N2(n—pa(n)) 1+ Wa(n—pa(n))

= |[InN1(n) = InWi(n)] = r1(n) [N1(n) - Wi(n)]

3.9
= r1(n) x (i) {[W1(n) - Wi(n = v1(n))] - [N1(n) = N1(n - v1(n))]} 32

Ki(m)—ai(n) — Ki(n) —ai(n) ”
1+ No(n—po(n)) 1+ Wa(n—ps(n))

<|[In Ni(n) —InWi(n)] — r1(n)[N1(n) - Wi(n)]|
+11(n) x(v})|[[Wh(n) = Wi(n —vi(n))] = [N1(n) — Ni(n—v(n))]]

+r1(n)[

Ki(n)-a(n)  Ki(n) -—a(n)
1+ No(n-pa(n)) 1+Wo(n-p(n))|

+11(n)




12 Discrete Dynamics in Nature and Society

Using the mean value theorem, it follows that

Ni(n) - Wi(n) = exp{In Ni(n)} —exp{InWi(n)} = 61(n)[In N1(n) - InWi(n)],

where 01 (n) lies between Ni(n) and Wi (n), and

Ki(n)-a1(n)  Ki(n) —ai(n)
1+ No(n—po(n)) 1+ Wa(n-pa(n))

_ _Kl(n) —ai(n)
[1+6,(n)]?

[Na(n — po(m)) ~ Wa (o ()] ‘

where 0, (n) lies between Ny (1 — pp(n)) and Wh(n — pp(n)).
Define

Ki(n) + a1 (n)No(n - pp(n))
1+ Ny(n—pp(n))

Qi(m) = ri(n) [Kl (n)l 1%?%;:@52(”»

Py (n) def r1(n) [

By a similar argument as that in (3.9), we obtain from (3.11) that

[[Wi(n) = Wi(n—vi1(n))] - [N1(n) - N1(n—vi(n))]|

n-1 n-1
=1 D>, [Ni(s+1)=-Wi(s+D]- >, [Ni(s) - Wi(s)]
s=n—-vi(n) s=n-v; (n)
n-1 n-1
=| X [N -Wi()e®] - 3 [Nis) - Wi(s)]
s=n—vi(n) s=n—vi(n)
n-1 n-1
=1 > Nis) [epl(s) - te(s)] + > [Ni(s) - Wi(s)] [te(S) - 1]
s=n-vi(n) s=n-vi(n)

- Ni(n-vi(n))|,

-Wi(n- V1("))]-

(3.10)

(3.11)

(3.12)
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n-1

< Z Ni(s)é1(s)r1(s)

—p i
S=n—v;

[N1(s —=w1(s)) = Wi(s = v1(s))]

1+ No(s—pa(s)) 1+ Wa(s—pua(s))
‘Kl(s) + a1 (s)Wa(s — pa(s))
1+ Wa(s— pa(s))

_[ K1(s) — a1(s) Ki(s) —a1(s) ]‘

n-1
+ > &s)ri(s) ~Wi(s = v1(s)) |IN1(s) = Wi(s)|

—
s=n Vl

n-1
< D% ou(e)r (M +€)|Ni(s = vi(s)) - Wi(s —vi(s))|
s=n—v{
= oo(e)r|Ky —a[* (M + €

" " [1+m;—e]? )|N2(5_.”2(5))—Wz(S—,uz(s))|

S=

N
|

+ o1(e)vi(e)ry|N1(s) = Wi(s)|

S=

N
—_

N

—v)

i
n-1 Vl

<ai(e)ri(Mi+e) >, D INi(s—k) - Wi(s - k)|

S
s=n-vy k:vg

+01(€)7”?|K1—“1|M(M1+€) nz_l #2|N2(s—k)—W2(S—k)|

=n—vVH 10—l
s=n=v{ k=p!

[1+my—e]?

n-1

+oi(e)vi(e)ry D, [Ni(s) - Wi(s)|

s=n-vi

Y n—k-1

<o(e)ri(Mi+e) Y, > [Ni(s) - Wi(s)]

k:vi s=n-v{'~k

. o1 (e)r!| Ky — aq[“(My +¢€) &, 1

5 > D0 INa(s) - Wals)|

[1+m; - €] k=pl s=n—vi—k

n-1
+oi(e)ui(e)r} D, INi(s) -Wi(s)|, Vn>Koy+2p,

—p—l
S=n—v;

13

where ¢ (s) lies between e () and €2, and ¢, (s) lies between e?®) and 1, s = n—v¥, ..., n-1.

In view of (3.9), it follows from (3.10)—(3.13) that

AVii(n) <

) ] IN: (1) - Wi (n)|

_ [L N
91 (n) 91 (Tl)
V;‘ n-k-1

+o1(e) () x (Y (Mi+€) > S INi(s) - Wi(s)]

k:vi s=n-vi'-k
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N2 u _ u T n—k-
. oi(e) (r) x(v)) Ky ;;ﬂ (M +€) #Z Zl IN2(s) = Wa(s)]

k=pl s=n-vi-k

[1+1112—

n-1
+o1(e)vi(e) (r)’x () 3 INi(s) - Wi(s)]

—_pH
S=n 1)1

ru|K1—DC1|u n_”lz
+ = 5 D) IN2(s) = Wa(s)|

[1+my—¢€] s=n—p4

- r;*] N1 (1) — Wi ()]

2
< —min T'l,M—

v on—k-1

+01(e) (M) (V) (Mi+€) Y 3 [Ni(s) - Wi(s)]

k:vl s=n-vi'~k

L @ X OPIK -] (Mi +e) & "

Z >, INa(s) - Wa(s)|

k‘ulsnvlk

[1+1’I12—€]

n-1
+o1(e)vi(e)(r)’x(v) 3 [Ni(s) - Wi(s)]

— 1l
S=n—-v;

1
r”|K1—a1|” n—,
+ LT ST [No(s) - Wals)], > Ko +2p.

[1 +my — 6'] s=n—uy
Lut (3.14)
1)1 vl n-1
Via(n) = o1(e) (ri) x (Vi) (M1 +€) > Z 3 INi(s) - Was)l,
k= vl t=0 s=n-v{'-k+t
|
Vis(n) = a1(e)vi(e) (r!)’x () X1 3 INi(s) - Wa(s)],
t=0 s=n-vi'+t
(3.15)

1(e) (r) 2y (V) [Ky — o[ (M + €) 4,7

- o2, e
K u py .“-2 n-1
Vis(n) = r1| 1ol 2 > DL INa(s) - Wa(s)l.
[1 t=0 s=n-py+t
vi vi-1
AVia(n) = o1(e) () x (v¥) (M + €) > INi(n) - Wi ()|
k:vi =0

u U
vi vi-1

—a1(e)(r) x () My +€) . N INY(n = vt —k +£) = Wi(n—vi —k+1)]
k:vi t=0
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= 01(e) (r{‘)zx(vl")v? (vl" -+ 1>(M1 +¢€)|N1(n) - Wy (n)|

Vf n-k-1

—o(@) () x (Y Mi+e) > S INi(s) - Wi(s)],

k:vi s=n-v{-k

(3.16)
AVis(n) = o1 ()i (e) (1) x () VY |N1 (n) - Wi (n)]
5 n-1 (3.17)
—oi(e)vi(e) (1) x (v)) Z IN1(s) = Wa(s)l,
01(e) () X (WK = | (4t = i + 1) vl (M + €)
AViy(n) = > |N2(n) — Wa(n)|
[1+my— €]
2 o P (3.18)
o)) xONIKi —a*(Mi+e) & & B
[1+m;—e]? k:z,jzl s:n—zvy—klNZ(S) el
i ‘u”—y’ +1)|K7 —aq]*
AVis(n) = 1< : > l : [N2(n) — Wa(n)
[1+m;y - €]
, (3.19)
_riK -l S _
[0+m 6]25:;#;|N2(S) Wa(s)|.
Define
Vi(n) = Vi1(n) + Via(n) + Viz(n) + Via(n) + Vis(n). (3.20)

It follows from (3.14)—(3.19) that

. 2 u
AVi(n) < = min[r, 12 =t INu () - W)

+01(€) (r{‘)zx(vlu)vi‘ <v{‘ -+ 1>(M1 +€)|Ny(n) - Wi(n)|
o1 (e) (ri‘)zx(v‘l‘)|K1 - a1|”<ﬂﬁ‘ -+ 1>v{‘(M1 +e€)
+
[1+m;—e]?

+o1(€)v1(e) (r) x (W) V¥ N1 (m) — Wi (n))|

IN2 (1) = W (n)]
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r (s = s+ 1)Ky - e
+

[1+n12—€]2

IN2(n) — Wa(n)|

. 2
< - {mm [r{, Moie r{‘] — o1(e) (r) x (W) v <vi‘ -l + 1) (M +e)

—1(e)1(e) (P2 () } N3 (1) — Wi ()]

{ o1(e) (1) x (V) K - a1|“<y'1‘ -+ 1>v?(M1 +€)
+

[1+m; —e]2

(s~ s+ 1)Ky~ !

[1+my—e]?

}lNz(n) ~Wan)|, Vn>Ko+2p.

(3.21)
Let
Va(n) = Vo1 (n) + Vo (n) + Vs () + Vou(n) + Vos(n), (3.22)
where
Vo1 (n) = [In Na(n) — In Wy (n)|,
vy vy-1 n-1
Voo (n) = 02(€) (1) x (v2) (M + €) DD INa(s) - Wa(s)),
k= Vl t=0 s=n—-vi-k+t
L |
Vas(n) = oa()0a(e) (13) x () X, >, INa(s) -~ Wa(s)],
t=0 s=n-vy+t (323)
_@@Wﬁw@mzmuMﬁaM% )
Vau(n) = TR— > Z IN1(s) = Wi(s)],

_#ltOsnv2 —k+t

7y |K2 _ a2|“ =i

n-1
i EZZ > INi(s) = Wi(s)|-
m —

t=0 s=n-pi+t

Vas(n) =

By a similar argument as that in (3.21), we could easily obtain that

2
AVo(n) < - {mm rz, M, e ré‘] -0z (e) (ré‘)zx(vg)vz" (vz" - vé + 1>(M2 +¢€)

~0a(e)vale) (r;>2x<v;‘>v;}|N2<n> W]
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{ 02(€) (1) x (v) 1Kz = o (s = s + 1) w8 (M + €)
.

[T+ my —e]2

(s - 1)K - ol
+ 5 IN1(n) —Wi(n)|, VYn>Ko+2p.
[1+my —€]
(3.24)
We construct a Lyapunov functional as follows:
V(n) = L1Vi(n) + L2Va(n), (3.25)

which implies from (3.21) and (3.24) that

. 2
AV(n) < - {)q min |7, Moie ri‘] - Mo (e) (r{‘)zx(vi‘)v’l‘@;‘ -vl 4 1>(M1 +e€)

1202() (1) X () [K2 = ol (i =ty + 1) V4 (Ma + )

[1+m —e]?

Aortt (it — 1 1K, — u
(- Il —A101(€)vl(€)(ri‘)2x(”?)vi’}INl(n)—Wl(”)|

[1+m —6]2

s 2 u u u u u
- {)Qmm rh, M, e —rz] — Xa0(e) (1) y (v ) v <v2 - v+ 1>(M2 +e€)

X101(e) (rt) X (1) K —an[ (4 = i + 1) wi(M + )
[1+m,—e]?
Aart (= s + 1) Ky - e

[1+m,—e]?

— L0a(e)va(e) () x (WE) } IN, (1) — Wa(n)|

< = A[[N1(n) = Wi(n)| + [Na(n) = Wa(n)|], VYn>Ko+2p.
(3.26)

Taking n; € (Ko + 2p, o0), and Summing both sides of inequality (3.26) over [n;,n],,
we have

Vin+1)+ /\i IN1(s) — Wi(s)| + .)Li N2 (s) = Wy(s)| £ V(ny) < co. (3.27)

S=ny s5=np
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Therefore,
im sup DTINi(9) - Wil) + lim sup YINa(s) - Wa(s)| < L0 <o (328)
s=m s=m
From the previous inequality one could easily deduce that
lim [N (s) - Wi(s)[ =0, lim [Na(s) = Wa(s)| = 0. (3.29)
This completes the proof. O

If y1 = po = v = v» = 0 in system (1.2), then we obtain a discrete mutualism model
without delay as follows:

Ni(n+1) = Ni(n) exp{rl(n) [Kl(n) + a(mNa(n) - Nl(n)] },

1+ Nj(n)
© N (3.30)
n) +ax(n n
Na(n+1) = Na() expf ra(m [F2 2SR _ |
Let
Evi def — def . u u .
M; = M; with v =0, m; = m; with v} =vy=0, i=1,2. (3.31)
Corollary 3.2. Assume that (Hy) holds. Suppose further that
(H3) there exist two positive constants Ay and Ay such that
Lr¥ Ky — ap|*
A1 min r{,i -1l > —2r2| 2_ 6;2| ,
M,y [1 + ml]
(3.32)

2 MrH Ky — o]
Ay min ré,——rg >—1 i 1_ 21| .
MZ [1+m2]

Then, system (3.30) is globally attractive.

Further, we consider the following discrete mutualism model with constant delays:

Ki(n) + ay(n)Na(n - pz)
15 No(n— o) —Nl(”—vl)]},

Ni(n+1) = Ni(n) exp{n(n)[
(3.33)

Ky (n) + ar(n)N1(n — p1) - Ny(n - vz)] }

No(n+1) =N2(”)9XP{TZ(n)[ 1+ Ni(n—p)
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where H1, U2, V1, and v, are nonnegative integers. Let

1\711- def M; with v =v;, m; def m; with vi =v;, vy=v, i=12,
Oi def o; with M = M\l, M, = ﬁz, my =1y, my=myp i=1,2, (3.34)
U; & v; with My = My, My=M,, my=m, my=m, i=12
Corollary 3.3. Assume that (Hy) holds. Suppose further that
(Hy) there exist two positive constants Ay and Ay such that
: 1 2 u ~ 7 u\2 AL ~ ~ 7 u\2
A min I:rl, ﬁ - ”1] > M01(r)) "y (v)viMy + L6101 (r]) " (v1)m
1
s . (3.35)
N 1205 (1‘;) X(VQ)le - a2|“sz2 N )LQT;'|K2 - a2|"
[1+m1]° [1+7m1]?
2 -
A, min I:ré, = r;‘] > Loy (rg)zx(vz)szz + L20r 0 (ré‘)zx(vz)vz
2
(3.36)

. MOy (7‘{’)2)((1’1)|K1 - aq[“vi My . Jrf|Ky — aq]*

[+ ] [+ ]

Then, system (3.33) is globally attractive.

4. Almost Periodic Solution

In this section, we investigate the existence and uniqueness of a globally attractive almost
periodic solution of system (1.2) by using almost periodic functional hull theory.

Let {7,} be any integer valued sequence such that 7, — o0 asp — oo. According to
Lemma 2.5, taking a subsequence if necessary, we have

ri(n+1,) —ri(n), Ki(n+1,) — K}(n), ai(n+t,) — ai(n),
(4.1)
pi(n+1,) — u;(n), vi(n+t,) —vi(n), asp-— o
forn € Z,i=1,2. Then, we get the hull equations of system (1.2) as follows:
K (n) + af (n)No(n — p3(n))
N 1) =N * 1 1 2 -N Ak ,

1(n+1) 1(”)exp{rl(”)|: 1+ Na(n= 1) 1(n-vi(n)) .

4.2

K5 (n) + a5 (n) Ny (n -y} (n))
1+ Ny(n-pi(n))

Ny(n+1) = Ny(n) exp{r;(n)[ —Nz(n—vz(n)):l}.
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By the almost periodic theory, we can conclude that if system (1.2) satisfies (H1)—(Hs), then
the hull equations (4.2) of system (1.2) also satisfies (H1)—(Hs).
By Theorem 3.4 in [27], it is easy to obtain the following lemma.

Lemma 4.1. If each of the hull equations of system (1.2) has a unique strictly positive solution, then
system (1.2) has a unique strictly positive almost periodic solution.

Theorem 4.2. If system (1.2) satisfies (H1)-(Hz), then system (1.2) admits a unique strictly positive
almost periodic solution.

Proof. By Lemma 4.1, in order to prove the existence of a unique strictly positive almost
periodic solution of system (1.2), we only need to prove that each hull equations of system
(1.2) has a unique strictly positive solution.

Firstly, we prove the existence of a strictly positive solution of hull equations (4.2). By
the almost periodicity of {r;(n)}, {Ki(n)}, {ai(n)}, {ui(n)}, and {vi(n)}, i = 1,2, there exists
an integer-valued sequence {7, } with 77, — oo as p — oo such that

n(nen) —rio),  Ki(nen) —Kim), a(nenp) — ai(n),
(4.3)
pi(n ) — i), Vi (e ) —vi), asp— oo, i=12.

Suppose that (N1, N;) is any solution of hull equations (4.2). Let € be an arbitrary small
positive number. It follows from Theorem 2.9 that there exists a positive integer Iy such that

mi—e<Nin)<M;+e, Yn>Iy i=1,2. (4.4)

Write Nf(n) = Ni(n+mnp) forn > Iy -n,, p = 1,2,...,i = 1,2. For any positive integer g,
it is easy to see that there exist sequences {Ni7 (n) : p >gq}and {N;7 (n) : p > g} such that
the sequences {Ni7 (n)} and {N;7 (n)} have subsequences, denoted by {Ni7 (n)} and {N; (n)}
again, converging on any finite interval of Z asp — oo, respectively. Thus, we have sequences
{Wi(n)} and {W>(n)} such that

Nf(n) — Wi(n), VYneZasp— oo, i=12. (4.5)
Combined with

Ki(n+mp) +ai(n+m,)No(n+m, —ps5(n+1p))
L+ Na(n+mp—py(n+1p))

Moo}

NY(n+1) = N¥(n) eXP{ri‘(n + np)[

(4.6)
Ki(n+mp) +as(n+mp)Ni(n+m, —pi(n+1,))
L+ Ni(n+mp - pi(n+1p))

—Nﬂn+%-VXn+wD]}

NP (n+1) = N¥(n) eXP{TZ(" + Tlp)[
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gives

Ki(n) + a;(m)Wa(n — p5(n))
1+ Wy (n—p5(n))

K5 (n) + a5 (n)Wh (n — pi(n))
1+ Wi(n—-p;(n))

Wl(n+1):W1(n)exp{r{‘(n)|: -Wi(n-vi(n))| ¢,

(4.7)

Wo(n+1) = Wa(n) exp{r;(n)[ —Wz(n—v;(n)):l}.

We can easily see that (W1, W») is a solution of hull equations (4.2) and m;—e < Wj(n) < M;+e
forn € Z,i = 1,2. Since € is an arbitrary small positive number, it follows that m; < W;(n) <
M, forn € Z,i = 1,2, which implies that each of the hull equations of system (1.2) has at least
one strictly positive solution.

Now, we prove the uniqueness of the strictly positive solution of each of the hull
equations (4.2). Suppose that the hull equations of (4.2) have two arbitrary strictly positive
solutions (N7, N3) and (W7, W}) which satisfy

m; <Nf, WI<M; i=1,2. (4.8)
Similar to Theorem 3.1, we define a Lyapunov functional
V*(n) = L V] (n) + L,V (n), (4.9)

where

Vi(n) = Vii(n) + V5 (n) + V1*3 (n) + Vi, (n) + V1*5(n), (410)
V3 (n) = Vi (n) + Vi (n) + Vi (n) + V3, (n) + Vs (n). '

Here,

Vi (n) = |In N7 (n) — In Wy (n)

7

U U
vy vi-1 n-1

Vi) = o1 (r) 2y (OMI Y S ST INj(s) - Wi(s)],

k:vi t=0 s=n—v{'~k+t

vi-1 n-1
Vis(m) = oron ()’ x () 3T 3T |Nj(s) - Wi(s)],

t=0 s=n-vi'+t
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ol(n“fx(vl)u« [ My L

Vi (n) = Z Z Z [N3(s) = W3
[1+m;]? il 10 s=n—vi—k+t
i | Ky —ct1|””;_”[2 nl . .
V15(") S S Z Z |N2(S) —W2

2
[1 + 11’12] t=0 s=n-pj+t

V3 () = |In N3 (m) - In W

vy V-

V;2<n>=oz(rz“>2x(vz)MzZZ Z N3 (s) - Wi (s)],

kvltOSTlV —k+t

-1 p-1
Vii(n) = o202 () x () X, D IN3(s) - Wi(s)],

t=0 s=n-vy+t

oo (i) y (v )|I<z ] My L

Vau(n) = =Y Z Z |N7(s) - Wi
[1+m k‘ultOSrzv2 —k+t
u 1
rule _ a2|ull1*#1 n-1
Vys(n) = 22— [N;(s) - Wi (s)]-
[1 + ml]z ; s=r§’1‘+t
(4.11)
Similar to the argument as that in (3.26), one has
AV* < -A|Nj(n) - Wi (n)| - A|N5(n) - W;(n)|, VneZ. (4.12)
Summing both sides of the previous inequality from 7 to 0, we have
0 0
AT ING(s) - Wi(s)| + A D N3 (s) - Wi(s)| < V*(n) - V*(1), Vn<O. (4.13)
s=n s=n
Note that V* is bounded. Hence, we have
0 0
> INi(s) = Wi(s)] < oo, > IN3(s) - W3 (9)] < o, (4.14)

which imply that

im [Nj(m) - Wi(m)| =0, lim |[Nj(m) - W;(m)| =0. (4.15)
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Let

def 1 2 3 2 2
Py = 2(0 + )LZ)lgi,r]r'lg%,)i(ﬁ{ p_~” +20;(r!") " M; (v¥)” + oo (r!) " (v¥)

ou(rf)? Kl MG+ 1) (8 + 11K - il + 1)t

(4.16)
For arbitrary e > 0, there exists a positive integer K; such that
* * € * * €
| N7 (n) - Wi (n)| < B | N3 (n) - W3 (n)| < B Vn < -Kj. (4.17)
Hence, for i,j = 1,2 with i # j, one has
. €
‘/1'1 (n) S miPO/ vn < _Klr
* u\2 u\3 €
Vi (n) < 20;(r!)"M;(v}) B Vn < =Ky,
« N2/ un2 €
Vi(n) < o (r!)” (v}) B Vn < -Kj, (4.18)
€
V(1) < 0i (r*) 1Ky — | M (ul + 1)(v;‘)ZFO, Vn < -Kj,
Vi(n) < r|K; - ai|“</ﬂ + 1>,u’.‘i, Vn < -K;,
i =i j P,
which imply that
V*(n) = Vi (n) + 1V (n) <e, VYn<-Ki. (4.19)
So,
lim V*(n) =0. (4.20)
n— —oo
Note that V*(n) is a nonincreasing function on Z and that V*(n) = 0. That is,
Ni(n)=Wjn), N;n)=W;n), Vnel. (4.21)

Therefore, each of the hull equations of system (1.2) has a unique strictly positive solution.
In view of the previous discussion, any of the hull equations of system (1.2) has a

unique strictly positive solution. By Lemma 4.1, system (1.2) has a unique strictly positive

almost periodic solution. The proof is completed. O

By Theorems 3.1 and 4.2, we can easily obtain the following.
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Theorem 4.3. Suppose that (H1)-(Hy) hold; then system (1.2) admits a unique strictly positive
almost periodic solution, which is globally attractive.

By Corollaries 3.2-3.3 and Theorem 4.2, we can show the following.

Theorem 4.4. Suppose that (Hy) and (H3) hold; then system (3.30) admits a unique strictly positive
almost periodic solution, which is globally attractive.

Theorem 4.5. Suppose that (Hy) and (Hy) hold, then system (3.33) admits a unique strictly positive
almost periodic solution, which is globally attractive.

5. Examples

Example 5.1. Consider the following discrete mutualism model without delay:

0.15 + 0.05 cos<ﬁn> +0.4N,(n) }
1 - Nl (n) 7
+ N2(n)

Ni(n+1) = Ni(n) exp{
(5.1)

0.15 +0.05 sin<\/§n> + 04N (n)
1+ Ni(n) - Na(n) -

Ny(n+1) = Ny(n) exp{

Then, system (5.1) admits a unique globally attractive almost periodic solution.
Proof. Corresponding to system (3.30), r; = 1, K = 0.2, Kf =01, a =04,i =12 By
calculation, we obtain
M, = M, <0.67, (5.2)
which implies that condition (H3) of Corollary 3.2 is satisfied with Ay = 1, = 1. It is easy to
verify that (H;) holds, and the result follows from Theorem 4.4. O
In paper [15], Wang and Li studied system (3.30) and obtained the following result.

Theorem 5.2 (see [15]). Assume that (Hy) holds. Suppose further that

(Hs) a; > K;,i=1,2,

(H(,) 0< min{@lz, 921} <1, where

def 2 2
Oy E2rix;, - [r?‘x’]‘f +(r") x;‘x}‘] (a;‘ - Kf) - (ri'x?)

1

(5.3)
_ (r}x;>2<a;¢ - K;)z _ [r]'.‘x;.* + <r]1,4>2x1?‘x;f] <¢x}’ - Kj) i,j=1,2i#].

Here, x} def (af /7}") explaj (r] = 1)], and x;. def Kf exp[r}(Kg -xi)],i=1,2
Then, system (3.30) admits a unique uniformly asymptotically stable almost periodic solution.
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1073 -3
1.6378 = 16378 10
1.6377 1.6377
16377 16377
= &
> 16376 = 16376
1.6376 1.6376
1.6375 1.6375
1.6375 1.6375
1994 1995 199 1997 1.998 1999 2 s 1994 1995 199 1997 1998 1999 2
n n
* Np(n) * No(n)

(a) (b)
Figure 2: System (5.5) with N;(-1) = N1(0) = N2(-1) = N»(0) = 0.002.
Remark 5.3. In system (5.1), we can easily calculate

min{@12, @21} <0, (54)

which implies that (Hs) of Theorem 5.2 is invalid. Therefore, it is impossible to obtain the
existence of a unique globally stable almost periodic solution of system (5.1) by Theorem 5.2.

Example 5.4. Consider the following discrete mutualism model with constant delays:

[0.001 +0.001 |cos (v2n)| +0.002N, (n) ]
Ni(n+1) = Ni(n)exp4 0.2 T+ Ny () -Ni(n-1)]| ¢,
3 ) (5.5)
0.001 + 0.001 |sin<\/§n> | +0.002N7 (1)
Ny(n+1) = Np(n)expq 0.2 T+ N () -Ny(n-1)

Then, system (5.5) admits a unique globally attractive almost periodic solution.
Proof. Corresponding to system (3.33), r; = 0.2, K} = 0.002, Kl? =0.001, &; = 0.002, p; = 0, and

v; =1,i=1,2. By calculation, we obtain

M;=M,<5x103, fy=mp>2x10%,  G,=6,<1, 0;=0,<5x107,
(5.6)

which implies that condition (Hj) of Corollary 3.3 is satisfied with Ay = A, = 1. It is easy to
verify that (Hp) holds, and the result follows from Theorem 4.5 (see Figure 2). O
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_3 -
3.9861 <10 3.9861 2107
3.9861 3.9861
3.9861 3.9861
< 39861 = 39861
£ 39861 < 39861
Z 39861 Z. 39861
3.9861 3.9861
3.9861 3.9861
3.9861 3.9861
3.9861 3.9861
3.9861 3.9861
1994 1995 199 1997 1998 1999 2, 1994 1995 199 1997 1998 1999 2,
n n
* Nip(n) * Na(n)

(a) (b)
Figure 3: System (5.7) with N;(-1) = N1(0) = N2(-1) = N»(0) = 0.002.

Example 5.5. Consider the following discrete mutualism model with variable delays:

2 n
N+ = x5 PO O Oty L1 1Y)

0.002 + (0.002 + 0.001sin2n> Ni(n)

Ny(n+1) = Na(n)exps 0.5 T+ N ()

— Nz (n)

(5.7)

Then, system (5.7) admits a unique globally attractive almost periodic solution.

Proof. Corresponding to system (1.2), r; = 0.5, K; = 0.002, aﬁ =0.002, a}' = 0.003, vll =0,v{ =1,
v, =0,and y; =0, i = 1,2. By calculation, we obtain

My <M;<503%x1072, my>my >1974%x1072, o01=0,<1, v; =0vy<503%x1073,
(5.8)

which implies that condition (H>) of Theorem 4.3 is satisfied with A; = A, = 1. It is easy to
verify that (H;) holds, and the result follows from Theorem 4.3 (see Figure 3). O
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