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We define the incomplete bivariate Fibonacci and Lucas p-polynomials. In the case x =1, y = 1, we
obtain the incomplete Fibonacci and Lucas p-numbers. If x = 2, y = 1, we have the incomplete Pell
and Pell-Lucas p-numbers. On choosing x = 1, y = 2, we get the incomplete generalized Jacobsthal
number and besides for p = 1 the incomplete generalized Jacobsthal-Lucas numbers. In the case
x =1,y =1, p =1, we have the incomplete Fibonacci and Lucas numbers. If x =1,y =1,p =1,
k =|(n-1)/(p +1)], we obtain the Fibonacci and Lucas numbers. Also generating function and
properties of the incomplete bivariate Fibonacci and Lucas p-polynomials are given.

1. Introduction

Djordjevi¢ introduced incomplete generalized Fibonacci and Lucas numbers using explicit
formulas of generalized Fibonacci and Lucas numbers in [1]. In [2] incomplete Fibonacci and
Lucas numbers are given as follows:
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wheren =1, 2, 3,.... Note that for the case k = |(n—1) /2| incomplete Fibonacci numbers are
reduced to Fibonacci numbers and for the case k = |n/2] incomplete Lucas numbers are
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reduced to Lucas numbers in [2]. Also the authors considered the generating functions of the
incomplete Fibonacci and Lucas numbers in [3]. In [4] Djordjevi¢ and Srivastava defined
incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers.

The generalized Fibonacci and Lucas p-numbers were studied in [5, 6]. Incomplete
Fibonacci and Lucas p-numbers are defined by
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for n > 1in [7]. In [8] the authors introduced incomplete Pell and Pell-Lucas p-numbers.
The generalized bivariate Fibonacci p-polynomials F, ,(x, y) and generalized bivariate
Lucas p-polynomials L, ,(x, y) are defined the recursion for p > 1

Fpu(x,y) = xFpn-1(x,y) + YFpupa(x,y), n>p, (1.3)

with
Foo(x,y) =0, Fou(x,y) = x" forn=1,2,...p, (1.4)

and
Lon(x,y) = xLpna (0, y) + yLpnpa(x,y), n>p, (15)

with
Lyo(x,y)=p+1, Lyu(x,y)=x" forn=1,2,...p (1.6)

in [5]. When x = y = 1, F,,(1,1) = F,(n). In [5], the authors obtained some relations for
these polynomials sequences. In addition, in [5], the explicit formula of bivariate Fibonacci
p-polynomials is
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and the explicit formula of bivariate Lucas p-polynomials is
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In this paper, we defined incomplete bivariate Fibonacci and Lucas p-polynomials. We gener-
alize incomplete Fibonacci and Lucas numbers, incomplete generalized Fibonacci numbers,
incomplete generalized Jacobsthal numbers, incomplete Fibonacci and Lucas p-numbers,
incomplete Pell and Pell-Lucas p-numbers.

2. Incomplete Bivariate Fibonacci and Lucas p-Polynomials

Definition 2.1. For p > 1, n > 1, incomplete bivariate Fibonacci p-polynomials are defined as
k (" TIP TN e n-1
Fy.(xy) =, ) x y, 0<k< 1| (2.1)
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Forx =1, y =1, F} ,(x,y) = F§(n), we get incomplete Fibonacci p-numbers [7].

Ifx=2 y=1, Fr’f’n(x, y) = P}f (n), we obtained incomplete Pell p-numbers [8].

On choosing x = 1, y = 2, F;,‘,n(x,y) = ]rlf,p+1/ we have incomplete generalized
Jacobsthal numbers [4].

Ifx=1,y=1p=1, F;j/n(x,y) = F,(k), we get incomplete Fibonacci numbers [2].

Forx=1,y=1p=1 k=|n-1)/(p+ l)J,F;f,n(x, y) = F,, we obtained Fibonacci
numbers [9].

Definition 2.2. For p > 1, n > 1, incomplete bivariate Lucas p-polynomials are defined as
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Ifx=1, y=1, L’;,n (x,y) = L”j(n), we obtained incomplete Lucas p-numbers [7].

Forx=2, y=1, L’;,n(x, y) = Q’; (n), we have incomplete Pell-Lucas p-numbers [8].

On choosing x =1, y = 2,p = 1, L’;/n(x,y) = j:flp .1» we get incomplete generalized
Jacobsthal-Lucas numbers [4].

Ifx=1,y=1p=1, L”;,n(x, y) = L,(k), we obtained incomplete Lucas numbers [2].

Forx=1,y=1,p=1, k=[n/(p+1)], L’;,n(x,y) = L,, we have Lucas numbers [9].
Proposition 2.3. The incomplete bivariate Fibonacci p-polynomials satisfy the following recurrence
relation:

n-p-3

Fynl(x,y) = xF5il (x,y) +yFy, 1 (xy), 0<k< (2.3)



4

Proof. Using (2.1), we obtain
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Taking x = y = 1 in (2.3), we could obtain a formula for incomplete Fibonacci p-

numbers (see [7, Proposition 3]). Taking x = y = p = 1in (2.3), we could obtain a formula for
incomplete Fibonacci numbers (see [2, Proposition 1]).

Proposition 2.4. The nonhomogeneous recurrence relation of incomplete bivariate Fibonacci p-

polynomials is

n-pk+1)-2\ o
F;,‘/n (x,y) = x]—":;,n_1 (x,y) + yFI’;’n_p_l (x,y) - < . xR k2 kel (o 5y
Proof. It is easy to obtain from (2.1) and (2.3). O
Proposition 2.5. For0< k< (n-h-p-1)/(p+1), one has
: h- k+j
il F
]z:(:) < > p n+p(] 1) (x’ y) p n+(p+1)h p(x’ y) (26)
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Proof. Equation (2.6) clearly holds for h = 0. Suppose that the equation holds for h > 0. We
show that the equation holds for (h + 1). We have
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Proposition 2.6. Forn > k(p+1)+p+2,
Sk
]F;fn p+](x’y) ?Fll;;{rh(x’y) XPk+1(x’y) (28)
Proof. Equation (2.8) can be easily proved by using (2.3) and induction on h. O

We have the following proposition in which the relationship between the incomplete
bivariate Fibonacci and Lucas p-polynomials is preserved as found in [5] before.

Proposition 2.7. One has

Lyn(x,y) = F i (x,9) + pyFyl, (xy), 0<k< [ J (2.9)

p+1
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Proof. By (2.1), rewrite the right-hand side of (2.9) as

L /m=jp\ , M/m-p-jp-1\ .o
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= L5, (x,y).
(2.10)
O

Proposition 2.8. The incomplete bivariate Lucas p-polynomials satisfy the following recurrence rela-
tion:

n—-p-2
L () = xL5 () + LK, (xy), 0<ks< p—fl. (2.11)
Proof. We write by using (2.3) and (2.9)
Llij,til (x’ ) F;I:J;j—l (x' ]/) + pyF;lﬂc,n—p (x’ ]/)
= XER (2, y) + Yy (o y) + oy [xES, L, (xy) + L, (xy)] .
= x[Fil (o, y) + YE oy (o) | + Y [Fhp (5 w) + pYF L1 (x)]
= xL5 L (o y) +yLs, (% ).
O

Proposition 2.9. The nonhomogeneous recurrence relation of incomplete bivariate Lucas p-
polynomials is
k k k
Lp,n (.X', y) = pr,n—l (x' y) + pr,n—p—l (.’X’, y)

n-p-1 n-pk+1)-1
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Proof. The proof can be done by using (2.2) and (2.11). O
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Proposition 2.10. For0< k< (n—p—-h)/(p +1), one has
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Proof. Proof is similar to the proof of Proposition 2.5.

Proposition 2.11. Forn > (k +1)(p + 1), one has
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Proof. Proof is obtained immediately by using (2.11) and induction h.

Proposition 2.12. One has
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n n-
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Equation (2.17) is calculated using the formula L, ,(x, y) and 0L, »,(x, y)/0x = nF, ,(x,y) [5]

[n/(p+1)] [n/(p+1)] n—1
n n JPN\ i :
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U
Then we have the following conclusion.
Conclusion 1. When x = y = p = 1in (2.16), we obtain
[n/2] n n
% Lo(k) = (|3] +1)La+ 5 (Fu - L) (2.19)

which is Proposition 11 in [2].
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3. Generating Functions of the Incomplete Bivariate Fibonacci and
Lucas p-Polynomials

Lemma 3.1 (see [3]). Let {s,},—, be a complex sequence satisfying the following nonhomogeneous
recurrence relation:

Sp = XSu_1+YSyp1+Ty, N>p, (3.1)

where {r,} is a given complex sequence. Then the generating function S’;(x, y; t) of the sequence {s,}
is

P _ -1
S’; (x,y;t) = [so -1+ Z(Si —xsi1 — 1)t + G(t)] [1 —xt— yt””] , (3.2)
i=1

where G(t) denotes the generating function of {r,}.

Theorem 3.2. The generating function of the incomplete bivariate Fibonacci p-polynomials is

p .
Ry (x, y;t) = <D+ [Fp,k<p+1>+1 (%, y) + Dt (Fpkpenys1+i (%, y) = XFp k(penysi (%, 1))
i1

(3.3)
k+14p+1
yrP ]
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Proof. From (2.1) and (2.5), F;n(x,y) =0for0<n<k(p+1)+1,
F:’(,k(l’+1)+1 (x,y) = Fprprya (%, y),
Fll';,k(P+1)+2 (x,¥) = Fpkprn2(x,y),
(3.4)

F:,(,k(pﬂ)wﬂ (x,Y) = Fpkpetyips1 (X, ),

andforn>k(p+1)+p+2

n-pk+1)-2

xnfp(kJrl)fku k+1. 35
n—k(p+1)—p—2> 7 (3:5)

Fyu(x,y) = xEy,  (x,y) +yFy, , 1 (x,y) - <

Now let

_ rk _ rk _ rk
S0 = Fp,k(p+1)+1 (x’ y)’ 51= Fp,k(p+1)+2 (x’ y)’ T Sp = Fp,k(p+1)+p+1 (x’ y)’ (3.6)
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and
Sn = F;n+k(p+1)+1 (x,y). (3.7)
Also
rg=r=--=1,=0, Tn = <n+k_p_1>x”""1yk+1. (3.8)
n-p-1

We obtained that G(t) = y**1#*1/(1 - xif)k+1 is the generating function of the sequence {r,}.
From Lemma 3.1, we get that the generating function S’; (x,y;t) of sequence {s,} is

p
k . _ k i k k
SP (x’ L t) - [Fp,k(p+1)+l <x’ ]/) + ;t <Fp,k(p+l)+1+i(x’ y) B pr,k(p+1)+i (x’ ]/))

(3.9)
k+1¢p+1
Y t +1 -t
+— (1 —xt -yt .
Ll
Therefore,
Ry (x, y;t) = t*PTSK (x, ;). (3.10)
O
Theorem 3.3. The generating function of the incomplete bivariate Lucas p-polynomials is
k k(p+1 &
Wy (x,yst) =t P+ )[Lp,k(pﬂ) (x,y) + Ztl(Lnk(pﬂ)ﬂ' (x,y) - XLy k(p+1)+i-1 (x,y))
i=1
) (3.11)
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R i kxl) | [1-xt-ye]
(1-xt)**
Proof. From (2.9) and (3.3),
W;f (x,y;t) = ZOL’;,,[ (x, y)t"
n=|
= > [Fr i () + pyFst, ()|
(3.12)

Ms 1M

Fh o (0 )" +py Y FSL, ()t
0 n=0
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=
Il
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For the general case in Theorems 3.2 and 3.3, we find the generating functions of some
special numbers by the special cases x, y, p. For example, x = y = 1 in (3.3) we obtain the
generating function of incomplete Fibonacci p-numbers. O
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