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We establish several Lyapunov-type inequalities for quasilinear difference systems, which
generalize or improve all related existing ones. Applying these results, we also obtain some lower
bounds for the first eigencurve in the generalized spectra.

1. Introduction

In 1964, Atkinson [1] investigated the following boundary value problem:

Δ(r(n)Δu(n)) = λq(n)u(n + 1) (1.1)

with Dirichlet boundary condition:

u(a) = u(b) = 0, u(n)/≡ 0, ∀n ∈ Z[a, b], (1.2)

and he proved that boundary value problem (1.1) with (1.2) has exactly b − a − 1 real and
simple eigenvalues, which can be arranged in the increasing order

λ1 < λ2 < · · · < λb−a−1, (1.3)

where a, b ∈ Z with a ≤ b − 2, λ ∈ R, r(n) > 0 and q(n) > 0 for all n ∈ Z. Here and in the
sequel, Z[a, b] = {a, a + 1, a + 2, . . . , b − 1, b}.
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In 1983, Cheng [2] proved that if the second-order difference equation

Δ2u(n) + q(n)u(n + 1) = 0 (1.4)

has a real solution u(n) such that

u(a) = u(b) = 0, u(n)/≡ 0, n ∈ Z[a, b], (1.5)

then one has the following inequality

F(b − a)
b−2∑

n=a
q(n) ≥ 4, (1.6)

where q(n) ≥ 0 for all n ∈ Z, and

F(m) =

⎧
⎪⎨

⎪⎩

m2 − 1
m

, if m − 1 is even,

m, if m − 1 is odd,
(1.7)

and the constant 4 in (1.6) cannot be replaced by a larger number. Inequality (1.6) is a discrete
analogy of the following so-called Lyapunov inequality:

(b − a)
∫b

a

∣∣q(t)
∣∣dt > 4, (1.8)

if Hill’s equation

u′′(t) + q(t)u(t) = 0 (1.9)

has a real solution u(t) such that

u(a) = u(b) = 0, u(t)/= 0, ∀t ∈ (a, b), (1.10)

where q(t) is a real-valued continuous function defined on R, a, b ∈ R with a < b. Equation
(1.8) was first established by Liapounoff [3] in 1907.

In 2008, Ünal et al. [4] established the following Lyapunov-type inequality:

(
b−1∑

n=a

1

[r(n)]1/(p−1)

)1−(1/p)(b−2∑

n=a
q+(n)

)1/p

≥ 2, (1.11)

if the following second-order half-linear difference equation:

Δ
(
r(n)|Δu(n)|p−2Δu(n)

)
+ q(n)|u(n + 1)|p−2u(n + 1) = 0 (1.12)
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has a solution u(n) satisfying

u(a) = u(b) = 0, u(n)/≡ 0, ∀n ∈ Z[a, b], (1.13)

where and in the sequel q+(n) = max{q(n), 0}.
Applying inequality (1.11) to (1.4) (i.e., (1.12) with p = 2, r(n) = 1, and q(n) ≥ 0), we

can obtain the following Lyapunov-type inequality:

(b − a)
b−2∑

n=a
q(n) ≥ 4, (1.14)

which was also obtained in [5]. When b − a − 1 is odd, (1.14) is the same as (1.6). However,
(1.14) is worse than (1.6)when b−a− 1 is even. For more discrete cases and continuous cases
for Lyapunov-type inequalities, we refer the reader to [5–18].

For a single p-Laplacian equation (1.12), there are many papers which deal with
various dynamics behavior of its solutions in the literatures. However, we are not aware of
similar works for p-Laplacian systems. We consider here the following quasilinear difference
system of resonant type

−Δ
(
r1(n)|Δu(n)|p1−2Δu(n)

)
= f1(n)|u(n + 1)|α1−2|v(n + 1)|α2u(n + 1),

−Δ
(
r2(n)|Δv(n)|p2−2Δv(n)

)
= f2(n)|u(n + 1)|β1 |v(n + 1)|β2−2v(n + 1),

(1.15)

and the quasilinear difference system involving the (p1, p2, . . . , pn)-Laplacian

−Δ
(
r1(n)|Δu1(n)|p1−2Δu1(n)

)
= f1(n)|u1(n + 1)|α1−2|u2(n + 1)|α2 · · · |um(n + 1)|αmu1(n + 1),

−Δ
(
r2(n)|Δu2(n)|p2−2Δu2(n)

)
= f2(n)|u1(n + 1)|α1 |u2(n + 1)|α2−2 · · · |um(n + 1)|αmu2(n + 1),

...

−Δ
(
rm(n)|Δum(n)|pm−2Δum(n)

)
= fm(n)|u1(n + 1)|α1 |u2(n + 1)|α2 · · · |um(n + 1)|αm−2um(n + 1).

(1.16)

For the sake of convenience, we give the following hypotheses (H1) and (H2) for
system (1.15) and hypothesis (H3) for system (1.16):

(H1) r1(n), r2(n), f1(n) and f2(n) are real-valued functions and r1(n) > 0 and r2(n) > 0
for all n ∈ Z;

(H2) 1 < p1, p2 < ∞, α1, α2, β1, β2 > 0 satisfy α1/p1 + α2/p2 = 1 and β1/p1 + β2/p2 = 1;

(H3) ri(n) and fi(n) are real-valued functions and ri(n) > 0 for i = 1, 2, . . . , m.
Furthermore, 1 < pi < ∞ and αi > 0 satisfy

∑m
i=1(αi/pi) = 1.
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System (1.15) and (1.16) are the discrete analogies of the following two quasilinear
differential systems:

−
(
r1(t)

∣∣u′(t)
∣∣p−2u′(t)

)′
= f1(t)|u(t)|α1−2|v(t)|α2u(t),

−
(
r2(t)

∣∣v′(t)
∣∣q−2v′(t)

)′
= f2(t)|u(t)|β1 |v(t)|β2−2v(t),

(1.17)

−
(
r1(t)

∣∣u′
1(t)
∣∣p1−2u′

1(t)
)′

= f1(t)|u1(t)|α1−2|u2(t)|α2 · · · |un(t)|αnu1(t),

−
(
r2(t)

∣∣u′
2(t)
∣∣p2−2u′

2(t)
)′

= f2(t)|u1(t)|α1 |u2(t)|α2−2 · · · |un(t)|αnu2(t),

...

−
(
rn(t)

∣∣u′
n(t)
∣∣pn−2u′

n(t)
)′

= fn(t)|u1(t)|α1 |u2(t)|α2 · · · |un(t)|αn−2un(t),

(1.18)

respectively. Recently, Nápoli and Pinasco [19], Cakmak and Tiryaki [20, 21], and Tang
and He [22] established some Lyapunov-type inequalities for systems (1.17) and (1.18).
Motivated by the above-mentioned papers, the purpose of this paper is to establish some
Lyapunov-type inequalities for systems (1.15) and (1.16). As a byproduct, we derive a better
Lyapunov-type inequality than (1.11)

b−2∑

n=a

⎡
⎢⎣

(∑n
s=a [r(s)]

1/(1−p)
)p−1(∑b−1

s=n+1 [r(s)]
1/(1−p)

)p−1

(∑n
s=a [r(s)]

1/(1−p)
)p−1

+
(∑b−1

s=n+1 [r(s)]
1/(1−p)

)p−1 q+(n)

⎤
⎥⎦ ≥ 1 (1.19)

for the second-order half-linear difference equation (1.12). In particular, (1.19) produces a
new Lyapunov-type inequality

1
b − a

b−2∑

n=a
(n + 1 − a)(b − n − 1)q+(n) ≥ 1 (1.20)

for Hill’s equation (1.4) when p = 2 and r(t) = 1. It is easy to see that (1.20) is better than
(1.6).

This paper is organized as follows. Section 2 gives some Lyapunov-type inequalities
for system (1.15), and Lyapunov-type inequalities for system (1.16) are established in
Section 3. In Section 4, we apply our Lyapunov-type inequalities to obtain lower bounds for
the first eigencurve in the generalized spectra.

2. Lyapunov-Type Inequalities for System (1.15)

In this section, we establish some Lyapunov-type inequalities for system (1.15).
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Denote

ζ1(n) :=

(
n∑

τ=a
[r1(τ)]

1/(1−p1)
)p1−1

, η1(n) :=

(
b−1∑

τ=n+1

[r1(τ)]1/(1−p1)
)p1−1

, (2.1)

ζ2(n) :=

(
n∑

τ=a
[r2(τ)]1/(1−p2)

)p2−1
, η2(n) :=

(
b−1∑

τ=n+1

[r2(τ)]1/(1−p2)
)p2−1

. (2.2)

Theorem 2.1. Let a, b ∈ Z with a ≤ b − 2. Suppose that hypotheses (H1) and (H2) are satisfied. If
system (1.15) has a solution (u(n), v(n)) satisfying the boundary value conditions:

u(a) = u(b) = 0 = v(a) = v(b), u(n)/≡ 0, v(n)/≡ 0, ∀n ∈ Z[a, b], (2.3)

then one has the following inequality:

(
b−2∑

n=a

ζ1(n)η1(n)
ζ1(n) + η1(n)

f+
1 (n)

)α1β1/p
2
1
(

b−2∑

n=a

ζ1(n)η1(n)
ζ1(n) + η1(n)

f+
2 (n)

)β1α2/p1p2

×
(

b−2∑

n=a

ζ2(n)η2(n)
ζ2(n) + η2(n)

f+
1 (n)

)β1α2/p1p2(b−2∑

n=a

ζ2(n)η2(n)
ζ2(n) + η2(n)

f+
2 (n)

)α2β2/p
2
2

≥ 1,

(2.4)

where and in the sequel f+
i (n) = max{fi(n), 0} for i = 1, 2.

Proof. By (1.15) and (2.3), we obtain

b−1∑

n=a
r1(n)|Δu(n)|p1 =

b−2∑

n=a
f1(n)|u(n + 1)|α1 |v(n + 1)|α2 , (2.5)

b−1∑

n=a
r2(n)|Δv(n)|p2 =

b−2∑

n=a
f2(n)|u(n + 1)|β1 |v(n + 1)|β2 . (2.6)

It follows from (2.1), (2.3), and the Hölder inequality that

|u(n + 1)|p1 =
∣∣∣∣∣

n∑

τ=a
Δu(τ)

∣∣∣∣∣

p1

≤
(

n∑

τ=a
|Δu(τ)|

)p1
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≤
(

n∑

τ=a
[r1(τ)]1/(1−p1)

)p1−1 n∑

τ=a
r1(τ)|Δu(τ)|p1

= ζ1(n)
n∑

τ=a
r1(τ)|Δu(τ)|p1 , a ≤ n ≤ b − 1,

(2.7)

|u(n + 1)|p1 =
∣∣∣∣∣

b−1∑

τ=n+1

Δu(τ)

∣∣∣∣∣

p1

≤
(

b−1∑

τ=n+1

|Δu(τ)|
)p1

≤
(

b−1∑

τ=n+1

[r1(τ)]1/(1−p1)
)p1−1 b−1∑

τ=n+1

r1(τ)|Δu(τ)|p1

= η1(n)
b−1∑

τ=n+1

r1(τ)|Δu(τ)|p1 , a ≤ n ≤ b − 1.

(2.8)

From (2.7) and (2.8), we have

|u(n + 1)|p1 ≤ ζ1(n)η1(n)
ζ1(n) + η1(n)

b−1∑

τ=a
r1(τ)|Δu(τ)|p1 , a ≤ n ≤ b − 1. (2.9)

Now, it follows from (2.3), (2.5), (2.9), (H2), and the Hölder inequality that

b−2∑

n=a
f+
1 (n)|u(n + 1)|p1 ≤

b−2∑

n=a

[
ζ1(n)η1(n)

ζ1(n) + η1(n)
f+
1 (n)

]b−1∑

n=a
r1(n)|Δu(n)|p1

= M11

b−2∑

n=a
f1(n)|u(n + 1)|α1 |v(n + 1)|α2

≤ M11

b−2∑

n=a
f+
1 (n)|u(n + 1)|α1 |v(n + 1)|α2

≤ M11

(
b−2∑

n=a
f+
1 (n)|u(n + 1)|p1

)α1/p1(b−2∑

n=a
f+
1 (n)|v(n + 1)|p2

)α2/p2

,

(2.10)

b−2∑

n=a
f+
2 (n)|u(n + 1)|p1 ≤

b−2∑

n=a

[
ζ1(n)η1(n)

ζ1(n) + η1(n)
f+
2 (n)

]b−1∑

n=a
r1(n)|Δu(n)|p1

= M12

b−2∑

n=a
f1(n)|u(n + 1)|α1 |v(n + 1)|α2
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≤ M12

b−2∑

n=a
f+
1 (n)|u(n + 1)|α1 |v(n + 1)|α2

≤ M12

(
b−2∑

n=a
f+
1 (n)|u(n + 1)|p1

)α1/p1(b−2∑

n=a
f+
1 (n)|v(n + 1)|p2

)α2/p2

,

(2.11)

where

M11 =
b−2∑

n=a

[
ζ1(n)η1(n)

ζ1(n) + η1(n)
f+
1 (n)

]
, M12 =

b−2∑

n=a

[
ζ1(n)η1(n)

ζ1(n) + η1(n)
f+
2 (n)

]
. (2.12)

Similar to the proof of (2.9), from (2.2) and (2.3), we have

|v(n + 1)|p2 ≤ ζ2(n)η2(n)
ζ2(n) + η2(n)

b−1∑

τ=a
r2(τ)|Δv(τ)|p2 , a ≤ n ≤ b − 1. (2.13)

It follows from (2.3), (2.6), (2.13), (H2), and the Hölder inequality that

b−2∑

n=a
f+
1 (n)|v(n + 1)|p2 ≤

b−2∑

n=a

[
ζ2(n)η2(n)

ζ2(n) + η2(n)
f+
1 (n)

]b−1∑

n=a
r2(n)|Δv(n)|p2

= M21

b−2∑

n=a
f2(n)|u(n + 1)|β1 |v(n + 1)|β2

≤ M21

b−2∑

n=a
f+
2 (n)|u(n + 1)|β1 |v(n + 1)|β2

≤ M21

(
b−2∑

n=a
f+
2 (n)|u(n + 1)|p1

)β1/p1(b−2∑

n=a
f+
2 (n)|v(n + 1)|p2

)β2/p2

,

b−2∑

n=a
f+
2 (n)|v(n + 1)|p2 ≤

b−2∑

n=a

[
ζ2(n)η2(n)

ζ2(n) + η2(n)
f+
2 (n)

]b−1∑

n=a
r2(n)|Δv(n)|p2

= M22

b−2∑

n=a
f2(n)|u(n + 1)|β1 |v(n + 1)|β2

≤ M22

b−2∑

n=a
f+
2 (n)|u(n + 1)|β1 |v(n + 1)|β2

≤ M22

(
b−2∑

n=a
f+
2 (n)|u(n + 1)|p1

)β1/p1(b−2∑

n=a
f+
2 (n)|v(n + 1)|p2

)β2/p2

,

(2.14)

where

M21 =
b−2∑

n=a

[
ζ2(n)η2(n)

ζ2(n) + η2(n)
f+
1 (n)

]
, M22 =

b−2∑

n=a

[
ζ2(n)η2(n)

ζ2(n) + η2(n)
f+
2 (n)

]
. (2.15)
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Next, we prove that

b−2∑

n=a
f+
1 (n)|u(n + 1)|p1 > 0. (2.16)

If (2.16) is not true, then

b−2∑

n=a
f+
1 (n)|u(n + 1)|p1 = 0. (2.17)

From (2.5) and (2.17), we have

0 ≤
b−1∑

n=a
r1(n)|Δu(n)|p1 =

b−2∑

n=a
f1(n)|u(n + 1)|α1 |v(n + 1)|α2 ≤

b−2∑

n=a
f+
1 (n)|u(n + 1)|α1 |v(n + 1)|α2 = 0.

(2.18)

It follows from (H1) that

Δu(n) ≡ 0, a ≤ n ≤ b − 1. (2.19)

Combining (2.7) with (2.19), we obtain that u(n) ≡ 0 for a ≤ n ≤ b, which contradicts (2.3).
Therefore, (2.16) holds. Similarly, we have

b−2∑

n=a
f+
2 (n)|u(n + 1)|p1 > 0,

b−2∑

n=a
f+
1 (n)|v(n + 1)|p2 > 0,

b−2∑

n=a
f+
2 (n)|v(n + 1)|p2 > 0. (2.20)

From (2.10), (2.11), (2.14), (2.16), (2.20), and (H2), we have

M
α1β1/p

2
1

11 M
β1α2/p1p2
12 M

β1α2/p1p2
21 M

α2β2/p
2
2

22 ≥ 1. (2.21)

It follows from (2.12), (2.15), and (2.21) that (2.4) holds.

Corollary 2.2. Let a, b ∈ Z with a ≤ b − 2. Suppose that hypothesis (H1) and (H2) are satisfied. If
system (1.15) has a solution (u(n), v(n)) satisfying (2.3), then one has the following inequality:

(
b−2∑

n=a
f+
1 (n)

[
ζ1(n)η1(n)

]1/2
)α1β1/p

2
1
(

b−2∑

n=a
f+
2 (n)

[
ζ1(n)η1(n)

]1/2
)β1α2/p1p2

×
(

b−2∑

n=a
f+
1 (n)

[
ζ2(n)η2(n)

]1/2
)β1α2/p1p2(b−2∑

n=a
f+
2 (n)

[
ζ2(n)η2(n)

]1/2
)α2β2/p

2
2

≥ 2(p2β1+p1α2)/p1p2 .

(2.22)
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Proof. Since

ζi(n) + ηi(n) ≥ 2
[
ζi(n)ηi(n)

]1/2
, i = 1, 2, (2.23)

it follows from (2.4) and (H2) that (2.22) holds.

Corollary 2.3. Let a, b ∈ Z with a ≤ b − 2. Suppose that hypotheses (H1) and (H2) are satisfied. If
system (1.15) has a solution (u(n), v(n)) satisfying (2.3), then one has the following inequality:

(
b−1∑

n=a
[r1(n)]1/(1−p1)

)β1(p1−1)/p1(b−1∑

n=a
[r2(n)]1/(1−p2)

)α2(p2−1)/p2

×
(

b−2∑

n=a
f+
1 (n)

)β1/p1(b−2∑

n=a
f+
2 (n)

)α2/p2

≥ 2β1+α2 .

(2.24)

Proof. Since

[
ζ1(n)η1(n)

]1/2 =
(

n∑

τ=a
[r1(τ)]1/(1−p1)

b−1∑

τ=n+1

[r1(τ)]1/(1−p1)
)(p1−1)/2

≤ 1
2p1−1

(
b−1∑

τ=a
[r1(τ)]1/(1−p1)

)p1−1
,

[
ζ2(n)η2(n)

]1/2 =
(

n∑

τ=a
[r2(τ)]1/(1−p2)

b−1∑

τ=n+1

[r2(τ)]1/(1−p2)
)(p2−1)/2

≤ 1
2p2−1

(
b−1∑

τ=a
[r2(τ)]1/(1−p2)

)p2−1
,

(2.25)

it follows from (2.22) and (H2) that (2.24) holds.

When α1 = β2 = p1 = p2 = p, α2 = β1 = 0, r1(t) = r2(t) = r(t), and f1(t) = f2(t) = q(t),
system (1.15) reduces to the second-order half-linear difference equation (1.12). Hence, we
can directly derive the following Lyapunov-type inequality for (1.12) from (2.10) and (2.16).

Theorem 2.4. Let a, b ∈ Z with a ≤ b − 2. Suppose that p > 1 and r(n) > 0. If (1.12) has a solution
u(n) satisfying (1.13), then one has the following inequality:

b−2∑

n=a

⎡
⎢⎣

(∑n
τ=a [r(τ)]

1/(1−p)
)p−1(∑b−1

τ=n+1 [r(τ)]
1/(1−p)

)p−1

(∑n
τ=a [r(τ)]

1/(1−p)
)p−1

+
(∑b−1

τ=n+1 [r(τ)]
1/(1−p)

)p−1 q+(n)

⎤
⎥⎦ ≥ 1. (2.26)
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Since

(
n∑

τ=a
[r(τ)]1/(1−p)

)p−1
+

(
b−1∑

τ=n+1

[r(τ)]1/(1−p)
)p−1

≥ 2

(
n∑

τ=a
[r(τ)]1/(1−p)

b−1∑

τ=n+1

[r(τ)]1/(1−p)
)(p−1)/2

,

(2.27)

it follows from Theorem 2.4 that the following corollary holds.

Corollary 2.5. Let a, b ∈ Z with a ≤ b − 2. Suppose that p > 1 and r(n) > 0. If (1.12) has a solution
u(n) satisfying (1.13), then one has the following inequality:

b−2∑

n=a

⎡

⎣q+(n)
(

n∑

τ=a
[r(τ)]1/(1−p)

b−1∑

τ=n+1

[r(τ)]1/(1−p)
)(p−1)/2⎤

⎦ ≥ 2. (2.28)

Remark 2.6. It is easy to see that Lyapunov-type inequalities (2.26) and (2.28) are better than
(1.11).

3. Lyapunov-Type Inequalities for System (1.16)

In this section, we establish some Lyapunov-type inequalities for system (1.16). Denote

ζi(n) :=

(
n∑

τ=a
[ri(τ)]1/(1−pi)

)pi−1
, i = 1, 2, . . . , m, (3.1)

ηi(n) :=

(
b−1∑

τ=n+1

[ri(τ)]1/(1−pi)
)pi−1

, i = 1, 2, . . . , m. (3.2)

Theorem 3.1. Let a, b ∈ Z with a ≤ b − 2. Suppose that hypothesis (H3) is satisfied. If system (1.16)
has a solution (u1(n), u2(n), . . . , um(n)) satisfying the boundary value conditions:

ui(a) = ui(b) = 0, ui(n)/≡ 0, ∀n ∈ Z[a, b], i = 1, 2, . . . , m, (3.3)

then one has the following inequality:

m∏

i=1

m∏

j=1

(
b−2∑

n=a

[
ζi(n)ηi(n)

ζi(n) + ηi(n)
f+
j (n)

])αiαj/pipj

≥ 1. (3.4)

Proof. By (1.16), (H3), and (3.3), we obtain

b−1∑

n=a
ri(n)|Δui(n)|pi =

b−2∑

n=a

[
fi(n)

m∏

k=1

|uk(n + 1)|αk

]
, i = 1, 2, . . . , m. (3.5)
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It follows from (3.1), (3.3), and the Hölder inequality that

|ui(n + 1)|pi =
∣∣∣∣∣

n∑

τ=a
Δui(τ)

∣∣∣∣∣

pi

≤
(

n∑

τ=a
[ri(τ)]1/(1−pi)

)pi−1 n∑

τ=a
ri(τ)|Δui(τ)|pi

= ζi(n)
n∑

τ=a
ri(τ)|Δui(τ)|pi , a ≤ n ≤ b − 1, i = 1, 2, . . . , m.

(3.6)

Similarly, it follows from (3.2), (3.3), and the Hölder inequality that

|ui(n + 1)|pi =
∣∣∣∣∣

b−1∑

τ=n+1

Δui(τ)

∣∣∣∣∣

pi

≤
(

b−1∑

τ=n+1

[ri(τ)]1/(1−pi)
)pi−1 b−1∑

τ=n+1

ri(τ)|Δui(τ)|pi

= ηi(n)
b−1∑

τ=n+1

ri(τ)|Δui(τ)|pi , a ≤ n ≤ b − 1, i = 1, 2, . . . , m.

(3.7)

From (3.6) and (3.7), we have

|ui(n + 1)|pi ≤ ζi(n)ηi(n)
ζi(n) + ηi(n)

b−1∑

τ=a
ri(τ)|Δui(τ)|pi , a ≤ n ≤ b − 1, i = 1, 2, . . . , m. (3.8)

Now, it follows from (3.3), (3.5), (3.8), (H3), and the generalized Hölder inequality
that

b−2∑

n=a
f+
j (n)|ui(n + 1)|pi ≤

b−2∑

n=a

[
ζi(n)ηi(n)

ζi(n) + ηi(n)
f+
j (n)

]b−1∑

τ=a
ri(τ)|Δui(τ)|pi

= Mij

b−2∑

n=a

[
fi(n)

m∏

k=1

|uk(n + 1)|αk

]

≤ Mij

b−2∑

n=a

[
f+
i (n)

m∏

k=1

|uk(n + 1)|αk

]

≤ Mij

m∏

k=1

[
b−2∑

n=a
f+
i (n)|uk(n + 1)|pk

]αk/pk

,

(3.9)

where

Mij =
b−2∑

n=a

[
ζi(n)ηi(n)

ζi(n) + ηi(n)
f+
j (n)

]
, i, j = 1, 2, . . . , m. (3.10)
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Next, we prove that

b−2∑

n=a
f+
i (n)|uk(n + 1)|pk > 0, i, k = 1, 2, . . . , m. (3.11)

If (3.11) is not true, then there exists i0, k0 ∈ {1, 2, . . . , m} such that

b−2∑

n=a
f+
i0
(n)|uk0(n + 1)|pk0 = 0. (3.12)

From (3.5), (3.12), and the generalized Hölder inequality, we have

0 ≤
b−1∑

n=a
ri0(n)|Δui0(n)|pi0 =

b−2∑

n=a
fi0(n)

m∏

k=1

|uk(n + 1)|αk ≤
m∏

k=1

[
b−2∑

n=a
f+
i0
(n)|uk(n + 1)|pk

]αk/pk

= 0.

(3.13)

It follows from the fact that ri0(n) > 0 that

Δui0(n) ≡ 0, a ≤ n ≤ b − 1. (3.14)

Combining (3.6) with (3.14), we obtain that ui0(n) ≡ 0 for a ≤ n ≤ b, which contradicts (3.3).
Therefore, (3.11) holds. From (3.9), (3.11), and (H3), we have

m∏

i=1

m∏

j=1

M
αiαj/pipj
ij ≥ 1. (3.15)

It follows from (3.10) and (3.15) that (3.4) holds.

Corollary 3.2. Let a, b ∈ Z with a ≤ b−2. Suppose that hypothesis (H3) is satisfied. If system (1.16)
has a solution (u1(n), u2(n), . . . , um(n)) satisfying (3.3), then one has the following inequality:

m∏

i=1

m∏

j=1

(
b−2∑

n=a
f+
j (n)

[
ζi(n)ηi(n)

]1/2
)αiαj/pipj

≥ 2. (3.16)

Proof. Since

ζi(n) + ηi(n) ≥ 2
[
ζi(n)ηi(n)

]1/2
, i = 1, 2, . . . , m, (3.17)

it follows from (3.4) and (H3) that (3.16) holds.
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Corollary 3.3. Let a, b ∈ Z with a ≤ b−2. Suppose that hypothesis (H3) is satisfied. If system (1.16)
has a solution (u1(n), u2(n), . . . , um(n)) satisfying (3.3), then one has the following inequality

m∏

i=1

(
b−1∑

n=a
[ri(n)]1/(1−pi)

)αi(pi−1)/pi m∏

j=1

(
b−2∑

n=a
f+
j (n)

)αj/pj

≥ 2A, (3.18)

whereA =
∑m

i=1 αi.

Proof. Since

[
ζi(n)ηi(n)

]1/2 =
(

n∑

τ=a
[ri(n)]1/(1−pi)

b−1∑

τ=n+1

[ri(τ)]1/(1−pi)
)(pi−1)/2

≤ 1
2pi−1

(
b−1∑

τ=a
[ri(τ)]

1/(1−pi)
)pi−1

, i = 1, 2, . . . , m,

(3.19)

it follows from (3.16) and (H3) that (3.18) holds.

4. Some Applications

In this section, we apply our Lyapunov-type inequalities to obtain lower bounds for the first
eigencurve in the generalized spectra.

Let a, b ∈ Z with a ≤ b − 2. We consider here a quasilinear difference system of the
form:

−Δ
(
|Δu1(n)|p1−2Δu1(n)

)

= λ1α1q(n)|u1(n + 1)|α1−2|u2(n + 1)|α2 · · · |um(n + 1)|αmu1(n + 1),

−Δ
(
|Δu2(n)|p2−2Δu2(n)

)

= λ2α2q(n)|u1(n + 1)|α1 |u2(n + 1)|α2−2 · · · |um(n + 1)|αmu2(n + 1),
...

−Δ
(
|Δum(n)|pm−2Δum(n)

)

= λmαmq(n)|u1(n + 1)|α1 |u2(n + 1)|α2 · · · |um(n + 1)|αm−2um(n + 1),

(4.1)

where q(n) > 0, λi ∈ R, pi and αi are the same as those in (1.16), and ui satisfies Dirichlet
boundary conditions:

ui(a) = ui(b) = 0, ui(n) > 0, ∀n ∈ Z[a + 1, b − 1], i = 1, 2, . . . , m. (4.2)

We define the generalized spectrum S of a nonlinear difference system as the set
of vector (λ1, λ2, . . . , λm) ∈ R

m such that the eigenvalue problem (4.1) with (4.2) admits a
nontrivial solution.
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Eigenvalue problem or boundary value problem (4.1) with (4.2) is a generalization of
the following p-Laplacian difference equation

−Δ
(
|Δu(n)|p−2Δu(n)

)
= λpq(n)|u(n + 1)|p−2u(n + 1), (4.3)

with Dirichlet boundary condition:

u(a) = 0 = u(b), u(n) > 0, ∀n ∈ Z[a + 1, b − 1], (4.4)

where p > 1, λ ∈ R, and q(n) > 0. When p = 2, Atkinson [1, Theorems 4.3.1 and 4.3.5]
investigated the existence of eigenvalues for (4.3) with (4.4), see also [23].

Let fi(n) = λiαiq(n) and ri(n) = 1 for i = 1, 2, . . . , m. Then we can apply Theorem 3.1 to
boundary value problem (4.1)with (4.2) and obtain a lower bound for the first eigencurve in
the generalized spectra.

Theorem 4.1. Let a, b ∈ Z with a ≤ b − 2. Assume that 1 < pi < ∞, αi > 0 satisfy
∑m

i=1 (αi/pi) =
1, and that q(n) > 0 for all n ∈ Z. Then there exists a function h(λ1, . . . , λm−1) such that λm ≥
h(λ1, . . . , λm−1) for every generalized eigenvalue (λ1, λ2, . . .,λm) of boundary value problem (4.1)with
(4.2), where h(λ1, . . . , λm−1) is given by:

h(λ1, . . . , λm−1)

=
1
αm

⎡

⎣
m−1∏

j=1

(
λjαj

)αj/pj
m∏

i=1

(
b−2∑

n=a

[(n − a + 1)(b − n − 1)]pi−1

(n − a + 1)pi−1 + (b − n − 1)pi−1
q(n)

)αi/pi
⎤

⎦
−(pm/αm)

.
(4.5)

Proof. For the eigenvalue (λ1, λ2, . . . , λm), (4.1) with (4.2) has a nontrivial solution
(u1(n), u2(n), . . . , um(n)). That is system (1.16) with ri(n) = 1 and fi(n) = λiαiq(n) has a
solution (u1(n), u2(n), . . . , um(n)) satisfying (3.3), it follows from (3.4) that fi(n) = λiαiq(n) >
0, for all n ∈ Z, i = 1, 2, . . . , m, and that

1 ≤
m∏

i=1

m∏

j=1

(
b−2∑

n=a

ζi(n)ηi(n)
ζi(n) + ηi(n)

f+
j (n)

)αiαj/pipj

=
m∏

j=1

(
λjαj

)αj/pj
m∏

i=1

(
b−2∑

n=a

ζi(n)ηi(n)
ζi(n) + ηi(n)

q(n)

)αi/pi

=
m∏

j=1

(
λjαj

)αj/pj
m∏

i=1

(
b−2∑

n=a

[(n − a + 1)(b − n − 1)]pi−1

(n − a + 1)pi−1 + (b − n − 1)pi−1
q(n)

)αi/pi

.

(4.6)

Hence, we have

λm ≥ 1
αm

⎡

⎣
m−1∏

j=1

(
λjαj

)αj/pj
m∏

i=1

(
b−2∑

n=a

[(n − a + 1)(b − n − 1)]pi−1

(n − a + 1)pi−1 + (b − n − 1)pi−1
q(n)

)αi/pi
⎤

⎦
−(pm/αm)

. (4.7)

This completes the proof of Theorem 4.1.
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When m = 2, boundary value problem (4.1)with (4.2) reduces to the simpler form:

−Δ
(
|Δu1(n)|p1−2Δu1(n)

)
= λ1α1q(n)|u1(n + 1)|α1−2|u2(n + 1)|α2u1(n + 1),

−Δ
(
|Δu2(n)|p2−2Δu2(n)

)
= λ2α2q(n)|u1(n + 1)|α1 |u2(n + 1)|α2−2u2(n + 1),

(4.8)

with Dirichlet boundary conditions:

ui(a) = ui(b) = 0, ui(n) > 0, ∀n ∈ Z[a + 1, b − 1], i = 1, 2, (4.9)

where 1 < p1, p2 < ∞, α1, α2 > 0 satisfy α1/p1 + α2/p2 = 1, and q(n) > 0 for all n ∈ Z.
Applying Theorem 4.1 to system (4.8) with (4.9) and system (4.3) with (4.4),

respectively, we have the following two corollaries immediately.

Corollary 4.2. Let a, b ∈ Z with a ≤ b − 2. Assume that 1 < p1, p2 < ∞, α1, α2 > 0 satisfy
α1/p1 + α2/p2 = 1, and that q(n) > 0 for all n ∈ Z. Then there exists a function h(λ1) such that
λ2 ≥ h(λ1) for every generalized eigenvalue (λ1, λ2) of system (4.8) with (4.9), where h(λ1) is given
by:

h(λ1)

=
1/α2

(
λ1α1

∑b−2
n=a

(
[XY]p1−1/(Xp1−1+Yp1−1)

)
q(n)

)(p2/α2)−1∑b−2
n=a

(
[XY]p2−1/(Xp2−1+Yp2−1)

)
q(n)

,

(4.10)

whereX denote (n − a + 1) and Y denote (b − n − 1).

Corollary 4.3. Let a, b ∈ Z with a ≤ b − 2. Assume that p > 1 and q(n) > 0 for all n ∈ Z. Then for
every eigenvalue λ of system (4.3) with (4.4), one has

λ ≥ 1
p

[
b−2∑

n=a

[(n − a + 1)(b − n − 1)]p−1

(n − a + 1)p−1 + (b − n − 1)p−1
q(n)

]−1
. (4.11)
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[4] M. Ünal, D. Cakmak, and A. Tiryaki, “A discrete analogue of Lyapunov-type inequalities for non-

linear systems,” Computers & Mathematics with Applications, vol. 55, no. 11, pp. 2631–2642, 2008.
[5] G. Sh. Guseinov and B. Kaymakcalan, “Lyapunov inequalities for discrete linear Hamiltonian

systems,” Computers & Mathematics with Applications, vol. 45, pp. 1399–1416, 2003.
[6] S. S. Cheng and T. T. Lu, “Convex regular domains of tridiagonal matrices,” Linear Algebra and its

Applications, vol. 79, pp. 103–125, 1986.
[7] S. S. Cheng and L. Y. Hsieh, “On discrete analogue of Lyapunov’s inequality: addendum,” Tamkang

Journal of Mathematics, vol. 20, no. 4, pp. 333–339, 1989.



16 Discrete Dynamics in Nature and Society

[8] S. S. Cheng, “A sharp condition for the ground state of difference equation,”Applied Analytical Analyt-
ical, vol. 34, no. 2, pp. 105–109, 1989.

[9] S. S. Cheng, L. Y. Hsieh, and D. Chao, “Discrete Lyapunov inequality conditions for partial difference
equations,” Hokkaido Mathematical Journal, vol. 19, no. 2, pp. 229–239, 1990.

[10] S. S. Cheng, “Lyapunov inequality for system disconjugacy of even order differential equations,”
Tamkang Journal of Mathematics, vol. 22, no. 2, pp. 193–197, 1991.

[11] S. S. Cheng, “Lyapunov inequalities for differential and difference equations,” Fasiculi Mathematici, no.
23, pp. 25–41, 1991.

[12] S. Clark and D. B. Hinton, “Discrete Lyapunov inequalities for linear Hamiltonian systems,” Mathe-
matical Inequalities & Applications, vol. 1, no. 2, pp. 201–209, 1998.

[13] S. Clark and D. B. Hinton, “Discrete Lyapunov inequalities,” Dynamic Systems and Applications, vol. 8,
no. 3-4, pp. 369–380, 1999.

[14] Z. He, “Existence of two solutions of m-point boundary value problem for second order dynamic
equations on time scales,” Journal of Mathematical Analysis and Applications, vol. 296, no. 1, pp. 97–109,
2004.

[15] L. Q. Jiang and Z. Zhou, “Lyapunov inequality for linear Hamiltonian systems on time scales,” Journal
of Mathematical Analysis and Applications, vol. 310, no. 2, pp. 579–593, 2005.

[16] S. H. Lin and G. S. Yang, “On discrete analogue of Lyapunov’s inequality,” Tamkang Journal of Mathe-
matics, vol. 20, no. 2, pp. 169–186, 1989.

[17] X. Wang, “Stability criteria for linear periodic Hamiltonian systems,” Journal of Mathematical Analysis
and Applications, vol. 367, no. 1, pp. 329–336, 2010.

[18] Q. Zhang and X. H. Tang, “Lyapunov inequalities and stability for discrete linear Hamiltonian
systems,” Applied Mathematics and Computation, vol. 218, no. 2, pp. 574–582, 2011.
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