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The Painlevé property and Bäcklund transformation for the KdV equation with a self-consistent
source are presented. By testing the equation, it is shown that the equation has the Painlevé
property. In order to further prove its integrality, we give its bilinear form and construct its bilinear
Bäcklund transformation by the Hirota’s bilinear operator. And then the soliton solution of the
equation is obtained, based on the proposed bilinear form.

1. Introduction

It is well known that some nonlinear partial differential equations such as the soliton
equations with self-consistent sources have important physical applications. In recent years,
there aremanyways for solving the soliton equations that can be used to the soliton equations
with self-consistent sources as well. For example, the soliton solutions of some equations
such as the KdV, AKNS, and nonlinear schrödinger equation with self-consistent sources
are obtained through the inverse scattering method [1, 2]. In [3] a Darboux transformation,
positon and negaton solutions to a Schrödinger self-consistent source equation are further
constructed. Also, the binary Darboux transformations for the KdV hierarchies with self-
consistent sources were presented in [4]. In addition to that, the Hirota bilinear method
has been successfully used in the search for exact solutions of continuous and discrete
systems, and also in the search for new integrable equations by testing for multisoliton
solutions or Bäcklund transformation [5, 6]. Recently a bilinear Bäcklund transformation
has been presented for a (3 + 1)-dimensional generalized KP equation. Meanwhile, two
classes of exponential and rational traveling wave solutions with arbitrary wave numbers are
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computed by applying the proposed bilinear Bäcklund transformation (see [7] for details). It
is a good reference for solving many high-dimensional soliton equations.

Besides, the Painlevé analysis is a powerful tool for identifying the integrability of a
nonlinear system. A partial different equation has the Painlevé propertywhen the solutions of
the partial different equation are single-valued about the movable, singularity manifold [8].
The basic thought as follows: if the singularity manifold is determined by φ(z1, z2, . . . , zn) = 0
and u = u(z1, z2, . . . , zn) is a solution of the partial different equation, then we assume that

u = φα
∞∑

j=0

ujφ
j , (1.1)

where

φ = φ(z1, z2, . . . , zn), uj = uj(z1, z2, . . . , zn), u0 /= 0, (1.2)

are analytic functions of (zj) in a neighborhood of the manifold φ = 0 and α is an integer.
Substitution of (1.1) into the partial different equation determines the values of α and defines
the recursion relations for uj, j /= 0, 1, 2, · · · . When the anatz (1.1) is correct, the pde is said to
possess the Painlevé property and is conjectured to be integrable [9].

Motivated by the previous works, we focus our attention on the following nonlinear
partial differential equations (PDEs) which is expressed by

ut + uxxx + 12uux =
(
ϕ2

)

x
,

ϕxx + 2uϕ = λϕ,

(1.3)

where λ is an arbitrary constant. In fact, (1.3) is a reduced form of the KdV equation with a
source by symmetry constraints [10, 11]. The main purpose of this paper is to demonstrate
the connection between the Painlevé property and the Bäcklund transformation for (1.3).
Moreover, we get the bilinear Bäcklund transformation and the exact solution for (1.3) by the
Hirota bilinear method. Thus we further convince the integrability of the equation.

The paper is organized as follows. In Section 2, we investigate the Painlevé property
for (1.3). By testing the equation it is shown that the equation has the Painlevé property.
Furthermore, we obtain a Bäcklund transformation of (1.3). In Section 3, using the
Hirota’s bilinear operator, we obtain its bilinear form and construct its bilinear Bäcklund
transformation. And then its one-soliton solution is obtained. Finally, conclusion is given in
Section 4.

2. PainlEvÉ Test

As we know, the basic Painlevé test for ODEs consists of the following steps [12].

Step 1. Identify all possible dominant balances, that is, all singularities of form u ∼ u0(z−z0)μ.

Step 2. If all exponents μ are integers, find the resonances where arbitrary constants can
appear.
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Step 3. If all resonances are integers, check the resonance conditions in each Laurent
expansion.

Conclusion. If no obstruction is found in Steps 1–3 for every dominant balances, then the
Painlevé test is satisfied.

The above series may be substituted into the PDEs. Now we apply the above steps to
(1.3). We will further give all possible solutions with integer resonances but without further
analysis of the last cases. The expansions about the singular manifold have the forms:

u =
∞∑

j=0

ajφ
j+α,

ϕ =
∞∑

j=0

bjφ
j+β.

(2.1)

To find the dominant balances, we are looking for leading order singular behaviour of the
form

u ≈ a0φ
α, ϕ ≈ b0φ

β. (2.2)

And the derivatives of (2.2) are given by

ut ≈ a0αφ
α−1φt, ux ≈ a0αφ

α−1φx, uxxx ≈ a0α(α − 1)(α − 2)φα−3φ3
x,

ϕx ≈ b0βφ
β−1φx, ϕxx ≈ b0β

(
β − 1

)
φβ−2φ2

x.
(2.3)

Substituting (2.2)-(2.3) into (1.3), we get the following forms

a0α(α − 1)(α − 2)φα−3φ3
x + 12a2

0αφxφ
2α−1 = 2b20βφxφ

2β−1,

b0β
(
β − 1

)
φβ−2φ2

x + 2a0b0φ
α+β = 0.

(2.4)

Calculating and simplifying equation (2.4), we get the dominant balances

u ≈ −3φ2
xφ

−2, ϕ ≈ ±6φ2
xφ

−2, (2.5)

where α = β = −2, a0 = −3φ2
x, b0 = ±6φ2

x. So we complete the first step.
The second step in applying the Painlevé test is to find the resonances. To find the

resonances numbers j, we substitute (2.1) into (1.3), and collecting terms of each order of φ,
we obtain

φ−5:

−24a0φ
3
x − 24a2

0φx = −4b20φx. (2.6)

By calculating equation (2.6), we get b20 = 6a0(a0 + φ2
x).
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φ−4:

18a0xφ
2
x − 6a1φ

3
x + 18a0φxφxx + 12a0a0x − 36a0a1φx = 2b0b0x − 6b0b1φx,

6b0φ2
x + 2a0b0 = 0.

(2.7)

From (2.6) and (2.7), we have a0 = −3φ2
x, b0 = ±6φ2

x, 6b1 = ±(15φxx − 17a1), where a0 and b0
are consistent with step one.

φ−3:

− a0φt − 3a0xxφx + 3a1xφ
2
x − 3a0xφxx + 3a1φxφxx − a0φxxx + 6a0a1x

+ 6a1a0x − 6a2
1φx − 12a0a2φx = b0b1x + b1b0x − b21φx − 2b0b2φx,

− 2b0xφx + b1φ
2
x − b0φxx + a0b1 + a1b0 = 0.

(2.8)

From (2.7) and (2.8), we get a1 = 3φxx, b1 = ∓6φxx,
φ−2:

a0t − a1φt + a0xxx − 3a1xxφx − 3a1xφxx − a1φxxx + 12a0a2x + 12a1a1x + 12a2a0x

− 12a0a3φx − 12a1a2φx = 2b0b2x + 2b1b1x + 2b2b0x − 2b0b3φx − 2b1b2φx,

b0xx − 2b1xφx − b1φxx + 2a0b2 + 2a1b1 + 2a2b0 = λb0.

(2.9)

From (2.8) and (2.9), we get

a2 =
15φ2

xx − 20φxφxxx − φxφt + 4λφ2
x

20φ2
x

, b2 = ±−15φ
2
xx + 20φxφxxx − φxφt − 6λφ2

x

10φ2
x

,

(2.10)

φj−5:

aj−3,t +
(
j − 4

)
aj−2φt + aj−3,xxx + 3

(
j − 4

)
aj−2,xxφx + 3

(
j − 3

)(
j − 4

)
aj−1,xφ2

x

+
(
j − 2

)(
j − 3

)(
j − 4

)
ajφ

3
x + 3

(
j − 4

)
aj−2,xφxx + 3

(
j − 3

)(
j − 4

)
aj−1φxφxx

+
(
j − 4

)
aj−2φxxx + 12

{
a0aj−1,x + a1aj−2,x + · · · + aj−1a0,x

+ φx

[(
j − 2

)
a0aj +

(
j − 3

)
a1aj−1 + · · · + 2aj−4a4

+aj−3a3 − aj−1a1 − 2aja0
]}

= 2
{
b0bj−1,x + b1bj−2,x + · · · + bj−1b0,x

+φx

[(
j − 2

)
b0bj +

(
j − 3

)
b1bj−1 + · · · + 2bj−4b4 + bj−3b3 − bj−1b1 − 2bjb0

]}
,

(2.11)
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φj−4:

bj−2,xx + 2
(
j − 3

)
bj−1,xφx +

(
j − 2

)(
j − 3

)
bjφ

2
x +

(
j − 3

)
bj−1φxx

+2a0bj + 2a1bj−1 + · · · + ajb0 = λbj−2.
(2.12)

Substituting a0 = −3φ2
x, b0 = ±6φ2

x into (2.11) and (2.12), the coefficients of aj and bj may be
rearranged to give

[(
j − 2

)(
j − 3

) − 36
](
j − 4

)
ajφ

3
x + F

(
a0, a1, . . . , aj−1, φt, φx, φxx, . . .

)

= ±12(j − 4
)
bjφ

3
x +G

(
b0, b1, . . . , bj−1, φt, φx, φxx, . . .

)
,

(2.13)

[(
j − 2

)(
j − 3

) − 6
]
bjφ

2
x ± 12ajφ

2
x

+H
(
a0, a1, . . . , aj−1, b0, b1, · · · , bj−1, φt, φx, φxx, . . .

)
= 0,

(2.14)

simplifying (2.13)-(2.14), we have

(
j − 4

)[
j
(
j − 5

)(
j2 − 5j − 30

)
+ 144

](
j2 − 5j − 30

)
ajφ

3
x = −j(j − 5

)(
j2 − 5j − 30

)
F

+j
(
j − 5

)(
j2 − 5j − 30

)
G ∓ 12

(
j − 4

)(
j2 − 5j − 30

)
φxH,

(2.15)

(
j − 4

)[
j
(
j − 5

)(
j2 − 5j − 30

)
+ 144

]
bjφ

3
x = −(j2 − 5j − 30

)(
j − 4

)
φxH ∓ 12G ± 12F.

(2.16)

There, it is found that the resonance occurs at j = 4, so the second step is completed.
For the last step, we will check the resonance conditions. So we need to find the orders

in the expansion (2.1)where arbitrary constants may appear:
φ−1:

a1t + a1xxx + 12
[
a0a3x + a1a2x + a2a1x + a3a0x + φx(2a0a4 + a1a3 − a3a1 − 2a4a0)

]

= 2
[
b0b3x + b1b2x + b2b1x + b3b0x + φx(2b0b4 + b1b3 − b3b1 − 2b4b0)

]
,

b1xx + 2a0b3 + 2a1b2 + 2a2b1 + 2a3b0 = λb1.

(2.17)

From (2.17), we know a4 and b4 are both arbitrary. Thus (1.3) possess the Painlevé property.
We now specialize (2.1) by setting the resonance functions a4 = b4 = 0. Furthermore,

we require a3 = b3 = 0, it is easily demonstrated that aj = 0, bj = 0, j ≥ 3 from the recursion
relations.

If a2 and b2 satisfy

a2t + a2xxx + 12a2a2x =
(
b22

)

x
,

b2xx + 2a2b2 = λb2,

(2.18)
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we obtain a Bäcklund transformation of (1.3):

u = 3
(
lnφ

)
xx + ũ, ũ ≡ a2,

ϕ = −6(lnφ)xx + ϕ̃, ϕ̃ ≡ b2,
(2.19)

where we consider the case of b0 = 6φ2
x, b1 = −6φxx moreover, u, ϕ and ũ, ϕ̃ satisfy (1.3) and

3ũ
(
lnφ

)
xx + ϕ̃

(
lnφ

)
xx = θ(t),

φt

φx
= 5λ +

(
15φ2

xx

φ2
x

− 20φxxx

φx

)
.

(2.20)

Many studies [9, 13] show that a new solution can usually be obtained from a given solution
of an equation if the so-called Bäcklund transformation for the equation is found. Therefore,
it is worth to find the Bäcklund transformation of an equation. In the next section, we will
give the bilinear Bäcklund transformation of (1.3).

3. Bilinear Form

As we know, when you want to use Hirota method, the first thing you need to do is to rewrite
the equation under consideration as the bilinear form [14]. This can be achieved for (1.3) by
the following dependent variable transformation:

u =
(
ln f

)
xx, ϕ =

g

f
. (3.1)

Equation (1.3) can be written into bilinear forms

(
DxDt +D4

x

)
f · f = 2g2,

D2
xf · g = λfg,

(3.2)

where D is the well-known Hirota bilinear operator

Dm
x D

n
t a · b =

(
∂

∂x1
− ∂

∂x2

)m( ∂

∂t1
− ∂

∂t2

)n

a(x1, t1)b(x2, t2)
∣∣∣∣x1=x2,
t1=t2.

. (3.3)

Now we will give the bilinear Bäcklund transformation of (1.3).
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Theorem 3.1. Suppose that (f , g) is a solution of (3.2), then (f ′, g ′), satisfying the following rela-
tions:

Dxg · f ′ − μfg ′ = 0, (3.4)

Dxf · g ′ − μgf ′ = 0, (3.5)
(
D2

x − ν
)
f · f ′ = 0, (3.6)

(
Dt +D3

x + 3νDx

)
f · f ′ +

1
μ
gg ′ = 0, (3.7)

is another solution of (3.2), where μ and ν are arbitrary constants and μ/= 0.

Proof. We consider the following:

P1 =
(
DxDt +D4

x

)
f ′ · f ′ − 2g ′2,

P2 = D2
xf

′ · g ′ − λf ′g ′.
(3.8)

Wewill show that (3.4)–(3.7) imply P1 = 0 and P2 = 0. We first work on the case of P1. We will
use various bilinear identities which, for convenience, are presented in the appendix:

− P1ff =
[(

DxDt +D4
x

)
f · f − 2g2

]
f ′f ′ −

[(
DxDt +D4

x

)
f ′ · f ′ − 2g ′2

]
ff

(A.1)(A.2)
= 2Dx

(
Dtf · f ′) · ff ′ + 2Dx

[(
D3

xf · f ′
)
· ff ′ + 3

(
D2

xf · f ′
)
· (Dxf

′ · f)
]

+ 2g ′g ′ff − 2ggf ′f ′

(3.6)
= 2Dx

(
Dtf · f ′) · ff ′ + 2Dx

[(
D3

xf · f ′
)
· ff ′ + 3νff ′ · (Dxf

′ · f)
]

+ 2fg ′fg ′ − 2gf ′gf ′

(3.4)(3.5)
= 2Dx

[(
Dt +D3

x + 3νDx

)
f · f ′

]
· ff ′ + 2

1
μ

[(
Dxg · f ′)fg ′ − (

Dxf · g ′)gf ′]

(A.3)
= 2Dx

[(
Dt +D3

x + 3νDx

)
f · f ′

]
· ff ′ + 2

1
μ
Dxgg

′ · ff ′

= 2Dx

[(
Dt +D3

x + 3νDx

)
f · f ′ +

1
μ
gg ′

]
· ff ′

(3.7)≡ 0.
(3.9)
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Next we come to the second part of the proof:

− P2fg =
(
D2

xf · g − λfg
)
f ′g ′ −

(
D2

xf
′ · g ′ − λf ′g ′

)
fg

(A.4)
= Dx

[(
Dxf · g ′) · f ′g + fg ′ · (Dxf

′ · g)]

(3.4)(3.5)
= Dx

(
μgf ′ · f ′g − fg ′ · μfg ′) (A.5)≡ 0.

(3.10)

Thus we have completed the proof of Theorem 3.1.

We will show that our Bäcklund transformation (3.4)–(3.7) supplies us with a Lax
representation for (1.3). Suppose

v =
(
ln f

)
xx, g = ϕf, f ′ = Xf, g ′ = Yg, (3.11)

then the variables f , g, f ′ and g ′ can be eliminated from (3.4)–(3.7). The elimination results
in

Xx =
ϕx

ϕ
X − μY, (3.12)

Yx = −ϕx

ϕ
Y − μX, (3.13)

Xxx = (ν − 2ω)X, (3.14)

Xt = −Xxxx − 3(2ω + ν)Xx +
1
μ
ϕ2Y. (3.15)

Therefore, we have the following.

Theorem 3.2. The compatibility condition of (3.12)–(3.15) is (1.3). In fact, using the compatibility
conditions Xxxt = Xtxx, one can obtain (1.3) where ν and ω satisfy ν − 2ω = λ.

Finally we will give the soliton solution of the equation (1.3) by the standard
perturbation method:

u =
[
ln
(
1 + e2ξ

)]

xx
, ϕ =

√
2kβ(t)eξ

1 + e2ξ
, (3.16)

where ξ = kx − 4k3t +
∫ t
0 β(s)ds + c, c, k are arbirtary constants and λ = k2.

4. Conclusion

In this paper, we investigate the Painlevé property for the KdV equation with a self-consistent
source. By tests to the equation, it is shown that only the principal balance of the equation has
the Painlevé property. While noninteger resonances are allowed with the weak extension of



Discrete Dynamics in Nature and Society 9

the Painlevé test [12]. We obtain the two different Bäcklund transformations. And then the
soliton solution for (1.3) is given.

Appendix

In this appendix, we list the relevant bilinear identities, which can be proved directly. Here a,
b, c, and d are arbitrary functions of the independent variables x and t :

(DxDta · a)b2 − a2(DxDtb · b) = 2Dx(Dta · b) · ba, (A.1)

(
D4

xa · a
)
b2 − a2

(
D4

xb · b
)
= 2Dx

[(
D3

xa · b
)
· ab + 3

(
D2

xa · b
)
· (Dxb · a)

]
, (A.2)

(Dxa · b)cd − ab(Dxc · d) = Dx(ad) · (cb), (A.3)

(
D2

xa · b
)
cd − ab

(
D2

xc · d
)
= Dx[(Dxa · d) · cb + ad · (Dxc · b)], (A.4)

Dxa · a = 0. (A.5)
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equation,” Journal of Physics A, vol. 26, no. 21, pp. 5895–5903, 1993.

[14] R. Hirota, The Direct Method in Soliton Theory, vol. 155 of Cambridge Tracts in Mathematics, Cambridge
University Press, Cambridge, UK, 2004.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


