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This paper is concerned with the stochastic finite-time stability and stochastic finite-time bound-
edness problems for one family of fuzzy discrete-time systems over networks with packet dropout,
parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, we present the
dynamic model description studied, in which the discrete-time fuzzy T-S systems with packet loss
can be described by one class of fuzzy Markovian jump systems. Then, the concepts of stochastic
finite-time stability and stochastic finite-time boundedness and problem formulation are given.
Based on Lyapunov function approach, sufficient conditions on stochastic finite-time stability and
stochastic finite-time boundedness are established for the resulting closed-loop fuzzy discrete-time
system with Markovian jumps, and state-feedback controllers are designed to ensure stochastic
finite-time stability and stochastic finite-time boundedness of the class of fuzzy systems. The sto-
chastic finite-time stability and stochastic finite-time boundedness criteria can be tackled in the
form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give suffi-
cient conditions on the stochastic stability of the class of fuzzy T-S systemswith packet loss. Finally,
two illustrative examples are presented to show the validity of the developed methodology.

1. Introduction

Systems where feedback loops are closed via digital communication channel are often regard-
ed as networked control systems (NCSs). Comparedwith traditional point-to-point controller
architectures, the advantages of NCSs include low cost, easy maintenance, and increased sys-
tem flexibility, and so on. However, the insertion of the communication channels creates dis-
crepancies between the data records to be transmitted and their associated remotely trans-
mitted images and hence raises new interesting problems such as quantization, time delays,
and data packet loss, see the references [1–4] and the references cited therein. Among
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a number of issues arising from such a framework, packet loss of NCSs is an important issue
to be addressed and has been receiving great attentions. For instance, Xiong and Lam [5] stud-
ied the problem of stability and stabilization of linear systems over networks with bounded
packet loss. Bakule and De La Sen [6] tackled the problem of decentralized stabilization of
networked complex composite systems with nonlinear perturbations. Wang and Yang [7]
investigated the problem of state-feedback control synthesis for networked control systems
with packet dropout. For more details of the literature related to networked problems with
packet dropout, the reader is referred to [8–16] and the references therein. It is worth noting
that Takagi-Sugeno (T-S) fuzzy model has been recognized as a popular and powerful tool
in approximating and describing complex nonlinear systems [17] in the sense that it can be
able to achieve any degree of accuracy in any convex compact set. The T-S fuzzy model is ap-
pealing since it combines the flexible fuzzy logic theory and fruitful linear multivariable sys-
tem theory into a unified framework and then carries out the control design and analysis
via Lyapunov function-based approaches. By choosing appropriate Lyapunov functions in-
cluding a common Lyapunov function, piecewise Lyapunov function, or fuzzy (nonquad-
ratic) Lyapunov function, the stability and stabilization of the class of fuzzy systems can be
determined by solving a set of linear matrix inequalities (LMIs), for instance, see [18–24] and
the references cited therein.

It is worth pointing out that classical control theory focuses mainly on the asymptotic
behavior of the systems, which, just as was mentioned above, deals with the asymptotic pro-
perty of system trajectories over an infinite time interval and does not usually specify bounds
on the trajectories. Inmany practical applications, however, many concerned problems are the
practical ones which described system state that does not exceed some bound during some
time interval, for example, large values of the state are not acceptable in the presence of satu-
rations [25]. In order to deal with these transient performance of control systems, finite-time
stability or short-time stability was presented in [26]. Applying linear matrix inequality
theory, some appealing results were obtained to ensure finite-time stability, finite-time bound-
edness, and finite-time stabilization of various systems including linear systems, nonlinear
systems, fuzzy systems, and stochastic systems. For instance, Zhang and An [27] addressed
the problem of finite-time stability and stabilization of linear stochastic systems. Ambrosino
et al. [28] investigated finite-time stability of impulsive dynamic systems. For more details of
the literature related to finite-time stability, the reader is referred to [29–35], and the references
therein. However, to date and to the best of our knowledge, the problems of stochastic finite-
time stability and stabilization of fuzzy systems with packet loss have not been investigated,
although results related to fuzzy control systems over networks with packet loss are available
in the existing literature, see the references [14–16], which motivates the main purpose of our
study.

In this paper, we tackle the stochastic finite-time stability (SFTS) and stochastic finite-
time boundedness (SFTB) problems for one family of fuzzy discrete-time systems over net-
works with packet dropout, parametric uncertainties, and time-varying norm-bounded dis-
turbance. Firstly, we present dynamic model description studied, which, if the data packet
loss is assumed to be a time-homogenous Markov process, the discrete-time fuzzy T-S
systems with packet loss can be regarded as one class of fuzzy Markovian jump systems.
Markov jump systems are referred to as a special family of hybrid systems and stochastic
systems, which are very appropriate to model plants whose structure is subject to random
abrupt changes, see the papers [36–41]. Thus, the class of fuzzy systems studied can be
disposed by the theoretical framework of Markov jumps systems. Then, the concepts of SFTS
and SFTB and problem formulation are given. Themain contribution of this paper is to design
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a state-feedback controller which guarantees the resulting closed-loop fuzzy discrete-time
system with Markovian jumps SFTS and SFTB. The SFTS and SFTB criteria can be tackled in
the form of LMIs with a fixed parameter. As an auxiliary result, sufficient conditions on the
stochastic stability of the class of fuzzy T-S systems with packet loss are also presented.

The rest of this paper is organized as follows. Section 2 devotes to the dynamic model
description and problem formulation. The results on the SFTS and SFTB are given in
Section 3. Section 4 presents numerical examples to demonstrate the validity of the proposed
methodology. In Section 5, some conclusions are drawn.

Notations 1. The notation used throughout the paper is fairly standard, R
n, R

n×m, and Z
+ de-

noting the sets of n component real vectors, n × m real matrices, and the set of nonnegative
integers, respectively. The superscript T stands for matrix transposition or vector and E{·}
denotes the expectation operator with respect to some probability measure P. In addition, the
symbol ∗ denotes the transposed elements in the symmetric positions of a matrix. λmin(P) and
λmax(P) denote the smallest and the largest eigenvalue of matrix P , respectively. Notations
sup and inf denote the supremum and infimum, respectively. Matrices, if their dimensions
are not explicitly stated, are assumed to be compatible for algebraic operations.

2. Problem Formulation and Preliminaries

2.1. Physical Plant

The fuzzy model proposed by Takagi and Sugeno [17] is described by fuzzy IF-THEN rules,
which represents local near input-output relations of a nonlinear system. The rules of the
T-S fuzzy models are of the following forms, here DFS denotes the the discrete-time fuzzy
system.

Fuzzy Rule i

IF θ1(k) isMi1 and θ2(k) is Mi2 · · · θc(k) isMic, THEN

x(k + 1) = [Ai + ΔAi(k)]x(k) + [Bi + ΔBi(k)]u(k) + [Gi + ΔGi(k)]w(k), (2.1)

where i ∈ M := {1, 2, . . . , r}, x(k) ∈ R
n is the state, u(k) ∈ R

m is the control input, r is the
number of IF-THEN rule, Mi1,Mi2, . . . ,Mic are fuzzy variable, and θ(k) = [θ1(k), θ2(k), . . . ,
θc(k)] is the premise variables vector. It is assumed the premise variable does not depend on
the input variable u(k), which is employed to avoid a complicated defuzzification process of
fuzzy controllers [22]. The noise signal w(k) ∈ R

l satisfies

∞∑

k=0

wT(k)w(k) ≤ d2, d ≥ 0. (2.2)

The matrices ΔAi(k),ΔBi(k), and ΔGi(k) are uncertain matrices and satisfy

[ΔAi(k),ΔBi(k),ΔGi(k)] = FiΔi(k)[E1i, E2i, E3i], (2.3)
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where Δi(k) is an unknown, time-varying matrix function and satisfies

ΔT
i (k)Δi(k) ≤ I, ∀k ∈ Z

+. (2.4)

Given a pair of (x(k), u(k)), the final outputs of the fuzzy systems are inferred as follows:

x(k + 1) =
r∑

i=1

hi(θ(k))[(Ai + ΔAi(k))x(k) + (Bi + ΔBi(k))u(k) + [Gi + ΔGi(k))w(k)], (2.5)

where hi(θ(k)) are fuzzy basis function given by

hi(θ(k)) =
wi(θ(k))∑r
i=1 wi(θ(k))

, wi(θ(k)) =
c∏

j=1

Mij

(
θj(k)

)
, (2.6)

where Mij(θj(k)) represents the grade of membership of θj(k) in Mij . Then, it can be seen
that

wi(θ(k)) ≥ 0, i ∈ M,
r∑

i=1

wi(θ(k)) > 0, ∀k ≥ 0. (2.7)

Therefore, we can obtain

hi(θ(k)) ≥ 0, i ∈ M,
r∑

i=1

hi(θ(k)) = 1, ∀k ≥ 0. (2.8)

2.2. Communication Links and Controller

Owing to the existence of the packet dropout of the communication during the transmission,
the packet dropout process of the network can be regarded as a time-homogenous Markov
process {γ(k), k ≥ 0}. Let γ(k) = 1 mean that the packet has been successfully delivered to
the decoder while γ(k) = 0 corresponds to the dropout of the packet. The Markov chain has
a transition probability matrix defined by

P
{
γ(k + 1) = j | γ(k) = i

}
=
[
1 − q q
p 1 − p

]
, (2.9)

where i, j ∈ W := {0, 1} are the state of the Markov chain. Without loss of generality, let γ(0) =
1 and the failure rate p and the recovery rate q of the channel satisfy p, q ∈ (0, 1). It is worth
noting that a smaller value of p and a larger value of q indicate a more reliable channel.

Remark 2.1. When the above transition probability matrix is
[
p 1−p
p 1−p

]
with 0 ≤ p ≤ 1, the above

two-state Markov process is reduced to a Bernoulli process [42].

In this paper, we consider the following fuzzy control law for the DFS (2.5).
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Controller Rule i

IF θ1(k) isMi1 and θ2(k) is Mi2 · · · θc(k) isMic, THEN

u(k) = γ(k)Lix(k), (2.10)

where Li are to be designed the control gain matrices. {γ(k), k ≥ 0} is a Markov packet drop-
out process satisfying (2.9). Then, we have the controller of DFS as

u(k) =
r∑

i=1

hi(θ(k))γ(k)Lix(k). (2.11)

2.3. Closed-Loop System

The following closed-loop DFS can be obtained from (2.5) and (2.11):

x(k + 1) =
r∑

i=1

r∑

j=1

hi(θ(k))hj(θ(k))
[(

Ai + γ(k)BiLj

)
x(k) +Giw(k)

]
, (2.12)

where Ai = Ai + ΔAi(k), Bi = Bi + ΔBi(k), and Gi = Gi + ΔGi(k).
Now, we define two models according to the value of γ(k). If γ(k) = 1, we define the

Model 1 at time k + 1 as follows:

x(k + 1) =
r∑

i=1

r∑

j=1

hi(θ(k))hj(θ(k))
[(

Ai + BiLjζ

)
x(k) +Giw(k)

]
. (2.13)

If γ(k) = 0, we define the Model 2 at time k + 1 as follows:

x(k + 1) =
r∑

i=1

r∑

j=1

hi(θ(k))hj(θ(k))
[
Aix(k) +Giw(k)

]
, (2.14)

where the selection of Ljζ in (2.13) is according to the model of x(k) for all ζ ∈ {1, 0}, that is
to say, if x(k) is at Model 1, which is γ(k − 1) = 1, Ljζ = Lj1, otherwise, if x(k) is at Model 2,
which is γ(k − 1) = 0, Ljζ = Lj0.

Then, (2.12) can be regarded as a DFS with Markovian jumps described by

x(k + 1) = 1(1)
r∑

i=1

r∑

j=1

hi(θ(k))hj(θ(k))
[(

Ai + BiLjζ

)
x(k) +Giw(k)

]

+ 1(2)
r∑

i=1

r∑

j=1

hi(θ(k))hj(θ(k))
[
Aix(k) +Giw(k)

]
,

(2.15)

where 1(a), a ∈ {1, 2} denotes the mode indicator function. 1(1) corresponds to a mode with
feedback and 1(2) corresponds to a mode without feedback. It is noted that it yields 1(a) = 1
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when at time k + 1 be a ∈ {1, 2} and 1(b) = 0 for b /=a. The mode transition probabilities of
Markovian jump DFS (2.15) is given by

P
{
ηv(k + 1) = v | ηu(k) = u

}
= πuv, (2.16)

where πuv ≥ 0 for all u, v ∈ {1, 2} and∑2
v=1 πuv = 1. ηv(k) = 1 implies 1(1) = 1, 1(2) = 0, which

the communication transmission succeeds, and ηv(k) = 2 implies 1(1) = 0, 1(2) = 1, in which
the communication dropout occurs. Thus, compared with (2.9), it follows that π11 = 1 − p,
π12 = p, π21 = q, π22 = 1 − q.

2.4. Definitions and Lemmas

Definition 2.2 (stochastic finite-time stability (SFTS)). The closed-loop DFS with Markov
jumps (2.15) with w(k) = 0 is said to be SFTS with respect to (δx, ε, R,N), where 0 < δx < ε,
R is a symmetric positive-definite matrix, and N ∈ Z

+, if

E

{
xT (0)Rx(0)

}
≤ δ2

x =⇒ E

{
xT (k)Rx(k)

}
< ε2, ∀k ∈ {1, 2, . . . ,N}. (2.17)

Definition 2.3 (stochastic finite-time bounded (SFTB)). The closed-loop DFS with Markov
jumps (2.15) is said to be SFTB with respect to (δx, ε, R,N, d), where 0 < δx < ε, R is a sym-
metric positive-definite matrix, andN ∈ Z

+, if

E

{
xT (0)Rx(0)

}
≤ δ2

x =⇒ E

{
xT (k)Rx(k)

}
< ε2, ∀k ∈ {1, 2, . . . ,N}. (2.18)

Lemma 2.4 (see [23]). For any matricesMij,Nij for 1 ≤ i, j ≤ r, and S > 0with appropriate dimen-
sions, one has

2
r∑

i=1

r∑

j=1

r∑

s=1

r∑

t=1

hihjhshtMijSNst ≤
r∑

i=1

r∑

j=1

hihj

(
MT

ijSMij +NT
ijSNij

)
. (2.19)

In particular, whenMij = Nij for all 1 ≤ i, j ≤ r, one has

r∑

i=1

r∑

j=1

r∑

s=1

r∑

t=1

hihjhshtMijSMst ≤
r∑

i=1

r∑

j=1

hihjM
T
ijSMij . (2.20)

Lemma 2.5 (Schur complement lemma, see [43]). The linear matrix inequality
[
X11 X12
∗ X22

]
< 0 is

equivalent to X22 < 0 and X11 −X12X
−1
22X

T
12 < 0, where X11 = XT

11 and X22 = XT
22.

Lemma 2.6 (see [43]). For matrices X,Y and Z of appropriate dimensions, where X is a symmetric
matrix, then

X + YF(t)Z + [YF(t)Z]T < 0 (2.21)



Discrete Dynamics in Nature and Society 7

holds for all matrix F(t) satisfying FT (t)F(t) ≤ I for all t ∈ R, if and only if there exists a positive
constant κ, such that the following inequality holds:

X + κYYT + κ−1ZTZ < 0. (2.22)

In this paper, the feedback gain matrices Lj1 and Lj0 with Markov packet dropout of
failure rate p and recovery rate q will be designed to guarantee the states of the closed-loop
Markovian jump DFS (2.15) SFTB and SFTS.

3. Main Results

In this section, for the given failure rate p and recovery rate q with p, q ∈ (0, 1), we start by
developing results that can be used to design a state-feedback controller that assures that the
nominalMarkovian jumpDFS (2.15) is SFTB and SFTS. Then, these results will be extended to
the case of uncertain systems. LMI conditions are established to design a state-feedback con-
troller that guarantees that either a nominal Markovian jump DFS or an uncertain Markovian
jump DFS of the class we are considering is SFTB and SFTS.

3.1. SFTB and SFTS of the Nominal Markov Jump System

Theorem 3.1. For the given failure rate p and recovery rate q with p, q ∈ (0, 1), the closed-loop nomi-
nal Markovian jump DFS (2.15) is SFTB with respect to (δx, ε, R,N, d), if there exist a scalar μ ≥ 1,
four symmetric positive-definite matrices P1, P2, Q1, Q2, and a set of feedback control matrices {Ljζ, j ∈
M, ζ ∈ {1, 0}}, such that the following inequalities hold for all i, j ∈ S:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−μP1 0
(
Ai + BiLj1

)T
AT

i

∗ −Q1 GT
i GT

i

∗ ∗ − 1
1 − p

P−1
1 0

∗ ∗ ∗ −1
p
P−1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−μP2 0
(
Ai + BiLj0

)T
AT

i

∗ −Q2 GT
i GT

i

∗ ∗ −1
q
P−1
1 0

∗ ∗ ∗ − 1
1 − q

P−1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.2)

sup
a∈{1,2}

{
λmax

(
P̃a

)}
δ2
x + sup

a∈{1,2}
{λmax(Qa)}d2 < inf

a∈{1,2}

{
λmin

(
P̃a

)}
μ−Nε2, (3.3)

where P̃a = R−1/2PaR
−1/2 for all a ∈ {1, 2}.

Proof. Assume themode at time k be a ∈ {1, 2}. Taking into account that if a = 1, then we have
γ(k − 1) = 1 and Ljζ = Lj1, otherwise, if a = 2, then γ(k − 1) = 0 and Ljζ = Lj0. Let us consider
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the following quadratic Lyapunov-Krasovskii functional candidate for the Markov jump DFS
(2.15):

V
(
x(k), ηv(k) = a

)
= xT (k)Pax(k). (3.4)

We compute

E{V (k + 1)} = E

{
2∑

v=1

P
{
ηv(k + 1) = v | ηv(k) = a

} × xT (k + 1)Pvx(k + 1)

}

=
r∑

i=1

r∑

j=1

r∑

s=1

r∑

t=1

hi(θ(k))hj(θ(k))hs(θ(k))ht(θ(k))

×
{
πa1
[(
Ai + BiLjζ

)
x(k) +Giw(k)

]T
P1
[(
As + BsLtζ

)
x(k) +Gsw(k)

]

+πa2[Aix(k) +Giw(k)]TP2[Asx(k) +Gsw(k)]
}
.

(3.5)

According to Lemma 2.4, we obtain

E{V (k + 1)} − μV (k) −wT (k)Qaw(k) ≤ Ξij(x(k), w(k), a), (3.6)

where

Ξij(x(k), w(k), a)

=
r∑

i=1

r∑

j=1

hi(θ(k))hj(θ(k))

×
{
πa1
[(
Ai + BiLjζ

)
x(k) +Giw(k)

]T
P1
[(
Ai + BiLjζ

)
x(k) +Giw(k)

]

+ πa2[Aix(k) +Giw(k)]TP2[Aix(k) +Giw(k)]

−μxT (k)Pax(k) −wT (k)Qaw(k)
}
.

(3.7)

Taking into account that if a = 1, then Ljζ = Lj1, otherwise, a = 2, then Ljζ = Lj0. Noting that
π11 = 1 − p, π12 = p, π21 = q, π22 = 1 − q. Thus, when a = 1, we have

Ξij(x(k), w(k), 1)

=
r∑

i=1

r∑

j=1

hi(θ(k))hj(θ(k))

×
{(

1 − p
)[(

Ai + BiLj1
)
x(k) +Giw(k)

]T
P1
[(
Ai + BiLj1

)
x(k) +Giw(k)

]

+ p[Aix(k) +Giw(k)]TP2[Aix(k) +Giw(k)]

−μxT (k)P1x(k) −wT (k)Q1w(k)
}

=
r∑

i=1

r∑

j=1

hi(θ(k))hj(θ(k))
[
x(k)
w(k)

]T{
ΓTij1

[(
1 − p

)
P1 0

∗ pP2

]
Γij1 −

[
μP1 0
∗ Q1

]}[
x(k)
w(k)

]
,

(3.8)
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where

Γij1 =
[
Ai + BiLj1 Gi

Ai Gi

]
. (3.9)

By Lemma 2.5, we can obtain from (3.1) that

Ξij(x(k), w(k), 1) < 0. (3.10)

Thus, when a = 1, from (3.6)–(3.10), we can obtain

E{V (k + 1)} − μV (k) < wT (k)Q1w(k). (3.11)

When a = 2, taking into account condition (3.2), the similar as the above discussion, we can
obtain the following inequality:

E{V (k + 1)} − μV (k) < wT (k)Q2w(k). (3.12)

Thus, for all a ∈ {1, 2}, it follows from (3.11) and (3.12) that

E{V (k + 1)} − μV (k) < wT (k)Qaw(k)

≤ sup
a∈{1,2}

{λmax(Qa)}wT (k)w(k). (3.13)

By (3.13), it is obvious that

E{V (k + 1)} < μE{V (k)} + sup
a∈{1,2}

{λmax(Qa)}wT (k)w(k). (3.14)

From (2.2) and (3.14) and noting that μ ≥ 1, we have

E{V (k)} < μk
E{V (0)} + sup

a∈{1,2}
{λmax(Qa)}

k−1∑

j=0

μk−j−1wT(j
)
w
(
j
)

≤ μk
E{V (0)} + sup

a∈{1,2}
{λmax(Qa)}

k−1∑

j=0

μkwT(j
)
w
(
j
)

≤ μk
E{V (0)} + sup

a∈{1,2}
{λmax(Qa)}μkd2.

(3.15)
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Let P̃a = R−1/2PaR
−1/2 and noting that E{xT (0)Rx(0)} ≤ δ2

x, we have

E{V (0)} = E

{
xT (0)Pax(0)

}

= E

{
xT (0)R1/2P̃aR

1/2x(0)
}

≤ sup
a∈{1,2}

{
λmax

(
P̃a

)}
E

{
xT (0)Rx(0)

}

≤ sup
a∈{1,2}

{
λmax

(
P̃a

)}
δ2
x.

(3.16)

On the other hand, for all a ∈ {1, 2}, we have

E{V (k)} = E

{
xT (k)Pax(k)

}

= E

{
xT (k)R1/2P̃aR

1/2x(k)
}

≥ inf
a∈{1,2}

{
λmin

(
P̃a

)}
E

{
xT (k)Rx(k)

}
.

(3.17)

Combine (3.15)–(3.17) together, we can obtain

E

{
xT (k)Rx(k)

}
<

supa∈{1,2}
{
λmax

(
P̃a

)}
μkδ2

x + supa∈{1,2}{λmax(Qa)}μkd2

infa∈{1,2}
{
λmin

(
P̃a

)} . (3.18)

Noting condition (3.3), it follows that E{xT (k)Rx(k)} < ε2 for all k ∈ {1, 2, . . . ,N}. This com-
pletes the proof of this Theorem.

The similar proof is as the above Theorem 3.1, ifw(k) = 0, we can obtain the results on
finite-time stability as follows.

Corollary 3.2. For the given failure rate p and recovery rate q with p, q ∈ (0, 1), the closed-loop
nominal Markovian jump DFS (2.15) with w(k) = 0 is SFTS with respect to (δx, ε, R,N), if there
exist a scalar μ ≥ 1, two symmetric positive-definite matrices P1, P2, and a set of feedback control mat-
rices {Ljζ, j ∈ M, ζ ∈ {1, 0}}, such that the following inequalities hold for all i, j ∈ S:

⎡
⎢⎢⎢⎢⎢⎣

−μP1
(
Ai + BiLj1

)T
AT

i

∗ − 1
1 − p

P−1
1 0

∗ ∗ −1
p
P−1
2

⎤
⎥⎥⎥⎥⎥⎦

< 0,
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⎡
⎢⎢⎢⎢⎢⎣

−μP2
(
Ai + BiLj0

)T
AT

i

∗ −1
q
P−1
1 0

∗ ∗ − 1
1 − q

P−1
2

⎤
⎥⎥⎥⎥⎥⎦

< 0,

sup
a∈{1,2}

{
λmax

(
P̃a

)}
δ2
x < inf

a∈{1,2}

{
λmin

(
P̃a

)}
μ−Nε2,

(3.19)

where P̃a = R−1/2PaR
−1/2 for all a ∈ {1, 2}.

Remark 3.3. If μ = 1 is a solution of feasibility problem (3.19), then the closed-loop Markovian
jumps DFS (2.15) with w(t) = 0 is SFTS with respect to (δx, ε, R,N) and is also stochastically
stable.

Denoting X1 = P−1
1 , X2 = P−1

2 , Lj1 = Yj1X
−1
1 , Lj0 = Yj0X

−1
2 , one can obtain the following

results on the stochastic finite-time stabilization.

Theorem 3.4. For the given failure rate p and recovery rate q with p, q ∈ (0, 1), there exists a state-
feedback controller u(t) = Ljζx(t), ζ ∈ {1, 0} with Lj1 = Yj1X

−1
1 , Lj0 = Yj0X

−1
2 such that the closed-

loop nominal DFS with Markovian jump (2.15) is SFTB with respect to (δx, ε, R,N, d), if there exist
a scalar μ ≥ 1, four symmetric positive-definite matrices X1, X2, Q1, Q2, and a set of feedback control
matrices {Yjζ, j ∈ M, ζ ∈ {1, 0}}, such that the following inequalities hold for all i, j ∈ S:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−μX1 0
(
AiX1 + BiYj1

)T (AiX1)T

∗ −Q1 GT
i GT

i

∗ ∗ − 1
1 − p

X1 0

∗ ∗ ∗ −1
p
X2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.20)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−μX2 0
(
AiX2 + BiYj0

)T (AiX2)T

∗ −Q2 GT
i GT

i

∗ ∗ −1
q
X1 0

∗ ∗ ∗ − 1
1 − q

X2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.21)

sup
a∈{1,2}

{
λmax

(
X̃a

)}
δ2
x + sup

a∈{1,2}
{λmax(Qa)}d2 < inf

a∈{1,2}

{
λmin

(
X̃a

)}
μ−Nε2, (3.22)

where X̃a = R−1/2X−1
a R−1/2 for all a ∈ {1, 2}.

Corollary 3.5. For the given failure rate p and recovery rate q with p, q ∈ (0, 1), there exists a state-
feedback controller u(t) = Ljζx(t), ζ ∈ {1, 0} with Lj1 = Yj1X

−1
1 , Lj0 = Yj0X

−1
2 such that the closed-

loop nominal Markovian jump DFS (2.15) with w(k) = 0 is SFTS with respect to (δx, ε, R,N), if
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there exist a scalar μ ≥ 1, two symmetric positive-definite matricesX1, X2, and a set of feedback control
matrices {Yjζ, j ∈ M, ζ ∈ {0, 1}}, such that the following inequalities hold for all i, j ∈ S:

⎡
⎢⎢⎢⎢⎢⎣

−μX1
(
AiX1 + BiYj1

)T (AiX1)T

∗ − 1
1 − p

X1 0

∗ ∗ −1
p
X2

⎤
⎥⎥⎥⎥⎥⎦

< 0, (3.23)

⎡
⎢⎢⎢⎢⎢⎢⎣

−μX2
(
AiX2 + BiYj0

)T (AiX2)T

∗ −1
q
X1 0

∗ ∗ − 1
1 − q

X2

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (3.24)

sup
a∈{1,2}

{
λmax

(
X̃a

)}
δ2
x < inf

a∈{1,2}

{
λmin

(
X̃a

)}
μ−Nε2, (3.25)

where X̃a = R−1/2X−1
a R−1/2 for all a ∈ {1, 2}.

3.2. Extension to SFTB and SFTS of the Uncertain Markov Jump DFS

By Theorems 3.1 and 3.4 and applying Lemmas 2.5 and 2.6, one can obtain the following
results stated.

Theorem 3.6. For the given failure rate p and recovery rate q with p, q ∈ (0, 1), there exists a state-
feedback controller u(t) = Ljζx(t), ζ ∈ {1, 0} with Lj1 = Yj1X

−1
1 , Lj0 = Yj0X

−1
2 such that the closed-

loop uncertain DFS withMarkovian jump (2.15) is SFTB with respect to (δx, ε, R,N, d), if there exist
a scalar μ ≥ 1, two sets of positive scalars {ε1i, i ∈ M}, {ε2i, i ∈ M}, four symmetric positive-definite
matrices X1, X2, Q1, Q2, and a set of feedback control matrices {Yjζ, j ∈ M, ζ ∈ {1, 0}}, such that
(3.22) and the following inequalities hold for all i, j ∈ S:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μX1 0
(
AiX1 + BiYj1

)T (AiX1)T
(
E1iX1 + E2iYj1

)T (E1iX1)T

∗ −Q1 GT
i GT

i ET
3i ET

3i

∗ ∗ − 1
(
1 − p

)X1 + ε1iFiF
T
i 0 0 0

∗ ∗ ∗ −1
p
X2 + ε1iFiF

T
i 0 0

∗ ∗ ∗ ∗ −ε1iI 0

∗ ∗ ∗ ∗ ∗ −ε1iI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(3.26)
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μX2 0
(
AiX2 + BiYj0

)T (AiX2)T
(
E1iX2 + E2iYj0

)T (E1iX2)T

∗ −Q2 GT
i GT

i ET
3i ET

3i

∗ ∗ −1
q
X1 + ε2iFiF

T
i 0 0 0

∗ ∗ ∗ − 1
1 − q

X2 + ε2iFiF
T
i 0 0

∗ ∗ ∗ ∗ −ε2iI 0

∗ ∗ ∗ ∗ ∗ −ε2iI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.27)

where X̃a = R−1/2X−1
a R−1/2 for all a ∈ {1, 2}.

Corollary 3.7. For the given failure rate p and recovery rate q with p, q ∈ (0, 1), there exists a state-
feedback controller u(t) = Ljζx(t), ζ ∈ {1, 0} with Lj1 = Yj1X

−1
1 , Lj0 = Yj0X

−1
2 such that the closed-

loop uncertain DFS withMarkovian jump (2.15)withw(k) = 0 is SFTS with respect to (δx, ε, R,N),
if there exist a scalar μ ≥ 1, two sets of positive scalars {ε1i, i ∈ M}, {ε2i, i ∈ M}, two symmetric
positive-definite matrices X1, X2, and a set of feedback control matrices {Yjζ, j ∈ M, ζ ∈ {0, 1}}, such
that (3.25) and the following inequalities hold for all i, j ∈ S:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μX1
(
AiX1 + BiYj1

)T (AiX1)T
(
E1iX1 + E2iYj1

)T (E1iX1)T

∗ − 1
(
1 − p

)X1 + ε1iFiF
T
i 0 0 0

∗ ∗ −1
p
X2 + ε1iFiF

T
i 0 0

∗ ∗ ∗ −ε1iI 0
∗ ∗ ∗ ∗ −ε1iI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.28)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μX2
(
AiX2 + BiYj0

)T (AiX2)T
(
E1iX2 + E2iYj0

)T (E1iX2)T

∗ −1
q
X1 + ε2iFiF

T
i 0 0 0

∗ ∗ − 1
1 − q

X2 + ε2iFiF
T
i 0 0

∗ ∗ ∗ −ε2iI 0
∗ ∗ ∗ ∗ −ε2iI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.29)

where X̃a = R−1/2X−1
a R−1/2 for all a ∈ {1, 2}.

Remark 3.8. It is easy to check that conditions (3.22) and (3.25) are guaranteed by imposing
the conditions for all a ∈ {1, 2}, respectively:

λ1R
−1 < Xa < R−1, 0 < Qa < λ2I,

[
λ2d

2 − μ−Nε2 δx
∗ −λ1

]
< 0, (3.30)

λR−1 < Xa < R−1,
[−μ−Nε2 δx

∗ −λ
]
< 0. (3.31)

Conditions (3.26)–(3.31) are not strict LMIs, however, once we fix the parameter μ, the con-
ditions can be turned into LMIs based feasibility problem.
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Remark 3.9. From the above discussion, we can obtain that the feasibility of conditions stated
inz Theorem 3.6 and Corollary 3.7 can be turned into the following LMIs based feasibility pro-
blem with a fixed parameter μ, respectively:

min ε2

X1, X2, Yj1, Yj0, ε1i, ε2i, Q1, Q2, λ1, λ2

s.t. (3.26), (3.27), and (3.30)

min ε2

X1, X2, Yj1, Yj0, ε1i, ε2i, λ

s.t. (3.28), (3.29), and (3.31).

(3.32)

Furthermore, we can also find the parameter μ by an unconstrained nonlinear optimization
approach, in which a locally convergent solution can be obtained by using the program
fminsearch in the optimization toolbox of MATLAB.

4. Illustrative Examples

In this section, we present two examples to illustrate the proposed methods.

Example 4.1. Consider a DFS (2.15) with parameters as

A1 =

⎡

⎣
2 0.4 0
0 0.7 0.3
0 0 −0.6

⎤

⎦, B1 =

⎡

⎣
1 1
0 1
0 1

⎤

⎦, G1 =

⎡

⎣
1 0.1
0 1
0 0.1

⎤

⎦,

F1 =

⎡

⎣
0.01 0 0.02
0 0.2 0
0 0.01 0

⎤

⎦, E11 =

⎡

⎣
0.01 0 0.02
0 0.02 0
0 0.1 0

⎤

⎦, E21 =

⎡

⎣
0.1 0
0 0.1
0 0.2

⎤

⎦, E31 =

⎡

⎣
0.2 0.1
0 0
0 0.1

⎤

⎦,

A2 =

⎡

⎣
0.8 3 0
−0.2 0 0.75
0.2 0 −0.4

⎤

⎦, B2 =

⎡

⎣
1 0
0 1
0 1

⎤

⎦, G2 =

⎡

⎣
0.5 0.1
0 1
0 0.1

⎤

⎦,

F2 =

⎡

⎣
0.1 0 0.01
0 0.1 0
0 0 0.1

⎤

⎦, E12 =

⎡

⎣
0.1 0 0.02
0 0.2 0
0 0.1 0

⎤

⎦, E22 =

⎡

⎣
0.2 0
0 0.1
0 0.3

⎤

⎦, E32 =

⎡

⎣
0.1 0.1
0 0.1
0 0.1

⎤

⎦,

(4.1)

and d = 2,Δi(k) = diag{Δ1i(k),Δ2i(k),Δ3i(k)}, where Δji satisfies |Δji(k)| ≤ 1 for all i = 1, 2,
j = 1, 2, 3 and k ∈ Z

+. The h1 and h2 are fuzzy sets defined as

h1(x(k)) =

⎧
⎨

⎩

sinx(k)
x(k)

, x(k)/= 0;

1, x(k) = 0,

h2(x(k)) = 1 − h1(x(k)).

(4.2)
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Moreover, we assume the failure rate p = 0.4 and the recovery rate q = 0.8. Then, we choose
R = I3, δx = 1,N = 5, μ = 2, Theorem 3.6 yields ε = 21.8239 and

X1 =

⎡

⎣
0.9837 −0.0671 0.0587
−0.0671 0.4318 −0.0351
0.0587 −0.0351 0.5113

⎤

⎦, X2 =

⎡

⎣
0.9994 0.0078 0.0129
0.0078 0.4969 −0.0715
0.0129 −0.0715 0.5220

⎤

⎦,

Y11 = Y21 =
[−1.8795 −0.7470 −0.1754
0.0142 −0.0668 −0.2793

]
,

Y10 = Y20 =
[−1.6200 −0.8361 0.0592
0.0464 −0.0911 −0.1958

]
,

Q1 =
[
3.1164 0

0 3.1164

]
, Q2 =

[
3.1139 0

0 3.1139

]
,

ε11 = 0.6146, ε12 = 2.3435, ε21 = 0.6014, ε22 = 2.1335,

λ1 = 0.4147, λ2 = 3.1177.

(4.3)

Thus, we can obtain the following state-feedback controller gains:

L11 = L21 =
[−2.0379 −2.0938 −0.2325
0.0404 −0.2016 −0.5563

]
,

L10 = L20 =
[−1.6030 −1.6832 −0.0717
0.0559 −0.2491 −0.4119

]
.

(4.4)

Furthermore, let R = I3, δx = 1,N = 5, by Theorem 3.6, the optimal bound with minimum
value of ε2 relies on the parameter μ. We can find feasible solution when 1.20 ≤ μ ≤ 44.43.
Figure 1 shows the optimal value with different value of μ. Noting that when μ = 1.4, it yields
the optimal value ε = 13.7246. Then, by using the program fminsearch in the optimization tool-
box of MATLAB starting at μ = 1.4, the locally convergent solution can be derived as

L11 = L21 =
[−1.8847 −1.8653 −0.6149
0.0512 −0.1196 −0.5385

]
,

L10 = L20 =
[−1.5200 −1.6018 −0.3826
0.0426 −0.1279 −0.4005

]
.

(4.5)

with μ = 1.3591 and the optimal value ε = 13.6304.

Example 4.2. Consider a DFS (2.15) with w(t) = 0 and

A1 =

⎡

⎣
1.5 0.4 0
0 0.7 0.3
0 0.5 −1

⎤

⎦, A2 =

⎡

⎣
1 0.4 0

−0.3 0 0.75
0.6 0.8 −0.4

⎤

⎦. (4.6)

In addition, the other matrices parameters, fuzzy basis functions, and the failure rate p and
the recovery rate q are the same as Example 4.1.
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Figure 1: The local optimal bound of ε.

Then, let R = I3, δx = 1,N = 6, by Corollary 3.7, the optimal bound with minimum
value of ε2 relies on the parameter μ. We can find feasible solution when 1 ≤ μ ≤ 23.61. Thus,
the above system is stochastically stable andwhen μ = 1, it yields the optimal value ε = 4.5131
and the following optimized state-feedback controller gains:

L11 = L21 =
[−1.6149 −0.3843 −0.8106
−0.0447 −0.4269 0.2344

]
,

L10 = L20 =
[−1.3138 −0.2433 −0.7052
−0.0960 −0.3308 0.2755

]
.

(4.7)

5. Conclusions

This paper addresses the stochastic finite-time stability and stochastic finite-time bounded-
ness problems for one family of fuzzy systems over networks with packet dropout. Taking
into account the data packet drop being a time homogenous Markov process, thus the dis-
crete-time DFS with packet loss can be described by one class of fuzzy Markovian jump
systems. Then, state-feedback controllers are designed to guarantee the resulting closed-loop
fuzzy discrete-time system with Markovian jumps SFTS and SFTB. The SFTS and SFTB cri-
teria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an aux-
iliary result, we also give sufficient conditions on the stochastic stability of the class of fuzzy
systems with data packet dropout. Finally, simulation results are also given to demonstrate
the validity of the proposed methodology.
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