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We consider the dynamic proportional reinsurance in a two-dimensional compound Poisson risk
model. The optimization in the sense of minimizing the ruin probability which is defined by
the sum of subportfolio is being ruined. Via the Hamilton-Jacobi-Bellman approach we find a
candidate for the optimal value function and prove the verification theorem. In addition, we obtain
the Lundberg bounds and the Cramér-Lundberg approximation for the ruin probability and show
that as the capital tends to infinity, the optimal strategies converge to the asymptotically optimal
constant strategies. The asymptotic value can be found by maximizing the adjustment coefficient.

1. Introduction

In an insurance business, a reinsurance arrangement is an agreement between an insurer
and a reinsurer under which claims are split between them in an agreed manner. Thus, the
insurer (cedent company) is insuring part of a risk with a reinsurer and pays premium to
the reinsurer for this cover. Reinsurance can reduce the probability of suffering losses and
diminish the impact of the large claims of the company. Proportional reinsurance is one of
the reinsurance arrangement, which means the insurer pays a proportion, say a, when the
claim occurs and the remaining proportion, 1 − a, is paid by the reinsurer. If the proportion a
can be changed according to the risk position of the insurance company, this is the dynamic
proportional reinsurance. Researches dealing with this problem in the one-dimensional risk
model have been done by many authors. See for instance, Højgaard and Taksar [1, 2],
Schmidli [3] considered the optimal proportional reinsurance policies for diffusion risk
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model and for compound Poisson risk model, respectively. Works combining proportional
and other type of reinsurance polices for the diffusion model were presented in Zhang et al.
[4]. If investment or dividend can be involved, this problem was discussed by Schmidli [5]
and Azcue and Muler [6], respectively. References about dynamic reinsurance of large claim
are Taksar and Markussen [7], Schmidli [8], and the references therein.

Although literatures on the optimal control are increasing rapidly, seemly that none
of them consider this problem in the multidimensional risk model so far. This kind of model
depicts that an unexpected claim event usually triggers several types of claims in an umbrella
insurance policy, which means that a single event influences the risks of the entire portfolio.
Such risk model has become more important for the insurance companies due to the fact that
it is useful when the insurance companies handle dependent class of business. The previous
work relating to multidimensional model without dynamic control mainly focuses on the
ruin probability. See for example, Chan et al. [9] obtained the simple bounds for the ruin
probabilities in two-dimensional case, and a partial integral-differential equation satisfied
by the corresponding ruin probability. Yuen et al. [10] researched the finite-time survival
probability of a two-dimensional compound Poisson model by the approximation of the so-
called bivariate compound binomial model. Li et al. [11] studied the ruin probabilities of
a two-dimensional perturbed insurance risk model and obtained a Lundberg-type upper
bound for the infinite-time ruin probability. Dang et al. [12] obtained explicit expressions
for recursively calculating the survival probability of the two-dimensional risk model by
applying the partial integral-differential equation when claims are exponentially distributed.
More literatures can be found in the references within the above papers.

In this paper, we will discuss the dynamic proportional reinsurance in a two-
dimensional compound Poisson risk model. From the insurers point of view, we want to
minimize the ruin probability or equivalently to maximize the survival probability.

We start with a probability space (Ω,F,P) and a filtration {Ft}t≥0. Ft represents
the information available at time t, and any decision is made upon it. Suppose that an
insurance portfolio consists of two subportfolios {Xa

t } and {Yb
t }. {(Un, Vn)} is a sequence

of i.i.d random vectors which denote the claim size for (Xa
t , Y

b
t ). Let G(u, v) denote their joint

distribution function, and supposeG(u, v) is continuous. At any time t the cedent may choose
proportional reinsurance strategy (at, bt). This implies that at time t the cedent company pays
(atU, btV ). The reinsurance company pays the amount ((1 − at)U, (1 − bt)V ). a = {at} and
b = {bt} are admissible if they are adapted processes with value in [0, 1]. By U we denote the
set of all admissible strategies. The model can be stated as

⎛
⎝
Xa
t

Yb
t

⎞
⎠ =

⎛
⎝
u1

u2

⎞
⎠ +

(∫ t
0 c1(as)ds∫ t
0 c2(bs)ds

)
−

Nt∑
n=1

⎛
⎝
aσn−Un

bσn−Vn

⎞
⎠ (1.1)

u1, u2 are the initial capital of {Xa
t } and {Yb

t }, respectively. c1(at) and c2(bt) denote the
premium rates received by the insurance (cedent) company for the subportfolio {Xa

t } and
{Yb

t } at time t. Suppose c1(a) is continuous about a and c2(b) is continuous about b. Note
that if full reinsurance, that is, a = b = 0 is chosen the premium rates, c1(0) and c2(0) are
strictly negative. Otherwise, the insurer would reinsure the whole portfolio, then ruin would
never occur for it. Let c1, c2 denote the premium if no reinsurance is chosen. Then c1(at) ≤ c1,
c2(bt) ≤ c2. For (Un, Vn), their common arrival times constitute a counting process {Nt},
which is a Poisson process with rate λ and independent of (Un, Vn). The net profit conditions
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are c1 > λEUn and c2 > λEVn. aσn−Un and bσn−Vn are the claim size that the cedent company
pays at σn (time of the nth claim arrivals). This reinsurance form chosen prior to the claim
prevents the insurer change the strategies to full reinsurance when the claim occurs and avoid
the insurer owning all the premium while the reinsurer pays all the claims.

In realities, if the insurance company deals with multidimensional risk model, they
may adjust the capital among every subportfolio. If the adjustment is reasonable, the
company may run smoothly. So the actuaries care more about how the aggregate loss for
the whole book of business effects the insurance company. Hence, in our problem we focus
on the aggregate surplus:

Ra,b
t = Xa

t + Y
b
t = u +

∫ t

0
(c1(as) + c2(bs))ds −

Nt∑
n=1

(aσn−Un + bσn−Vn), (1.2)

where u = u1 + u2. Ruin time is defined by

τa,b = inf
{
t ≥ 0;Ra,b

t < 0
}
, (1.3)

which denotes the first time that the total of Xa
t and Yb

t is negative. The ruin probability is

ψa,b(u) = P
(
τa,b <∞ | Ra,b

0 = u
)
. (1.4)

The corresponding survival probability is

δa,b(u) = P
(
τa,b = ∞ | Ra,b

0 = u
)
. (1.5)

Our optimization criterion is maximization of survival probability from the insurer (cedent
company) point of view. So the objective is to find the optimal value function δ(u) which is
defined by

δ(u) = sup
(a,b)∈U

δa,b(u). (1.6)

If the optimal strategy (a∗, b∗) exists, we try to determine it. Let {Rt} denote the process under
the optimal strategy (a∗, b∗) and τ∗ the corresponding ruin time.

The paper is organized as follows. After the brief introduction of our model, in
Section 2, we proof some useful properties of δ(u). The HJB equation satisfied by the optimal
value function is presented in Section 3. Furthermore, we show that there exists a unique
solution with certain boundary condition and give a proof of the verification theorem. Taking
advantage of a very important technique of changing of measure, the Lundberg bounds for
the controlled process are obtained in Section 4. In Section 5, we get the Cramér-Lundberg
approximation for ψ(u). The convergence of the optimal strategy is proved in Section 6. In
the last section, we give a numerical example to illustrate how to get the upper bound of
ψ(u).
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2. Some Properties of δ(u)

We first give some useful properties of δ(u).

Lemma 2.1. For any strategy (a, b), with probability 1, either ruin occurs or Ra,b
t → ∞ as t → ∞.

Proof. Let (a, b) be a strategy. If the full reinsurance of each subportfolio is chosen, we denote
c01 < 0, c02 < 0 be the premium left to the cedent insurance company. Let B = {(a, b) : c1(a) +
c2(b) ≥ (c01 + c

0
2)/2}, let and B be its complementary set. Choose ε < −(c01 + c02)/2 and κ =

(−c01 − c02 − 2ε)/(2(c1 + c2) − c01 − c02). First, if
∫ t+1
t 1(as,bs)∈Bds ≤ κ, then

Ra,b
t+1 = R

a,b
t +

∫ t+1

t

(c1(a) + c2(b))ds −
N(t+1)∑
i=N(t)+1

(aσi−Ui + bσi−Vi)

≤ Ra,b
t +

∫ t+1

t

(c1(a) + c2(b))ds

= Ra,b
t +

∫ t+1

t

(c1(a) + c2(b))1(a,b)∈Bds +
∫ t+1

t

(c1(a) + c2(b))1(a,b)∈Bds

≤ Ra,b
t + (c1 + c2)

∫ t+1

t

1(a,b)∈Bds +
c01 + c

0
2

2

∫ t+1

t

1(a,b)∈Bds

≤ Ra,b
t + (c1 + c2)κ + (1 − κ)c

0
1 + c

0
2

2

= Ra,b
t − ε.

(2.1)

Otherwise, if
∫ t+1
t 1bs∈Bds > κ. Because c1(a), c2(b), au, and bv are continuous, we assume that

ε is small enough such that

P
[

inf
(a,b)∈B

aU + bV > ε

]
> 0. (2.2)

Also

P

[∫ t+1

t

1(as,bs)∈BdNs ≥ 1 +
c1 + c2
ε

]
≥ P

[
Nκ ≥ 1 +

c1 + c2
ε

]
> 0. (2.3)

While

Nt+1∑
i=Nt+1

aσi−Ui + bσi−Vi

=
Nt+1∑
i=Nt+1

(aσi−Ui + bσi−Vi)1(a,b)∈B +
Nt+1∑
i=Nt+1

(aσi−Ui + bσi−Vi)1(a,b)∈B

≥
Nt+1∑
i=Nt+1

(aσi−Ui + bσi−Vi)1(a,b)∈B.

(2.4)
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Because P[
∑Nt+1

i=Nt+1
(aσi−Ui + bσi−Vi)1(a,b)∈B ≥ (1 + ((c1 + c2)/ε))ε = (c1 + c2) + ε] > 0, then

P

[
Nt+1∑
i=Nt+1

(aσi−Ui + bσi−Vi) ≥ (c1 + c2) + ε

]
> 0. (2.5)

We denote a lower bound by δ > 0. ChooseM > 0. Let t0 = 0 and tk+1 = inf{t ≥ tk + 1;Ra,b
t ≤

M}. Here we define tk+1 = ∞ if tk = ∞ or if Ra,b
t > M for all t ≥ tk + 1. Because

M − Ra,b
tk+1

≥ Ra,b
tk

− Ra,b
tk+1

=
Ntk+1∑
i=Ntk

+1

(aσi−Ui + bσi−Vi) −
∫ tk+1

tk

(c1(a) + c2(b))ds

≥
Ntk+1∑
i=Ntk

+1

(aσi−Ui + bσi−Vi) − (c1 + c2).

(2.6)

Then

P
[
M − Ra,b

tk+1
≥ ε | Ftk

]
≥ δ, (2.7)

which can also be expressed by

P
[
Ra,b
tk+1

≤M − ε | Ftk

]
≥ δ. (2.8)

LetWk = 1tk<∞,Ra,btk+1
<M−ε, Zk = δ1tk<∞ and Sn =

∑n
k=1(Wk − Zk). Because

E|Sn| = E

(∣∣∣∣∣
n∑
k=1

1tk<∞,Ra,btk+1
<M−ε −

n∑
k=1

δ1tk<∞

∣∣∣∣∣

)
≤ 2n <∞,

E[Sn+1 | Fn] = E

[
n+1∑
k=1

(Wk − Zk) | Fn

]

= E

[
n∑
k=1

(Wk − Zk) +Wn+1 − Zn+1 | Fn

]

= Sn + E[Wn+1 − Zn+1 | Fn]

= Sn + E
[
1tn+1<∞,Ra,btn+1+1

<M−ε − δ1tn+1<∞ | Fn

]

= Sn +
(
P
[
Ra,b
tn+1+1

< M − ε | Ftn

]
− δ

)
P[tn+1 <∞]

≥ Sn.
(2.9)
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From above, we know that {Sn} is a submartingale and {Sn} satisfied the conditions of
Lemma 1.15 in Schmidli [13]. So

P

[ ∞∑
k=1

1tk<∞,Ra,btk+1
<M−ε <∞,

∞∑
k=1

δ1tk<∞ = ∞
]
= 0. (2.10)

Thus Ra,b
tk+1

< M − ε infinitely often. If lim infRa,b
t ≤ N, then for M = N + ε/2, tn < ∞ for all

n. Then Ra,b
tn+1

≤N − ε/2 infinitely often. In particular, lim infRa,b
t ≤N − ε/2. We can conclude

that lim infRa,b
t <∞ implies lim infRa,b

t < −ε/2. Therefore ruin occurs. While lim infRa,b
t = ∞

implies Ra,b
t → ∞ as t → ∞.

Lemma 2.2. The function δ(u) is strictly increasing.

Proof. If u < z, we can use the same strategy (a, b) for initial capital u and z. Then we can
conclude that δa,b(u) < δa,b(z), so δ(u) = sup(a,b)∈Uδa,b(u) ≤ sup(a,b)∈Uδa,b(z) = δ(z). Suppose
that δ(u) = δ(z).

(a) From Lemma 2.1, we know that if c1(a) + c2(b) ≤ (c01 + c02)/2 on the interval
[0, T1), where T1 = [2(u+κ(c1+c2))]/(−c01−c02)+κ for all t except a set with measure
κ, then

RT1 ≤ u + κ(c1 + c2) +
2(u + κ(c1 + c2))

−c01 − c02
c01 + c

0
2

2
≤ 0. (2.11)

Then ruin occurs.

(b) Otherwise, let T2 = inf{t : ∫ t0 1(c1(a)+c2(b)≤(c01+c02)/2)ds > κ}. Similar to Lemma 2.1,
we have

P
[

inf
(a,b)∈B

(aU + bV ) > ε
]
> 0,

P

[∫T2

0
1(as,bs)∈BdNs ≥ u + κ(c1 + c2)

ε

]
≥ P

[
Nκ ≥ u + κ(c1 + c2)

ε

]
> 0.

(2.12)

Thus

P

⎡
⎣
NT2∑
i=1

(aσi−Ui + bσi−Vi) ≥ u + κ(c1 + c2)

⎤
⎦ > 0. (2.13)

This implies that ruin occurs with strictly positive probability.

From (a) and (b) above, we conclude that δ(u) < 1.
The process {δa,b(Ra,b

τa,b∧t)} is a martingale, if we stop the the process starting in u at the

first time Tz where Ra,b
t = z. Define R

a,b

t = Ra,b
t + z−u for t ≤ Tz, and choose arbitrary strategy
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(a, b) after time Tz. To the process {Ra,b

t }, we define its corresponding characteristics by a bar
sign. Then

δa,b(z) = E
[
δa,b

(
RTz∧τa,b

)]

= δa,b(2z − u)P[Tz < τa,b] ≥ δa,b(2z − u)P[Tz < τa,b].
(2.14)

There exists a strategy such that P[Tz < τa,b] is arbitrarily close to 1 due to δa,b(u) =
δa,b(z)P[Tz < τa,b]. From the arbitrary property of (a, b), we have δ(2z − u) = δ(z) = δ(u).
Thus, δ(z) would be a constant for all z ≥ u. While δ(z) → 1 as z → ∞, this is only possible
if δ(u) = 1. Then this is contract with δ(u) < 1. From all above, we conclude that δ(u) is
strictly increasing.

3. HJB Equation and Verification of Optimality

In this section, we establish the Hamilton-Jacobi-Bellman (HJB for short) equation associated
with our problem and give a proof of verification theorem.

We first derive the HJB equation. Let (a, b) ∈ [0, 1] be two arbitrary constants and
ε > 0. If the initial capital u = 0, we assume that c1(a) + c2(b) ≥ 0 in order to avoid immediate
ruin. If u > 0, assume that h > 0 is small enough such that u + (c1(a) + c2(b))h > 0. Define

(
u1t , u

2
t

)
=

⎧⎪⎨
⎪⎩

(a, b), for t ≤ σ1 ∧ h,
(
aε
t−(σ1∧h), b

ε
t−(σ1∧h)

)
, for t > σ1 ∧ h,

(3.1)

where (aεt , b
ε
t ) are strategies satisfying δaεt ,bεt (x) > δ(x)−ε. The first claim happens with density

λe−λt and P(σ1 > h) = e−λh. This yields by conditioning on Fσ1∧h

δ(u) ≥ δu1,u2(u) = e−λhδaε,bε(u + (c1(a) + c2(b))h)

+
∫h

0

∫ (u+(c1(a)+c2(b))t)/a

0

∫ (u+(c1(a)+c2(b))t−ax)/b

0
δaε,bε(u + (c1(a) + c2(b))t − au − bv)

× dG(u, v)λe−λtdt

≥ e−λhδ(u + (c1(a) + c2(b))h)

+
∫h

0

∫ (u+(c1(a)+c2(b))t)/a

0

∫ (u+(c1(a)+c2(b))t−ax)/b

0
δ(u + (c1(a) + c2(b))t − au − bv)

× dG(u, v)λe−λtdt − ε.

(3.2)
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Because ε is arbitrary, let ε = 0. The above expression can be expressed as

δ(u + (c1(a) + c2(b))h) − δ(u)
h

− 1 − e−λh
h

δ(u + (c1(a) + c2(b))h)

+
1
h

∫h

0

∫u/a

0

∫ (u−ax)/b

0
δ(u + (c1(a) + c2(b))t − au − bv)dG(u, v)λe−λtdt ≤ 0.

(3.3)

If we assume that δ(u) is differentiable and h → 0, yields

[c1(a) + c2(b)]δ′(u) + λ
∫u/a

0

∫ (u−ax)/b

0
δ
(
u − ax − by)dG(x, y) − λδ(u) ≤ 0. (3.4)

For all (a, b) ∈ U, (3.4) is true. We first consider such a HJB equation

sup
(a,b)∈[0,1]×[0,1]

[c1(a) + c2(b)]f ′(u) + λ
∫∞

0

∫∞

0
f
(
u − ax − by)dG(x, y) − λf(u) = 0. (3.5)

For the moment, we are not sure whether δ(u) fulfills the HJB equation and just conjecture
that δ(u) is one of the solutions, so we replace δ(u) by f(u). Because δ(u) is a survival
function, we are interested in a function f(x) which is strictly increasing, f(x) = 0 for x < 0
and f(0) > 0. Because the function for which the supremum is taken is continuous in a, b,
and [0, 1] × [0, 1] is compact, for u ≥ 0, there are values a(u), b(u) for which the supremum
is attained. In (3.5), we also need c1(a) + c2(b) ≥ 0. Otherwise, (3.5) will never be true.
Furthermore, P(aUn + bVn > 0) > 0, so c1(a) + c2(b) > 0. We rewrite (3.5) by

sup
(a,b)∈Ũ

[c1(a) + c2(b)]f ′(u) + λ
∫u/a

0

∫ (u−ax)/b

0
f
(
u − ax − by)dG(x, y) − λf(u) = 0, (3.6)

where Ũ = {(a, b) ∈ [0, 1] × [0, 1] : c1(a) + c2(b) > 0} and u ≥ 0. Define that u/0 = ∞.
From (3.6), we have

f ′(u) ≤ λ

c1(a) + c2(b)

[
f(u) −

∫u/a

0

∫ (u−ax)/b

0
f
(
u − ax − by)dG(x, y)

]
. (3.7)

When (a, b) = (a∗, b∗), equality holds. Then f(u) also satisfies the following equivalent
equation:

f ′(u) = inf
(a,b)∈Ũ

λ

c1(a) + c2(b)

[
f(u) −

∫u/a

0

∫ (u−ax)/b

0
f
(
u − ax − by)dG(x, y)

]
. (3.8)

Equations (3.4) and (3.8) are equivalent for strictly increasing functions. Solutions solved
from (3.8) are only up to a constant, and we can choose f(0) = 1.

In the next theorem we prove the existence of a solution of HJB equation and also give
the properties of the solution.
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Theorem 3.1. There is a unique solution to the HJB equation (3.8) with f(0) = 1. The solution is
bounded, strictly increasing, and continuously differentiable.

Proof. Reformulate the expression by integrating by part,

f(u) −
∫u/a

0

∫ (u−ax)/b

0
f
(
u − ax − by)dG(x, y)

= f(u) −
∫u

0
f(u − x)dGaU+bV (x)

= f(u) −
∫u

0

(∫u−x

0
f ′(y)dy − 1

)
dGaU+bV (x)

=
∫u

0
f ′(y)(1 −GaU+bV

(
u − y))dy + 1 −GaU+bV (u).

(3.9)

Let V be an operator, and let g be a positive function, define

Vg(u) = inf
(a,b)∈U

λ

c1(a) + c2(b)

[∫u

0
g
(
y
)(
1 −GaU+bV

(
u − y))dy + 1 −GaU+bV (u)

]
. (3.10)

First we will show the existence of a solution. If no reinsurance is taken to every
subportfolio, the survival probability δ1(u) satisfied the equation (See Rolski et al. [14]) as
follows:

δ′1(u) =
λ

c1 + c2

[
δ1(u) −

∫u

0
δ1(u − x)dGU+V (x)

]

=
λ

c1 + c2

[∫u

0
δ′1
(
y
)(
1 −GU+V

(
u − y))dy + 1 −GU+V (u)

]
.

(3.11)

Let

g0(u) =
(c1 + c2)δ′1(u)
λ(E(U + V ))

=
δ′1(u)
δ1(0)

, (3.12)

where δ1(0) = (λE(U+V ))/(c1+c2) (this result can be found in Schmidli [13]Appendix D.1.)
Next we define recursively gn(u) = Vgn−1(u). Because

g1(u) = Vg0(u)

= inf
(a,b)∈U

λ

c1(a) + c2(b)

[∫u

0
g0
(
y
)(
1 −GaU+bV

(
u − y))dy + 1 −GaU+bV (u)

]

≤ λ

c1 + c2

[∫u

0
g0
(
y
)(
1 −GU+V

(
u − y))dy + 1 −GU+V (u)

]

=
λ

c1 + c2

[∫u

0

δ′1
(
y
)

δ1(0)
(
1 −GU+V

(
u − y))dy + 1 −GU+V (u)

]
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=
1

δ1(0)
λ

c1 + c2

[∫u

0
δ′1
(
y
)(
1 −GU+V

(
u − y))dy + (1 −GU+V (u))δ1(0)

]

≤ 1
δ1(0)

λ

c1 + c2

[∫u

0
δ′1
(
y
)(
1 −GU+V

(
u − y))dy + (1 −GU+V (u))

]

=
δ′1(u)
δ1(0)

= g0(u).

(3.13)

Then g1(u) ≤ g0(u). We conclude that gn(u) is decreasing in n. Indeed, suppose that gn−1(u) ≥
gn(u). Let (an, bn) be the points where Vgn−1(u) attains the minimum. Such a pair of points
exist because the right side of (3.8) is continuous in both a and b, the set {(a, b) : c1(a)+c2(b) ≥
0} is compact, and the right side of (3.8) converges to infinity as (a, b) approach the point
(a0, b0) where c1(a0) = 0, c2(b0) = 0. Then

gn(u) − gn+1(u) = Vgn−1(u) − Vgn(u)

≥ λ

c1(an) + c2(bn)

[∫u

0

(
gn−1

(
y
) − gn

(
y
))(

1 −GanU+bnV
(
u − y))dy

]
≥ 0.

(3.14)

So gn(u) ≥ gn+1(u) > 0, and we have g(u) = limn→∞gn(u) exists point wise. By the bounded
convergence, for each u, a, and b

lim
n→∞

∫u

0
gn

(
y
)(
1 −GaU+bV

(
u − y))dy =

∫u

0
g
(
y
)(
1 −GaU+bV

(
u − y))dy. (3.15)

Let a, b be points which Vg(u) attains its minimum. For

gn(u) =
λ

c1(an) + c2(bn)

[
1 −GanU+bnV (u) +

∫u

0
gn−1

(
y
)(
1 −GanU+bnV

(
u − y))dy

]

≤ λ

c1(a) + c2(b)

[
1 −GaU+bV (u) +

∫u

0
gn−1

(
y
)(
1 −GaU+bV

(
u − y))dy

]
.

(3.16)

So g(u) ≤ Vg(u) by letting n → ∞. On the other hand, gn(z) is decreasing, then

gn(u) =
λ

c1(an) + c2(bn)

[
1 −GanU+bnV (u) +

∫u

0
gn−1

(
y
)(
1 −GanU+bnV

(
u − y))dy

]

≥ λ

c1(an) + c2(bn)

[
1 −GanU+bnV (u) +

∫u

0
g
(
y
)(
1 −GanU+bnV

(
u − y))dy

]

≥ λ

c1(a) + c2(b)

[
1 −GaU+bV (u) +

∫u

0
g
(
y
)(
1 −GaU+bV

(
u − y))dy

]
.

(3.17)
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So g(u) = Vg(u). Define f(u) = 1+
∫u
0 g(x)dx. By the bounded convergence, f(u) fulfills (3.8).

Then f(u) is increasing, continuously differentiable and bounded by (c1 + c2)/(λE(U + V )).
From (3.8), f ′(0) > 0. Let x0 = inf{z : f ′(z) = 0}. Because f(u) is strictly increasing in [0, x0],
we must have GaU+bV (x0) = 1 and ax + by = 0 for all points of increase of GaU+bV (z). But this
would be a = b = 0, which is impossible. Thus f(u) is strictly increasing.

Next we want to show the uniqueness of the solution. Suppose that f1(u) and f2(u)
are the solutions to (3.8) with f1(0) = f2(0) = 1. Define gi(u) = f ′

i(u), and (ai, bi) is the value
which minimize (3.8). To a constant x > 0, because the right hand of (3.8) is continuous both
in a and b and tends to infinity as c1(a) + c2(b) approach 0, the c1(a) + c2(b) is bounded away
from 0 on (0, x]. Let x1 = inf{minic1(ai(x)) + c2(bi(x)) : 0 ≤ u ≤ x}/(2λ) and xn = nx1 ∧ x.
Suppose we have proved that f1(u) = f2(u) on [0, xn]. For n = 0, it is obviously true. Then for
u ∈ [xn, xn+1], withm = supxn≤u≤xn+1 |g1(u) − g2(u)|

g1(u) − g2(u) = Vg1(u) − Vg2(u)

≤ λ

c1(a2) + c2(b2)

[∫u

0

(
g1
(
y
) − g2

(
y
))(

1 −Ga2U+b2V
(
u − y))dy

]

=
λ

c1(a2) + c2(b2)

[∫u

xn

(
g1
(
y
) − g2

(
y
))(

1 −Ga2U+b2V
(
u − y))dy

]

≤ λ

c1(a2) + c2(b2)
m(u − xn)

≤ λ

c1(a2) + c2(b2)
m(xn+1 − xn)

≤ λ

c1(a2) + c2(b2)
mx1

≤ λ

c1(a2) + c2(b2)
m
c1(a2) + c2(b2)

2λ
=
m

2
.

(3.18)

Once revers the role of g1(u) and g2(u), then |g1(u) − g2(u)| ≤ m/2. This is impossible for all
u ∈ [xn, xn+1] if m/= 0. This shows that f1(u) = f2(u) on [0, xn+1]. So f1(u) = f2(u) on [0, x].
The uniqueness is true from the arbitrary of x.

Denoted by a∗(u), b∗(u) the value of a and b maximize (3.6).
From the next theorem, so-called verification theorem, we conclude that a solution to

the HJB equation which satisfies some conditions really is the desired value function.

Theorem 3.2. Let f(u) be the unique solution to the HJB equation (3.8) with f(0) = 1. Then f(u) =
δ(u)/δ(0). An optimal strategy is given by (a∗t , b

∗
t ), which minimize (3.8), and {Rt} is the process

under the optimal strategy.

Proof. Let (a, b) be an arbitrary strategy with the risk processes {Ra,b
t }. Since f(u) is bounded,

then for each t ≥ 0,

E

( ∑
n:σn≤t

∣∣∣f
(
Ra,b(σn)

)
− f

(
Ra,b(σn−)

)∣∣∣
)
<∞. (3.19)
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LetA denotes the generator of {Ra,b
t }. From Theorem 11.2.2 in Rolski et al. [14], we know that

f ∈ D(A), where D(A) is the domain of A. Then

f
(
Ra,b
τa,b∧t

)
−
∫ τa,b∧t

0

⎡
⎢⎢⎢⎣(c1(a) + c2(b))f

′
(
Ra,b
s

)

+λ

(∫Ra,bt /a

0

∫ (Ra,bt −ax)/b

0
f
(
Ra,b
s − ax − by

)
dG

(
x, y

) − f
(
Ra,b
s

))
⎤
⎥⎥⎥⎦ds

(3.20)

is a martingale. From (3.6) we know that {f(Ra,b
t )1τa,b>t} is a supermartingale, then

E
(
f
(
Ra,b
t

)
1τa,b>t

)
= E

(
f
(
Ra,b
τa,b∧t

))
≤ f(u). (3.21)

If (a, b) = (a∗, b∗), then {f(Rτ∗∧t)} is a martingale. So E(f(Rt)1τ∗>t) = f(u). Let t → ∞,
from the bounded property of f(u), we have

f(∞)δa,b(u) = f(∞)P[τa,b = ∞] ≤ f(u) = f(∞)δa∗,b∗(u) = δ(u)f(∞). (3.22)

For u = 0, we obtain that f(∞) = 1/δ(0). Then δ(u) = f(u)/f(∞) = f(u)δ(0).
Furthermore, the associated policy with (a∗, b∗) is indeed an optimal strategy.

4. Lundberg Bounds and the Change of Measure Formula

In Section 3, we have seen when considering the dynamic reinsurance police the explicit
expression of ruin probability is not easy to derive. Therefore the asymptotic optimal
strategies are very important. In the classical risk theory, we have Lundberg bounds and
Cramér-Lundberg approximation for the ruin probability. The former gives the upper and
lower bounds for ruin probability, and the latter gives the asymptotic behavior of ruin
probability as the capital tends to infinity. They both provide the useful information in getting
the nature of underlying risks. In researching the two-dimensional risk model controlled by
reinsurance strategy, we can also discuss the analogous problems. References are Schmidli
[15, 16], Hipp and Schmidli [17], and so forth. The key in researching the asymptotic behavior
is adjustment coefficient. Next we will discuss it in detail.

Assume that Eer(U+V ) < ∞ for r > 0. To the fixed (a, b), let R(a, b) be adjustment
coefficient satisfied

θ(r;a, b) := λ
(
Eer(aU+bV ) − 1

)
− r(c1(a) + c2(b)) = 0. (4.1)
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We focus on R = sup(a,b)∈[0,1]×[0,1]R(a, b), which is the adjustment coefficient for our
problem. By the assumption that c1(a) and c2(b) are continuous, then θ(r;a, b) is continuous
both in a and b. Moreover

∂2θ(r;a, b)
∂r2

= λE(aU + bV )2er(aU+bV ) > 0,

θ(0;a, b) = 0, θ(R(a, b);a, b) = 0.

(4.2)

We can get that θ(r;a, b) is strictly convex in r and θ(R;a, b) > 0. If r < R, then there are a
and b such that R(a, b) > r and θ(r;a, b) < 0. Because θ(R;a, b) is continuous in a and b, also
[0, 1] × [0, 1] is compact, there exist ã and b̃ for which θ(R; ã, b̃) = 0.

Lemma 4.1. Suppose that M(r, a, b), c1(a), and c2(b) are all twice differentiable (with respect to
r, a, and b). Moreover that

c′′1(a) ≤ 0, c′′2(b) ≤ 0, (4.3)

then there is a unique maximum of R(a, b).

Proof. R(a, b) satisfies (4.1):

λ
(
EeR(a,b)(aU+bV ) − 1

)
− (c1(a) + c2(b))R(a, b) = 0. (4.4)

Let M(r, a, b) = Eer(aU+bV ), and Mr(r, a, b), Ma(r, a, b), Mb(r, a, b), Ra, and Rb denote the
partial derivatives.

Taking partial derivative of (4.4)with respect to a,

λMrRa(a, b) + λMa − c′1(a)R(a, b) − (c1(a) + c2(b))Ra(a, b) = 0. (4.5)

Because the left-side hand of (4.4) is a convex function in r, we have λMr −(c1(a)+c2(b)) > 0.
So

Ra(a, b) = − λMa − c′1(a)R(a, b)
λMr − (c1(a) + c2(b))

. (4.6)

Similarly

Rb(a, b) = − λMb − c′2(b)R(a, b)
λMr − (c1(a) + c2(b))

. (4.7)
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Let (ã, b̃) be the point such that Ra(ã, b̃) = Rb(ã, b̃) = 0. Then

Ra,a

(
ã, b̃

)
= −

λMa,a

(
R
(
ã, b̃

)
, ã, b̃

)
− c′′1(a)R

(
ã, b̃

)

λMr

(
R
(
ã, b̃

)
, ã, b̃

)
−
(
c1(ã) + c2

(
b̃
))

= −
λE

(
R
(
ã, b̃

)
U
)2
eR(ã,b̃)(ãU+b̃V ) − c′′1(ã)R

(
ã, b̃

)

λMr

(
R
(
ã, b̃

)
, ã, b̃

)
−
(
c1(ã) + c2

(
b̃
)) < 0,

Rb,b

(
ã, b̃

)
= −

λMb,b

(
R
(
ã, b̃

)
, ã, b̃

)
− c′′2(b)R

(
ã, b̃

)

λMr

(
R
(
ã, b̃

)
, ã, b̃

)
−
(
c1(ã) + c2

(
b̃
))

= −
λE

(
R
(
ã, b̃

)
V
)2
eR(ã,b̃)(ãU+b̃V ) − c′′2

(
b̃
)
R
(
ã, b̃

)

λMr

(
R
(
ã, b̃

)
, ã, b̃

)
−
(
c1(ã) + c2

(
b̃
)) < 0,

Ra,b

(
ã, b̃

)
= −

λMa,b

(
R
(
ã, b̃

)
, ã, b̃

)

λMr

(
R
(
ã, b̃

)
, ã, b̃

)
−
(
c1(ã) + c2

(
b̃
)) .

(4.8)

While

Ra,a

(
ã, b̃

)
Rb,b

(
ã, b̃

)
− R2

a,b

(
ã, b̃

)

=

[
λMa,a

(
R
(
ã, b̃

)
, ã, b̃

)
− c′′1(a)R

(
ã, b̃

)][
λMb,b

(
R
(
ã, b̃

)
, ã, b̃

)
− c′′2(b)R

(
ã, b̃

)]

[
λMr

(
R
(
ã, b̃

)
, ã, b̃

)
−
(
c1(ã) + c2

(
b̃
))]2

−
λ2M2

a,b

(
R
(
ã, b̃

)
, ã, b̃

)

[
λMr

(
R
(
ã, b̃

)
, ã, b̃

)
−
(
c1(ã) + c2

(
b̃
))]2

=

[
Ma,a

(
R
(
ã, b̃

)
, ã, b̃

)
Mb,b

(
R
(
ã, b̃

)
, ã, b̃

)
−M2

a,b

(
R
(
ã, b̃

)
, ã, b̃

)]
λ2

[
λMr

(
R
(
ã, b̃

)
, ã, b̃

)
−
(
c1(ã) + c2

(
b̃
))]2

+
c′′1(a)c

′′
2(b)R

2 +
[
Mb,b

(
R
(
ã, b̃

)
, ã, b̃

)
c′′1(a) +Ma,a

(
R
(
ã, b̃

)
, ã, b̃

)
c′′2(b)R

(
ã, b̃

)]
λR

[
λMr

(
R
(
ã, b̃

)
, ã, b̃

)
−
(
c1(ã) + c2

(
b̃
))]2 .

(4.9)

From Hölder inequality, we have that the first term of above expression is positive. Owning
to the conditions given by the lemma, we also find that the second term of above is positive.
Therefore, R(ã, b̃) is a maximum value.
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We now let ψ(u) be the ruin probability under the optimal strategy. First we give a
Lundberg upper bound of ψ(u).

Theorem 4.2. The minimal ruin probability ψ(u) is bounded by e−Ru, that is, ψ(u) < e−Ru.

Proof. To the fixed proportional reinsurance (ã, b̃), ψa,b(u) can be calculated by the result on
ruin probability of the classical risk model. We have the following expression of ψã,b̃(u):

ψã,b̃(u) = P
(
τã,b̃ <∞

)

= E(R)
[
exp

{
RRã,b̃

τã,b̃

}]
e−Ru

< e−Ru.

(4.10)

So the minimal ruin probability is bounded by ψ(u) ≤ ψã,b̃(u) < e−Ru.

From Theorem 4.2, the adjustment coefficient R can be looked upon as a risk measure
to estimate the optimal ruin probability.

For the considerations below we define the strategy: if u < 0, we let a∗(u) = b∗(u) = 1.
In order to obtain the lower bound, we start by defining a processMt as follows:

Mt = exp

{
−R(Rt − u) −

∫ t

0
θ(R;a∗(Rs), b∗(Rs))ds

}

= exp

{
Nt∑
n=1

R(a∗(Rσn−)Un + b∗(Rσn−)Vn) −
∫ t

0
λ
(
EeR(a

∗(Rs)U+b∗(Rs)V ) − 1
)
ds

}
.

(4.11)

Lemma 4.3. The processMt is a strictly positive martingale with mean value 1.

Proof. First we will show that {Mσn∧t} is a martingale. Indeed, EMσ0∧t = EMσ0 = 1, and we
suppose that EMσn−1∧t = 1. Given Fσn−1 , the progress {(Xt, Yt)} is deterministic on [σn−1, σn).
We split into the event {σn > t} and {σn ≤ t}. From the Markov property of Mt and for
σn−1 < t, we have

EMσn∧t = E{E[Mσn∧t | Fσn−1]}
= E{E[Mσn∧t |Mσn−1]}
= E{E[1σn>tMt |Mσn−1]} + E{E[1σn≤tMσn |Mσn−1]}.

(4.12)

For convenience, let A = E{E[1σn>tMt | Mσn−1]} and B = E{E[1σn≤tMσn | Mσn−1]}. Next we
calculate A and B, respectively,

A = E{E[1σn>tMt |Mσn−1]}

= E

{
1σn>t>σn−1E

[
Mσn−1 exp

{
−λ

∫ t

σn−1

(
EeR(a

∗(Rs)U+b∗(Rs)V ) − 1
)
ds

}
|Mσn−1

]}
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= EMσn−1P(σn−1 < t < σn) exp

{
−λ

∫ t

σn−1

(
EeR(a

∗(Rs)U+b∗(Rs)V ) − 1
)
ds

}

= e−λ(t−σn−1) exp

{
−λ

∫ t

σn−1

(
EeR(a

∗(Rs)U+b∗(Rs)V ) − 1
)
ds

}

= exp

{
−λ

∫ t

σn−1
EeR(a

∗(Rs)U+b∗(Rs)V )ds

}
,

B = E{E[1σn≤tMn |Mσn−1]}

= E

{
1σn≤tE

[
Mσn−1 exp

{
R(a∗(Rσn−)U + b∗(Rσn−)V )

−λ
∫σn

σn−1

(
EeR(a

∗(Rs)U+b∗(Rs)V ) − 1
)
ds

}
|Mσn−1

]}

=
∫ t

σn−1
E exp

{
R(a∗(Rs−)U + b∗(Rs−)V ) − λ

∫ s

σn−1

(
EeR(a

∗(Rw)U+b∗(Rw)V ) − 1
)
dw

}

× λe−λ(s−σn−1)ds

=
∫ t

σn−1
λEeR(a

∗(Rs−)U+b∗(Rs−)V ) exp

{
−λ

∫s

σn−1
EeR(a

∗(Rw)U+b∗(Rw)V )dw

}
ds.

(4.13)

Let f(s) = λEeR(a
∗(Rs−)U+b∗(Rs−)V ), then

EMσn∧t = e
− ∫ t

σn−1 f(s)ds +
∫ t

σn−1
f(s)e−

∫s
σn−1 f(w)dwds. (4.14)

Because (e−
∫ t
σn−1 f(s)ds)′ = f(t)e−

∫ t
σn−1 f(w)dw, using the integration by part, we have EMσn∧t = 1.

From above we know that E[Mσn∧t | Fσn−1] =Mσn−1∧t. Furthermore, following the assumption
that EeR(U+V ) <∞, then

exp

{
Nt∑
n=1

R(a∗(Rσn−)Un + b∗(Rσn−)Vn)

}
≤ exp

{
Nt∑
n=1

R(Un + Vn)

}
<∞. (4.15)

So for each t, {Mσn∧t} is uniform integrable. This finishes the proof of Lemma 4.3.

Based on the martingale {M(t), t ≥ 0} given above, we consider a family of new
measure P∗

t [A] = E[Mt;A], A ∈ Ft. From the Kolmogorov’s extension theorem, there exists
a probability measure P∗ such that the restriction of P∗ to Ft is P∗

t . Moreover, if T is an Ft-
stopping time and A ⊂ {T < ∞} such that A ∈ FT , then P∗[A] = E[MT ;A]. The change of
measure technique is a powerful tool in investigating ruin probability. The following theorem
gives us the feature of Rt under the new measure.
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Theorem 4.4. Under the new measure P∗, the process {Rt} is a piecewise deterministic Markov
process (PDMP for short) with jump intensity λ∗(x) = λEeR(a

∗(x)U+b∗(x)V ) and claim size distribution

G∗
x(u, v) =

1
EeR(a∗(x)U+b∗(x)V )

∫u

0

∫v

0
eR(a

∗(x)r+b∗(x)s)dG(r, s). (4.16)

The premium rates for each subportfolios are c1(a∗(x)) and c2(b∗(x)), respectively.

Proof. Let B be a Borel set. Refer to Lemma C.1 in Schmidli [13], we have

P∗[Rt+s ∈ B | Ft] = E
[
M−1

t Mt+s;Rt+s ∈ B | Ft

]

= E
[
M−1

t Mt+s;Rt+s ∈ B | Xt

]
.

(4.17)

This means that under the new measure P∗, {Rt} is still a Markov process. On the other
hand, the path between jumps is deterministic. So {Rt} is a PDMP under P∗. Next we will
calculate the distribution of σ1 (the time of the first claim happens), U, and V . Let rs denote
the deterministic path on [0, σ1). The distribution of σ1 can be obtained by

P∗[σ1 > t] = E[Mt;σ1 > t]

= e−λt exp

{
−
∫ t

0
λ
(
EeR(a

∗(Rs)U+b∗(Rs)V ) − 1
)
ds

}

= exp

{
−
∫ t

0
λEeR(a

∗(Rs)U+b∗(Rs)V )ds

}
.

(4.18)

So λ∗(x) = λEeR(a
∗(x)U+b∗(x)V ).

Next we consider the first claim size (U1, V1). Let B1, B2 be two Borel sets.

P∗[σ1 ≤ t, U1 ∈ B1, V1 ∈ B2]

= E[Mt;σ1 ≤ t, U1 ∈ B1, V1 ∈ B2]

= E[E[Mt;σ1 ≤ t, U1 ∈ B1, V1 ∈ B2 | Fσ1]]

= E[Mσ1 ;σ1 ≤ t, U1 ∈ B1, V1 ∈ B2]

=
∫ t

0

∫∞

0

∫∞

0
exp

{
R(a∗(rs)u + b∗(rs)v)

−λ
∫s

0

(
EeR(a

∗(rw)U1+b∗(rw)V1) − 1
)
dw

}
1B1×B2(u, v)dG(u, v)λe

−λsds

=
∫ t

0

∫∞

0

∫∞

0
1B1×B2(u, v)dG

∗(u, v)λ∗(rs)e−
∫s
0 λ

∗(rw)dwds.

(4.19)
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At last, since the set of trajectories of Rt is same under P and P∗, it is clear that the
deterministic premium rates remain c1(a∗) and c2(b∗).

If we consider the drift of Rt under the new measure P∗, then

c1(a∗(x)) + c2(b∗(x)) − λ∗(x)
∫∞

0

∫∞

0
(a∗(x)u + b∗(x)v)dG∗

x(u, v)

= c1(a∗(x)) + c2(b∗(x)) − λEeR(a∗(x)U+b∗(x)V )

×
∫∞

0

∫∞

0
(a∗(x)u + b∗(x)v)

1
EeR(a∗(x)U+b∗(x)V )

eR(a
∗(x)u+b∗(x)v)dG(u, v)

= c1(a∗(x)) + c2(b∗(x)) − λER(a∗(x)U + b∗(x)V )eR(a
∗(x)U+b∗(x)V )

= − ∂θ
∂R

(R;a∗(x), b∗(x)).

(4.20)

From the convexity property of θ(r;a∗(x), b∗(x)) about r, we know that θ′r(R;a
∗(x), b∗(x)) >

0. This implies that P∗[τ∗ <∞] = 1, and

ψ(u) = E∗
[
eRRτ∗+

∫τ∗
0 θ(R;a∗(Rs),b∗(Rs))ds

]
e−Ru. (4.21)

The following theorem gives a lower bound for ψ(u).

Theorem 4.5. Let

C− = inf
z

1
E
[
eR(U+V−z) | U + V > z

] , (4.22)

where z is taken over the set {z : P[U + V > z] > 0}. Then ψ(u) ≥ C−e−Ru.

Proof. Suppose that Rτ∗− = z, then

E∗[exp{RRτ∗} | Rτ∗− = z
]

= E∗[exp{R(z − a∗(z)U − b∗(z)V )} | a∗(z)U + b∗(z)V > z
]

=
1

E
[
exp{R((a∗(z)U + b∗(z)V ) − z)} | a∗(z)U + b∗(z)V > z

]

=
1

E
[
exp

{
Ra∗(z)b∗(z)

[
U

b∗(z)
+

V

a∗(z)
− z

a∗(z)b∗(z)

]}
| U

b∗(z)
+

V

a∗(z)
>

z

a∗(z)b∗(z)

]

≥ inf
a,b

1

E
[
exp

{
Rab

[
U

b∗(z)
+

V

a∗(z)
− z

a∗(z)b∗(z)

]}
| U

b∗(z)
+

V

a∗(z)
>

z

a∗(z)b∗(z)

] .

(4.23)
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Thus,

E∗[exp{RRτ∗}
]

≥ inf
a,b,z

1

E
[
exp

{
R

[
ab

b∗(z)
U +

ab

a∗(z)
V − ab

a∗(z)b∗(z)
z

]}
| ab

b∗(z)
U +

ab

a∗(z)
V >

ab

a∗(z)b∗(z)
z

]

≥ inf
a,b,z

1
E
[
exp{R[abU + abV − abz]} | abU + abV > abz

]

≥ inf
z

1
E
[
exp{R[U + V − z]} | U + V > z

] = C−.

(4.24)

Then ψ(u) ≥ E∗[exp{RRτ∗}]e−Ru ≥ C−e−Ru.

5. The Cramér-Lundberg Approximation

In this section we will consider the asymptotic behavior of ψ(x)eRx, called Cramér-Lundberg
approximation. First from the Fubini’s theorem, we transform the expression below:

∫x/a∗(x)

0

∫ (x−a∗(x)u)/b∗(x)

0
ψ(x − a∗(x)u − b∗(x)v)dG(u, v)

=
∫x/a∗(x)

0

∫ (x−a∗(x)u)/b∗(x)

0

(∫x−a∗(x)u−b∗(x)v

0
ψ ′(z)dz + ψ(0)

)
dG(u, v)

= ψ(0)P[a∗(x)U + b∗(x)V < x] +
∫x

0

∫x−r

0
ψ ′(z)dzdGa∗(x)U+b∗(x)V (r)

= ψ(0)P[a∗(x)U + b∗(x)V < x] +
∫x

0

∫x−z

0
dGa∗(x)U+b∗(x)V (r)ψ ′(z)dz

= ψ(0)P[a∗(x)U + b∗(x)V < x] +
∫x

0
P(a∗(x)U + b∗(x)V < x − z)ψ ′(z)dz

= ψ(0)
∫x/a∗(x)

0

∫ (x−a∗(x)u)/b∗(x)

0
dG(u, v)

+
∫x

0

(∫ (x−z)/a∗(x)

0

∫ (x−a∗(x)u)/b∗(x)

0
dG(u, v)

)
ψ ′(z)dz

= ψ(0)
∫x/a∗(x)

0

∫ (x−a∗(x)u)/b∗(x)

0
dG(u, v) +

∫x

0
ψ ′(z)Ga∗(x)U+b∗(x)V (x − z)dz.

(5.1)
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Because ψ(x) = 1 − δ(x), then the HJB equation can be changed into

(c1(a∗(x)) + c2(b∗(x)))ψ ′(x)

+ λ
[
1 −Ga∗(x)U+b∗(x)V (x) − ψ(0)

(
1 −Ga∗(x)U+b∗(x)V (x)

)

−
∫x

0
ψ ′(z)

(
1 −Ga∗(x)U+b∗(x)V (x − z))dz

]
= 0.

(5.2)

Let f(x) = ψ(x)eRx, then ψ ′(x)eRx = f ′(x) − Rf(x), and

[c1(a∗(x)) + c2(b∗(x))]
(
f ′(x) − Rf(x))

+ λ
[
δ(0)

(
1 −Ga∗(x)U+b∗(x)V (x)

)
eRx

+
∫x

0

(
Rf(z) − f ′(z)

)(
1 −Ga∗(x)U+b∗(x)V (x − z))eR(x−z)dz

]
= 0.

(5.3)

Because ψ(x) is strictly decreasing, then ψ ′(x)eRx < 0. So f ′(x) < Rf(x). Thus f ′(x) is
bounded from above. Let g(x) = Rf(x) − f ′(x), we get

λ

[
δ(0)

(
1 −Ga∗(x)U+b∗(x)V (x)

)
eRx +

∫x

0
g(z)

(
1 −Ga∗(x)U+b∗(x)V (x − z))eR(x−z)dz

]

− g(x)[c1(a∗(x)) + c2(b∗(x))] = 0.

(5.4)

Changing the order of the integral, we have

λ

[
δ(0)

(
1 −Ga∗(x)U+b∗(x)V (x)

)
eRx +

∫x

0
g
(
x − y)(1 −Ga∗(x)U+b∗(x)V

(
y
))
eRydy

]

− g(x)[c1(a∗(x)) + c2(b∗(x))] = 0.

(5.5)

If we replace a∗(x), b∗(x) by ã, b̃, we will obtain the inequality

λ

[
δ(0)

(
1 −GãU+b̃V (x)

)
eRx +

∫x

0
g
(
x − y)(1 −GãU+b̃V

(
y
))
eRydy

]

− g(x)
[
c1(ã) + c2

(
b̃
)]

≥ 0.

(5.6)



Discrete Dynamics in Nature and Society 21

Note that

EeR(ãU+b̃V ) =
∫∞

0

∫∞

0
eR(ãu+b̃v)dG(u, v)

=
∫∞

0
eRxdGãU+b̃V (x)

= 1 + R
∫∞

0
eRy

(
1 −GãU+b̃V

(
y
))
dy.

(5.7)

From the definition of ã and b̃,

λ
[
EeR(ãU+b̃V ) − 1

]
=
(
c1(ã) + c2

(
b̃
))
R. (5.8)

Thus c1(ã) + c2(b̃) = λ
∫∞
0 eRy(1 − GãU+b̃V (y))dy. Take the expression of c1(ã) + c2(b̃) into the

above inequality, and obtain

λ

[
δ(0)

(
1 −GãU+b̃V (x)

)
eRx +

∫x

0
g
(
x − y)(1 −GãU+b̃V

(
y
))
eRydy

]

− g(x)λ
∫∞

0
eRy

(
1 −GãU+b̃V

(
y
))
dy ≥ 0.

(5.9)

After transforming

∫x

0

[
g
(
x − y) − g(x)]

(
1 −GãU+b̃V

(
y
))
eRydy

≥
∫∞

x

(
1 −GãU+b̃V

(
y
))
eRydy · g(x) − δ(0)(1 −GãU+b̃V (x)

)
eRx.

(5.10)

From Lemma A.12 in Schmidli [13], we know limx→∞(1 − GãU+b̃V (x))e
Rx = 0. First we

consider two functions f(x) = ψ(x)eRx and g(x) = Rf(x) − f ′(x), which are important in
investigating the Cramér-Lundberg approximation. Repeating the proof of Lemma4.10 in
Schmidli [13] (note (5.10) will be uesd in the proof) gives the analogous results.

Lemma 5.1.
(a) g(x) is bounded. In particular, f ′(x) is bounded.
(b) Let ξ = lim supx→∞g(x)/R, then lim supx→∞f(x) = ξ. In particular, ξ > 0 if C− > 0.
(c) For any β > 0, x0 > 0, and ε > 0, there is an x ≥ x0 such that f(y) > ξ − ε for

y ∈ [x − β, x].

The main result of this section is as follows.
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Theorem 5.2. Suppose thatC− > 0. Then limu→∞ψ(u)eRu = ξ > 0, where ξ is defined in Lemma 5.1.

Proof. Choose β > 0, ε > 0. There exists x0 ≥ β such that f(x) > ξ − ε for x ∈ [x0 − β, x0]. If
x ≥ 2x0 and define T = inf{t > 0, Rt < x0}, then

f(x) = E∗
[
eRRτ∗+

∫τ∗
0 θ(R;a∗(Rs),b∗(Rs))ds

]

= E∗
[
E∗

[
eRRτ∗+

∫τ∗
0 θ(R;a∗(Rs),b∗(Rs))ds | FT

]]

= E∗
[
E∗

[
eRRτ∗+

∫τ∗
T θ(R;a∗(Rs),b∗(Rs))ds | RT

]
e
∫T
0 θ(R;a

∗(Rs),b∗(Rs))ds
]

≥ E∗[f(R(T))] ≥ E∗[f(R(T))1x0−β≤RT≤x0
]

> (ξ − ε)P∗[x0 − RT ≤ β].

(5.11)

By choosing β appropriately, we can get P∗[x0 − RT ≤ β] > 1 − ε. Then f(x) > (ξ − ε)(1 − ε).
Thus

lim inf
x→∞

f(x) ≥ ξ = lim sup
x→∞

f(x). (5.12)

By Lemma 5.1, this theorem can be proved.

6. Convergence of the Strategies

After discussing the asymptotic behavior of ψ(u)eRu, in this section we will study the
behavior of the optimal strategies (a∗, b∗) when the capital is large enough. If the optimal
strategies converge, then using the convergent limit value we can obtain the asymptotic
behavior of the optimal ruin probability. The following theorem indicates the convergence
of (a∗, b∗).

Theorem 6.1. Suppose that C− > 0. Then limx→∞f ′(x) = 0. Moreover if (ã, b̃) is unique, then
limx→∞a∗(x) = ã, limx→∞b∗(x) = b̃.

Proof. First we replace ψ(x) by f(x)e−Rx in the HJB equation to get

[c1(a∗(x)) + c2(b∗(x))]
[
f ′(x) − Rf(x)]

− λ
[
Ga∗(x)U+b∗(x)V (x)eR(x) −

∫x

0
f
(
x − y)eRydGa∗(x)U+b∗(x)V

(
y
) − eRx + f(x)

]
= 0.

(6.1)

That is

λ

[∫x

0
f
(
x − y)eRydGa∗(x)U+b∗(x)V

(
y
) − f(x)

]
+ λeRx

(
1 −Ga∗(x)U+b∗(x)V (x)

)

+ [c1(a∗(x)) + c2(b∗(x))]f ′(x) − [c1(a∗(x)) + c2(b∗(x))]Rf(x) = 0.

(6.2)
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Then

[c1(a∗(x)) + c2(b∗(x))]f ′(x)

= −λ
[∫x

0
f
(
x − y)eRydGa∗(x)U+b∗(x)V

(
y
) − f(x) − ξ

(
EeR(a

∗(x)U+b∗(x)V ) − 1
)]

− λξ
(
EeR(a

∗(x)U+b∗(x)V ) − 1
)
+ [c1(a∗(x)) + c2(b∗(x))]Rf(x)

− [c1(a∗(x)) + c2(b∗(x))]Rξ + [c1(a∗(x))c2(b∗(x))]Rξ − λeRx
(
1 −Ga∗(x)U+b∗(x)V (x)

)

= −λ
[∫x/a∗(x)

0

∫ (x−a∗(x)u)/b∗(x)

0
f(x − a∗(x)u − b∗(x)v)e−R(a∗(x)u+b∗(x)v)dG(u, v) − f(x)

−ξ
(
EeR(a

∗(x)U+b∗(x)V ) − 1
)]

− ξθ(R;a∗(x), b∗(x))

+ [c1(a∗(x)) + c2(b∗(x))]R
(
f(x) − ξ) − λeRx(1 −Ga∗(x)U+b∗(x)V (x)

)

< λ

∣∣∣∣∣

[∫x/a∗(x)

0

∫ (x−a∗(x)u)/b∗(x)

0
f(x − a∗(x)u − b∗(x)v)e−R(a∗(x)u+b∗(x)v)dG(u, v) − f(x)

−ξ
(
EeR(a

∗(x)U+b∗(x)V ) − 1
)]∣∣∣∣∣

+
∣∣[c1(a∗(x)) + c2(b∗(x))]R

(
f(x) − ξ)∣∣ − ξθ(R;a∗(x), b∗(x)).

(6.3)

Note that when x → ∞
∣∣∣∣∣

[∫x/a∗(x)

0

∫ (x−a∗(x)u)/b∗(x)

0
f(x − a∗(x)u − b∗(x)v)e−R(a∗(x)u+b∗(x)v)dG(u, v) − f(x)

−ξ
(
EeR(a

∗(x)U+b∗(x)V ) − 1
)]∣∣∣∣∣ <

ε

4
,

∣∣[c1(a∗(x)) + c2(b∗(x))]R
(
f(x) − ξ)∣∣ < ε

4
.

(6.4)

Then

[c1(a∗(x)) + c2(b∗(x))]f ′(x) < −ξθ(R;a∗(x), b∗(x)) + ε

2
. (6.5)

If for each ε > 0, there exists x0 such that c1(a∗(x0)) + c2(b∗(x0)) < ε. Because θ(R;a∗(x0),
b∗(x0)) > 0, and f ′(x) is bounded, under this case we cannot get (6.5). So c1(a∗(x))+c2(b∗(x))
cannot be arbitrary small. That means c1(a∗(x)) + c2(b∗(x)) are bounded away from 0.
Therefore lim supx→∞f

′(x) ≤ 0. Clearly, we have lim infx→∞f ′(x) = Rξ−lim supx→∞g(x) = 0.
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Thus limx→∞f ′(x) = 0. If x is large enough, we get λeRx(1− ∫x/a∗(x)
0

∫ (x−a∗(x)u)/b∗(x)
0 dG(u, v)) <

ε/4 and [c1(a∗(x)) + c2(b∗(x))]|f ′(x)| < ε/4. Thus we have

−ε
4
< [c1(a∗(x)) + c2(b∗(x))]f ′(x) < −ξθ(R;a∗(x), b∗(x)) + 3ε

4
, (6.6)

which is equal to

0 ≤ ξθ(R;a∗(x), b∗(x)) < ε. (6.7)

This proves that limx→∞θ(R;a∗(x), b∗(x)) = 0. If (ã, b̃) is unique, this is only possible if
limx→∞a∗(x) = ã, limx→∞b∗(x) = b̃.

7. Example

To the multidimensional risk model, it seems impossible to get a closed form solution for
the optimal ruin probability ψ(u). In this section, from a numerical example, we will give an
explicit procedure to obtain an exponential upper bound of ψ(u) and the asymptotic optimal
reinsurance strategies.

Example 7.1. Suppose that Un and Vn are independent. The distribution function of them are
given by FU = 1 − e−2x and FV = 1 − e−x, respectively. So the joint distribution function of
(Un, Vn) is G(x, y) = (1 − e−2x)(1 − e−y), and the joint density function is p(x, y) = 2e−2x−y.
Then μ1 = EUn = 1/2 and μ2 = EVn = 1. Let λ = 1. The expected value principle is used for
our premium. Suppose that the relative safety loading for each subportfolios from the insurer
point of view θ1 = θ2 = 0.5, and from the reinsurer η1 = η2 = 0.7. So c1(a) = (1.7a − 0.2)/2,
c2(b) = 1.7b − 0.2.

Theorem 4.2 shows us that e−Ru is an exponential type upper bound for ψ(u). R can
be get from R = sup(a,b)∈UR(a, b), where R(a, b) satisfied (4.1), that is, λ(EeR(a,b)(aU+bV ) − 1) =

(c1(a) + c2(b))R(a, b). We can easily get when ã = 0.77 and b̃ = 0.38, R(a, b) solved from
previous equation reaches the maximum R = 0.4194. So ψ(u) ≤ e−0.4194u. Moreover, ã, b̃
work well as the optimal reinsurance constant strategies for “large” capital according to
Theorem 6.1. So the asymptotic optimal constant strategies are (ã, b̃) = (0.77, 0.38).

Remark 7.2. When considering the two-dimensional risk model without dynamic control, the
problem of the sum of two subportfolio indeed can be convert back to the one-dimensional
case (e.g., Yuen et al. [18]). If we consider the dynamic proportional reinsurance in the two-
dimensional compound Poisson risk model again from the this point, then the aggregate
process R̃t is as follows:

R̃t = Xt + Yt = u + (c1 + c2)t −
Nt∑
n=1

(Un + Vn). (7.1)
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We consider the dynamic proportional reinsurance strategy {αt} on the one-dimensional risk
model R̃t:

R̃α
t = u +

∫ t

0
(c1(αs) + c2(αs))ds −

Nt∑
n=1

ασn−(Un + Vn). (7.2)

The optimal reinsurance in one-dimensional case had been discussed in Schmidli [5]. So from
the equation λ(EeR1(α)α(U+V ) − 1) = (c1(α) + c2(α))R1(α) for some fixed α, we can calculate the
maximal adjustment coefficient R1 = 0.40412.

Obviously, R1 < R. From the point of comparing the upper bound of ψ(u), this
tells us that from the two-dimensional point of view to consider the dynamic proportional
reinsurance strategies for each subportfolio is better than considering the strategy just for the
aggregate portfolio.

Remark 7.3. Another approach based on one-dimensional risk model to deal with our
problem is that we may view each subportfolio as a one-dimensional case and discuss them,
respectively. So we can handle the example as follows. First, we consider the subportfolio
{Xa

t }. Similar to Schmidli [5], from λ(EeR(a)aU − 1) = c1(a)R(a) we derive the asymptotic
optimal constant reinsurance strategy ã = 0.504847 for {Xa

t }. Meanwhile using the same way
to {Yb

t }, we can get the asymptotic optimal reinsurance strategy b̃ = 0.504847 for {Yb
t }. Till

now, we have get a constant strategy (ã, b̃) = (0.504847, 0.504847). Next we think over the sum

of two subportfolio, that is,Rã,b̃
t = Xã

t +Y
b̃
t . From λ(EeR2(ã,b̃)(ãU+b̃V )−1) = (c1(ã)+c2(b̃))R2(ã, b̃),

the adjustment coefficient R2 = 0.40408 for {Rã,b̃
t } can be obtained.

We find that R2 < R. This implies that even though ã and b̃ are the asymptotic
optimal constant strategy for {Xa

t } and {Yb
t }, respectively, under (ã, b̃) the upper bound ruin

probability of {Rã,b̃
t } is not optimized at the same time.
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