Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2012, Article ID 904815, 24 pages
doi:10.1155/2012/904815

Research Article

A Multiswarm Optimizer for Distributed Decision
Making in Virtual Enterprise Risk Management

Yichuan Shao,” 2 Xingjia Yao,? Liwei Tian,®> and Hanning Chen*

I College of Information Science and Engineering, Shenyang University, Shenyang 110044, China

2 School of New Energy Engineering, Shenyang University of Technology, Shenyang 110036, China
3 Science and Technology Agency, Shenyang University, Shenyang 110036, China

* Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

Correspondence should be addressed to Hanning Chen, perfect_chn@hotmail.com
Received 27 October 2011; Accepted 16 February 2012
Academic Editor: Leonid Shaikhet

Copyright © 2012 Yichuan Shao et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We develop an optimization model for risk management in a virtual enterprise environment based
on a novel multiswarm particle swarm optimizer called PS?O. The main idea of PS?O is to extend
the single population PSO to the interacting multiswarms model by constructing hierarchical
interaction topology and enhanced dynamical update equations. With the hierarchical interaction
topology, a suitable diversity in the whole population can be maintained. At the same time, the
enhanced dynamical update rule significantly speeds up the multiswarm to converge to the global
optimum. With five mathematical benchmark functions, PS20 is proved to have considerable
potential for solving complex optimization problems. PS?O is then applied to risk management
in a virtual enterprise environment. Simulation results demonstrate that the PS?O algorithm is
more feasible and efficient than the PSO algorithm in solving this real-world problem.

1. Introduction

Swarm Intelligence (SI) is an innovative artificial intelligence technique for solving complex
optimization problems. This discipline is inspired by the collective behaviors of social animals
such as fish schools, bird flocks, and ant colonies. In SI systems, there are many simple
individuals who can interact locally with one another and with their environments. Although
such systems are decentralized, local interactions between individuals lead to the emergence
of global behavior and properties.

In recent years, many algorithmic SI methods were designed to deal with practical
problems [1-5]. Among them, the most successful is Particle Swarm Optimization (PSO) that
drew inspiration from the biological swarming behaviors observed in flocks of birds, schools
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of fish, and even human social behavior [6-8]. PSO is a population-based optimization tool,
which could be implemented and applied easily to solve various function optimization
problems. As a problem-solving technique, the main strength of PSO is its fast convergence,
which compares favorably with Evolutionary Algorithms (EAs) and other global optimi-
zation algorithms [9-12]. However, when solving complex multimodal problems, PSO suf-
fers from the following drawback [13]: as a population evolves, all individuals suffer prema-
ture convergence to the local optimum in the first generations. This leads to low population
diversity and adaptation stagnation in successive generations. However, such loss of popu-
lation diversity is not observed in natural systems. Because populations of species interact
with one another in natural ecosystems, these species form biological communities which are
large social systems typically consist of both heterogeneous and homogeneous aspects. The
interaction between species and the complexity of their relationships in these communities
exemplify what is meant by the term “symbiosis.” According to different symbiotic interre-
lationships, symbiotic coevolution can be classified into several categories: mutualism, com-
mensalism, parasitism, and competition. We found that all these types are suitable to be incor-
porated into the standard PSO model to improve PSO’s performance on complex optimi-
zation problems. This should be a general extension of PSO with the purpose of accurately
representing as many different forms of symbiotic coevolution as possible.

Thus, inspired by symbiotic cooperation (i.e., mutualism coevolution) phenomenon
in nature, this paper proposed a novel multiswarm particle swarm optimizer called PS*O,
which extend the single population PSO to interacting multiswarms model by constructing
hierarchical interaction topologies and enhanced dynamical update equations. In PS>0, we
implement a hierarchical interaction topology that consists of two levels (i.e., individual level
and swarm level), in which information exchanges take place permanently. Each individual
of the proposed model evolves based on the knowledge integration of itself (associate with
individual’s own cognition), its swarm members (associate social interaction within each
swarm), and its symbiotic partners from other swarm (associate heterogeneous cooperation
between different swarms). That is, we extend the control law (i.e., the dynamic update
equation) of the canonical PSO model by adding a significant ingredient, which takes into
account the symbiotic coevolution (or heterogeneous cooperation) between different swarms.
By incorporating this new degree of complexity, PS?0 can accommodate a considerable
potential for solving more complex problems. Here we provide some initial insights into
this potential by evaluating PS?O on both mathematical benchmark functions and a complex
real-world problem-risk management in a virtual enterprise (VE). The 5 benchmark functions
used in our experiments have been widely employed by other researchers to evaluate their
algorithms [14-16]. In this paper, the risk management problem in VE is modeled as a
distributed decision-making (DDM) system. This novel risk management model is a complex
hierarchical optimization problem with two levels, namely, the top model and the base model,
which take care of the continuous decision variables and the discrete ones, respectively. The
simulation results, which are compared to other methods, are reported in this paper to show
the merits of the proposed algorithm.

The paper is organized as follows. Section 2 gives a review of the canonical PSO
algorithm and several multi-swarm PSO variants. Section 3 describes the proposed multi-
swarm coevolution algorithm. In Section 4, it will be shown that PS?O outperforms the can-
onical PSO and its variants on 5 benchmark test functions. Section 5 describes the risk man-
agement optimization model in VE and a detailed design algorithm of risk management by
PS%0. The simulation result of risk management in a VE based on PS*O compared with can-
onical PSO is also presented in this section. Finally, conclusions are drawn in Section 6.
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2. Review of Canonical Particle Swarm Optimization

The canonical PSO is a population-based technique, similar in some respects to evolutionary
algorithms, except that potential solutions (particles) move, rather than evolve, through the
search space. The rules (or particle dynamics) that govern this movement are inspired by
models of swarming and flocking [7]. Each particle has a position and a velocity, and expe-
riences linear spring-like attractions towards two attractors:

(i) its previous best position,

(ii) best position of its neighbors.

In mathematical terms, the ith particle is represented as x; = (xj1, xi2,..., xip) in the
D-dimensional space, where x;z € [l4,u4], d € [1, D], L4, ug are the lower and upper bounds
for the dth dimension, respectively. The rate of velocity for particle i is represented as v; =
(i1, viz, ..., vip) is clamped to a maximum velocity Vmax which is specified by the user. In
each time step ¢, the particles are manipulated according to the following equations:

via(t) = x(Wia(t = 1) + Ric1 (pia — Xia(t = 1)) + Roca (pga — xia(t = 1))), (2.1)

Xia(t) = xia(t = 1) + via(t), (2.2)

where Ry and R, are random values between 0 and 1, ¢; and ¢, are learning rates, which
control how far a particle will move in a single iteration, p;4 is the best position found so far
of the ith particle, pg, is the best position of any particles in its neighborhood, and y is called
constriction factor [17], given by

(2.3)

B 2
R

where p =c1 + ¢z, ¢ > 4.

Kennedy and Eberhart [18] proposed a binary PSO in which a particle moves in a state
space restricted to zero and one on each dimension, in terms of the changes in probabilities
that a bit will be in one state or the other. The velocity formula (2.1) remains unchanged ex-
cept that x4, pia, and Peq are integers in {0, 1}, and v;y; must be constrained to the interval
[0.0,1.0]. This can be accomplished by introducing a sigmoid function S(v), and the new
particle position is calculated using the following rule:

if rand < S(viy), then x;3 = 1; else x;3 =0, (2.4)

where rand is a random number selected from a uniform distribution in [0.0, 1.0] and the
function S(v) is a sigmoid limiting transformation as follows:

S(v) = (2.5)

1+e’
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Figure 1: Hierarchical topologies of the multiswarm.

3. PS20 Algorithm

Straight PSO uses the analogy of a single-species population and the suitable definition of the
particle dynamics and the particle information network (interaction topology) to reflect the
social evolution in the population. However, the situation in nature is much more complex
than what this simple metaphor seems to suggest. Indeed, in biological populations there
is a continuous interplay between individuals of the same species, and also encounters and
interactions of various kinds with other species [19]. The points at issue can be clearly seen
when one observes such ecological systems as symbiosis, host-parasite systems, and prey-
predator systems, in which two organisms mutually support each other, one exploits the
other, or they fight against each other. For instance, mutualistic relations between plants and
fungi are very common. The fungus invades and lives among the cortex cells of the secondary
roots and, in turn, helps the host plant absorb minerals from the soil. Another well-known
example is the “association” between the Nile crocodile and the Egyptian plover, a bird that
feeds on any leeches attached to the crocodile’s gums, thus keeping them clean. This kind of
“cleaning symbiosis” is also common in fish.

Inspired by mutualism phenomenon, we extend the single population PSO to the inter-
acting multi-swarms model by constructing hierarchical information networks and enhanced
particle dynamics. In our multi-swarms approach, the interaction occurs not only between
the particles within each swarm but also between different swarms. That is, the information
exchanges on a hierarchical topology of two levels (i.e., the individual level and the swarm
level). Many patterns of connection can be used in different levels of our model. The most
common ones are rings, two-dimensional and three-dimensional lattices, stars, and hyper-
cubes. Two example hierarchical topologies are illustrated in Figure 1. In Figure 1(a), four
swarms at the upper level are connected by a ring, while each swarm (possesses four indivi-
dual particles at the lower level) is structured as a star. While in Figure 1(b), both levels are
structured as rings. Then, we suggest in the proposed model that each individual moving
through the solution space should be influenced by three attractors:
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(i) its own previous best position,
(ii) best position of its neighbors from its own swarm,

(iii) best position of its neighbor swarms.

In mathematical terms, our multi-swarm model is defined as a triplet (P, T, C), where
P ={51,55,...,Sm} is a collection of M swarms, and each swarm possesses a members set
Sk = {X{‘, Xé‘, e, X;ﬁ,} of N individuals. T is the hierarchical topology of the multi-swarm. C
is the enhanced control low of the particle dynamics, which can be formulated as

vi’ii(t) = x(v;;(t -1)+ Ric (pfd - xfd(t - 1)) + Rocp <p§d - xf.‘d(t - 1))

(3.1)
+Rsc3 <pgd - xl’.‘d(t - 1)>>,

Xk (1) = xfy (= 1) + vl (1), (3.2)

where xll.‘aZ represents the position of the ith particle of the kth swarm, pfd is the personal best
position found so far by x¥, pg 4 1s the best position found so far by this particle’s neighbors
within swarm k, pg 4 is the best position found so far by the other swarms in the neighborhood
of swarm k (here 0 is the index of the swarm which the best position belongs to), c; are the
individual learning rates, ¢, are the social learning rate between particles within each swarm,
c3 are the social learning rate between different swarms, and R;, Ry, Rz € R? are random
vectors uniformly distributed in [0, 1]. Here, the term Rjc; (pfd - xfd) is associated with
cognition since it takes into account the individual’s own experiences; the term Ryc; (pg 4 —xfd)

represents the social interaction within swarm k; the term Rjc3 (pg i xfd) takes into account
the symbiotic coevolution between dissimilar swarms.

When constriction factor is implemented as in the canonical PSO above, y is calculated
from the values of the acceleration coefficients (i.e., the learning rate) ¢; and ¢, importantly,
it is the sum ¢ of these two coefficients that determines what y to use [17]. This fact implies
that the particle’s velocity can be adjusted by any number of terms, as long as the acceleration
coefficients sum to an appropriate value. Thus, the constriction factor y in velocity formula
of PS?O can be calculated by

(3.3)

3 2
U eE]

where ¢ = ¢ + ¢ + ¢3, ¢ > 4. Then the algorithm will behave properly, at least as far as its
convergence and explosion characteristics, whether all of ¢ is allocated to one term, or it is
divided into thirds, fourths, and so forth.

We should note that, for solving discrete problems, we still use (2.4) and (2.5) to
discrete the position vectors in PS?O algorithm. The pseudocode for the PS?O algorithm is
listed in Table 1. The flowchart of the PS?>O algorithm is presented in Figure 2, and according
variables used in PS?0 are summarized in Table 2.
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Initialize M swarms each possess N individuals. Set t = 0

t=t+1

k+1

d=1
ok, = x (Of + Riea(ply — x)
i=i+1 + Ryco (P;d - xfd) + Rscs (Pgd - xﬁi))/
o =k ok,
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Figure 2: The flowchart of the PS?O algorithm.
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Table 1: Pseudocode for the PS?O algorithm.

Sett :=0;
INITIALIZE. Randomize n swarms each possesses m particles;
WHILE (the termination conditions are not met)
FOR (each swarm k)
Find in the kth swarm neighborhood, the point with the best fitness;
Set this point as pg o
FOR (each particle i of swarm k)
Find in the particle neighborhood, the point with the best fitness;
Set this point as pg o
Update particle velocity using (4.1);
Update particle position using (4.2);

END FOR

END FOR

Sett:=t + 1;
END WHILE

Table 2: List of variables used in PS?O.

M The number of swarms
N Population size of each swarm
k Swarm’s ID counter from 1 to n
i Individual’s ID counter from 1 to m
d Dimension of the problem
t Generation counter from 1 to max generation
0 The index of the best neighbor swarm of the kth swarm
xfd The ith individual’s (of the kth swarm) dth dimension’s value
pl’.‘d The ith individual’s personal best (of the kth swarm)
pg 4 The best neighbor position of x¥, in the kth swarm
pg d The best neighbor position of the kth swarm

4. Benchmark Test
4.1. Test Function

A set of 5 benchmark functions, which are commonly used in evolutionary computation lit-
erature [16, 20] to show solution quality and convergence rate, was employed to evaluate the
PS?0 algorithm in comparison to others. The first problem is the unimodal Sphere function
that is easy to solve. The second problem is the Rosenbrock function, which has a narrow val-
ley from the perceived local optima to the global optimum and can be treat as a multimodal
problem. The remaining three functions are multimodal problem. Griewank’s function has a
[12, cos(x;/+/i) component causing linkages among variables, thereby making it difficult to
reach the global optimum. The Weierstrass function is continuous but differentiable only on
a set of points. The composition functions are a set of novel challenging problems, which are
constructed using some basic benchmark function with a random located global optimum
and several randomly located deep local optima. The Gaussian function is used to combine



1500

S

KBRS XERR R

SRR e

RS

& u“m‘ SR

5 IR,

55 ii",‘o‘u 4%,,/,

B

S
(ERERSER
s
SRR

<53
85
BN
%00 7y 2
(SR 55 w‘; ’4,0..3{' LAt
B
253050

1000

500

-5 -5

Figure 3: The landscape maps of CF1 function.
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the basic functions and blur the function structures. CF1 is constructed using 10 sphere func-
tions which is an asymmetrical multimodal function with 1 global optimum and 9 local op-
tima (the landscape of CF1 is illustrated in Figure 3). The variables of the CF1 formulation

can be referred to [20]. The formulas of these functions are presented below.

(1) Sphere function:
D
fi(x) = fo
i=1
(2) Rosenbrock function:
D 2
fa(x) = ZlOO X <xi+1 - x12> +(1-x;)2
i=1
(3) Griewank function:

f3(x) = 4000 Hcos<x1)+1.

(4) Weierstrass function:

D k max k max

fa(x) = Z Z [ak cos (27rbk(x,- + 0.5)>] -n Z [ak cos(Zm'bk ° 0.5)] ,
k=0

i=1 k=0

where a = 0.5, b = 3, k max = 20.

(4.1)

(4.2)

(4.3)

(4.4)
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(5) Composition function 1:

f5(x) = {wl [ﬁ(M Mi> +bias,] } + f_bias, (4.5)

where 7 is the number of basic function, w; is weight value for each f;(x), fi(x) is ith basic
function used to construct the composition function (here fi1—fio: Sphere Function), o; is new
shifted optimum position for each f;(x), 0jq is old optimum position for each f;(x), A; is
used to stretch or compress the function, M; is orthogonal rotation matrix for each f;(x), and
bias; is defines which optimum is global optimum.

4.2. Experimental Setting

Experiments were conducted with PS?0O compared with four successful variants of PSO:

(i) local version of PSO with constriction factor (CPSO) [21];
(ii

(iii

)

) fully informed particle swarm (FIPS) [22];

) unified particle swarm (UPSO) [23];

(iv) fitness-distance-ratio-based PSO (FDR-PSO) [24].

Among these variations, UPSO combined the global version and local version PSO
together to construct a unified particle swarm optimizer; FIPS used all the neighbors’
knowledge of the particle to update the velocity; the FDR-PSO selects one other particle,
which has a higher fitness value and is nearer to the particle being updated, to update each
velocity dimension.

The number of swarms M needs be tuned. Three 10D functions, namely Sphere,
Rosenbrock, and Griewank, are used to investigate the impact of this parameter. Experiments
were executed by changing the number of swarms and fixing each swarm size at 10. The
average test results obtained form 30 runs are plotted in Figure 4. From Figure 4, we can
observe that the performance of PS?O is influenced by M. When M increases, we obtained
faster convergence velocity and better results.

For fair comparison, the population size of all algorithms used in our experiments was
set at 100 (all the swarms of PS*O include the same particle numbers of 10). The maximum
velocity of all PSO variants was set to be 5% of the search space for unimodal functions and
50% for multimodal functions. For canonical PSO and UPSO, the learning rates ¢; and ¢, were
both 2.05 and the constriction factor y = 0.729. For FIPS, the constriction factor y equals 0.729
and the U-ring topology that achieved highest success rate is used. For FDR-PSO, the inertia
weight w started at 0.9 and ended at 0.5 and a setting of ¢; = ¢, = 2.0 was adopted. For PS?O,
the interaction topology illustrated in Figure 1(b) is used; the constriction factor in PS?O is
also used with y = 0.729 according to Clerc’s method; correspondingly, the ¢ coefficient must
sum to 4.1 and then the learning rates ¢; = ¢, = c3 = ¢/3 = 1.3667.

4.3. Simulation Results

The experiment runs 50 times, respectively, for each algorithm on each benchmark function
of 30 dimensions. The numbers of generations were set to be 10000. The representative results
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Figure 4: PS?O’s results on 3 test functions with different M.

obtained are presented in Table 4, including the best, worst, mean, and standard deviation of
the function values found in 50 runs. Figures 5, 6, 7, 8, and 9 presents the evolution process
for all algorithms according to the reported results in Table 3.

From the results, we can observe that the PS?O algorithm obtains an obviously re-
markable performance. We can see it clearly that PS?0 converged with greatly faster speed
to significantly better results than the other PSO variants for both unimodal and multimodal
cases. It should be mentioned that the PS?0 were the only ones able to consistently find the
minimum of the Sphere function, Griewank’s function, Weierstrass function, and Composi-
tion function 1, while the other algorithms generated poorer results on them. The result on
Rosenbrock obtained by PS?O is also very good. Since a result within 40.0 on 30 D Rosenbrock
reported in other EA and SI works is considered well, the PS?O algorithm’s performance on
Rosenbrock function is remarkable good.

With the hierarchical interaction topology, a suitable diversity in the whole population
can be maintained. At the same time, the enhanced dynamical update rule significantly
speeds up the multi-swarm to converge to the global optimum. Because of this, the PS?0O
performs considerably better than many PSO variants.
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Table 3: Performance of all algorithms. In bold are the best results.

Func. (dim.30) PS*0O CPSO FIPS UPSO FDR-PSO
Best 0 2.4787e — 116 1.1874e — 030 3.4459%¢ — 185 6.9665¢ — 190
J; Worst 0 1.3486e — 113 9.7762¢ — 029 1.9929¢ — 182 7.4365e — 168
! Mean 0 2.4205¢ — 114 1.7391e — 029 3.7072¢ — 183 2.478% — 169
Std 0 3.3966e — 114 2.2995¢ - 029 0 0
Best 1.5203¢ — 015 5.8889 17.4217 0.7070 0.0012
Worst 5.1336¢ — 014 7.4375 23.4450 4.0368 4.0879
f2 Mean 1.0412¢ - 014 6.6172 22.5407 2.0983 0.2797
Std 9.7087¢ — 015 0.4028 1.2748 0.7696 1.0224
Best 0 0 0 0 0
J; Worst 0 0.1152 0.0123 0.0388 0.0737
} Mean 0 0.0183 0.0016 0.0347 0.0179
Std 0 0.0266 0.0038 0.0478 0.0182
Best 0 2.8242¢ — 005 0 0 0
f Worst 0 3.7591 0.2856 8.1054 1.5086
! Mean 0 1.3510 0.0201 4.4244 0.1581
Std 0 1.1606 0.0558 2.6022 0.4569
Best 0 0.0051 0 0 0
J; Worst 0 100.0071 45.5672 0.0467 300.00
° Mean 0 50.0061 33.7051 0.0136 100.00
Std 0 70.7121 25.8645 0.0143 141.42

5. Virtual Enterprise Risk Management Based on PS?0

A virtual enterprise (VE) [25] is a temporary consortium of autonomous, diverse, and pos-
sibly geographically dispersed organizations that pool their resource to meet short-term ob-
jectives and exploit fast changing market trends. A VE is a dynamic alliance of member com-
panies (owner and partners), which join to take advantage of a market opportunity. Each
member company will provide its own core competencies in areas such as marketing, engi-
neering, and manufacturing to the VE. When the market opportunity has passed, the VE is
dissolved. In a VE environment, there are various sources of risks that may threaten the sec-
urity of VE, such as market risk, credit risk, operational risk, and others [26]. Recently, risk
management of a VE has attracted much research attention.

5.1. The Two-Level Optimization Model for Risk Management in
a Virtual Enterprise

In this paper, the two-level risk manage model suggested by Huang and Lu [27] is employed
to evaluate the performance of the proposed PS?O algorithm. This model can be described as
a two-level Distributed Decision Making (DDM) system that is depicted in Figure 10(a).

In the top level, the decision maker is the owner who allocates the budget (i.e., the
risk cost investment) to each member of VE. The decision variables are therefore given by
I=(I1...,1I,). Here I denotes the budget to owner and I; (i = 1,2,..., n) represents the
budget to Partner i. That is, there are n + 1 members in a VE. Then the top-level objective of
risk management in a VE is to best allocate the budget of each member so as to minimize
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VE. The top-level model can be formulated as a continuous opti-
given in what follows:

n
min Fr(I) = ZwiRi(Ii)r
I . i=0
s.t. ZL < Imax/
i=0
Ri(I;) € Rax,

(5.1)
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where R;(I;) is the risk level of ith member under risk cost investment I;, w; represents the
weight of member i, I1hay is the maximum total investment budget, and Rmax stands for the
maximum risk level for each member in the VE.

In the base level, the partners of VE are making their decisions in view of the top-
level’s instruction (i.e., the budget to partners). The base-level risk management is that the
decision makers select the optimal series of risk control actions A; = (ali, aé, ...,a.) for each
partner i (i = 1,2,...,n) to minimize the risk level with respect to the allocated budget I;.
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Figure 10: The exchange of information between (a) the owner and partners, (b) the upper-swarms, and
lower-swarms.

Here m is the number of risk factors that affect each partner’s security. Then the base-level
model can be formulated as a discrete optimization problem that is given in what follows:

n
rrgn Fp(A) = ZwiRi(AiIi)/
i=1

s.t. gc;(a;) <1, (5.2)

a;'. €1{0,1,2,...,W},
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where R;(A;|I;) is the risk level of ith partner under risk control action A; with respect to the
top-level investment budget I;, C;(a;) represents the cost of partner i under the risk control

action aj. for the risk factor j, and W stands for the number of available actions for each risk
factor of each partner.

5.2. Risk Management in VE Based on PS>0

The detailed design of risk management algorithm based on PS?O is introduced in this
section. Since the optimizing problem has a two-level hierarchical structure, this risk
management algorithm is composed of two types of swarms that search in different levels,
respectively, namely, the upper swarm and the lower swarm. The algorithm design reflects a
two-phase searching process as Figure 10(b) illustrates. In the top-level searching process, the
upper swarms that are designed based on the continuous PS?O, search a continuous space
for the investment budget allocation for all VE members. While the lower swarms, which
are designed based on the discrete PS?O, receive information from upper swarms, and must
search the discrete space for a best action combination for risk management of all partners.
The overall searching process can be described as follows.

(a) Definition of Continuous Particle

In each upper-swarm, each particle has a dimension equal to n + 1 (i.e., the number of VE
members). Each particle has a real number representation and is a possible allocation of
investment budget for all members. The ith particle of the kth upper swarm is defined as
follows:

T _ T T T T
X = (xilk’xi2k" "’xi(n+1)k>’ Xk € R (5.3)

For example, a real-number particle (286.55, 678.33, 456.78, 701.21, 567.62) is a possible
allocation of investment budget of 5 VE members. The first bit means that the owner received
investment of 286.55 units. The 2 to 5 bits mean that the amount of investment allocated to
partner 1 to 4 is 678.33, 456.78, 701.21, and 567.62 respectively.

(b) Definition of Discrete Particle

For the lower swarms, in order to appropriately represent the action combination by a
particle, we design an “action-to-risk-to-partner” representation for the discrete particle. Each
discrete particle in each lower swarm has a dimension equal to the number of n x m x W, here
W is the number of available actions for each risk factor, m is the number of risk factors of
each partner, and 7 is the number of VE partners. The ith particle of the kth lower swarm is
defined as follows:

L L L L L
Xik = <xi(111)k’ xi(112)k""’xi(nxme)k>’ Xi(apr)k € {0,1}, (5.4)

L
where Xi(apy)k

otherwise. For example, set n = 2, m = 4, W = 4, suppose the action combination of two

equals 1 if the risk factor § of VE partner a is solved by the yth action and 0
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Figure 11: Definition of a discrete particle (2314, 2401) for the action combination of two partners.
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%\L

Evaluate each lower-swarm

l

Update each lower-swarm

Termination? —

Termination?

Top-level search Base-level search

Figure 12: The risk management algorithm based on PS*O.

partners is (2314, 2401), here 0 stands for no action is selected for the third risk factor of
the second partner in VE. By our definition, we have xiL(m)k = xiL(123)k = xiL(m)k = xl.L(1 wyk =

=1 and all other x%

itapyyk = 0 (see Figure 11).

L _ L _ L
Xie12)k = Xioak = Xian)k

(2) Risk Management Procedure

The processing performed by this algorithm is best illustrated in the diagram given in
Figure 12.
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Step 1. The first step in top level is to randomly initialize MT upper swarms each possesses
NT particles (totally M” x NT individuals). Each particle X}, in the top level is an instruction
and is communicated to the base level to drive a base level search process (Steps 2—4).

Step 2. For each top-level instruction X}, , the base-level randomly initialize M” lower swarms
each possesses N® particles (totally M? x NB individuals). At each iteration in base level, for
each particle X% (i.e., the ith particle of the kth lower-swarm), evaluate its fitness using the
base-level optimization function as follows:

>dm

L
Xiapk

Fa(xk) = SR (Xt XL) = 313 S

a=1p=11=1

+
T
Xiak 4

where ug is the weight of the risk factor , d, is the value corresponding to the risk rating A,
I is the number of risk ratings, and ¢ is the punishment coefficient. x- (x

(5.5)

iafk

+(pZ <ZC”‘<

iapk — \Ti(apl)k’ 1(1xﬁ2)k’
..,xi(aﬂw)k) and |xmﬂk| is defined as the position index of 1 in x ik For example, if xmﬂk =
(0010), the value of |xmﬁk| is 3. fp( |xiaﬂk|) is a convex decreasing function, which is ap-

proximated by

(x| ) = exp (-0 |xhg|) (5.6)

L
iafk

to assesses the probability of risk occurrence at risk rating A under action |x[, ﬂk|. Here the

parameter 0, is used to describe the effects of different risk factors under different risk
ratings. The cost of the action C"‘(|xl k|) is assumed to be a concave increasing function of

the corresponding action, which is approx1mated by

> = 100(1 - exp<—Tg

and the parameter G describes the effects of different risk factors of different partners. The

Ch (|l <o) (57)

notation ()" is defined as follows:

x if x>0,
(x)" = { (5.8)

0 else.

Step 3. Compare the evaluated fitness values and select pbest, sbest, and cbest for each lower
swarm. Then update the velocity viL(vcﬂy) . of each base level particle according to (3.1). For our
problem, each partner can only select one action for each risk factor or do nothing with this
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Begin
Let X™™P be a zero vector that has a dimension equal to n x m x W.
For (a =1 to n)
For (f =1 to m)
For (y =1to W)
If (rand < pj(apy)x)
//Action y is selected for risk p of partner a
Xtemp t -1
apy ’
Break;
End if
End for
End for
End for
thic = Xtemp
END

Algorithm 1

factor. In order to take care of this problem, for each particle, action y is selected for risk factor
p of partner a according to following probability:

° <viL('xﬂY)k> _
Sy <viL(aﬂY)k>

Then the position of each base-level particle is updated by Algorithm 1.

pi(rxﬂy)k = (59)

Step 4. (1) Particle Representation

The base-level search process is repeated until the maximum number of base-level iteration
is met. Then send the last best base-level decision variable X* to the top-level for the fitness
computation of the top-level particle X .

Step 5. With the base-level reaction X*, each top-level particle X, is evaluated by the fol-
lowing top-level fitness function:

.

Fr(X}) = En%quu (XFar) = woRo(Xh) + Fo (X[ ) + ¢<nz+ix3;k - Imax>
a= a=

(5.10)

a=1

+
+ 712 <;§wauﬁfm<|xfuﬂk >d)L - Rmax> ,
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Table 4: Criterion of risk rating.

Value of risk probability Risk level
[0.00, 0.38] Low risk
(0.38, 0.67] Medium risk
(0.67,1.00] High risk

Table 5: The weights of the risk factors.

Risk factor 1 2 3 4 5 6 7 8 9 10
g 0.1 0.15 0.10 0.05 0.10 0.10 0.15 0.10 0.05 0.10

where ¢ and 7 is the punishment coefficient and the risk level of the owner Ry(X]),) is
approximated by a convex decreasing function as follows:

Ro(X}i ) = exp(=0.001X7, ). (5.11)

Step 6. Compare the evaluated fitness values and select pbest, sbest, and cbest for each upper
swarm. Then update the velocity and position of each top-level particle according to (3.1) and
(3.2). The top-level computation is repeated until the maximum number of top-level iteration
is met.

5.3. An Illustrative Example

In this section, a numerical example of a VE is conducted to validate the capability of VE risk
management based on the proposed PS?O. In order to show the superiority of PS?O, the risk
management algorithm designed by canonical PSO is also applied to the same case.

In this case, the VE is constructed by one owner and four partners (i.e., n = 4) and the
total investment is Bpax = 3500; 10 risk factors are considered for each partner and 4 actions
can be selected for each risk factor (i.e., m = 10 and W = 4); the number of risk ratings [ = 3
and the value of each rating is d; = 0.165, d, = 0.335, and d3 = 0.500, respectively (according
to the values of ratings, the criterion of risk rating is shown in Table 4); the maximum risk
level Ry = 0.67, which means that the risk level of each member must be below the medium
level; the weight of risk level of each VE member is wy = w; = w, = w3 = w4 and the weights
up of each risk factors for each partner are listed in Table 5; the values of the parameter 0,
and T[‘;‘ are presented in Tables 6 and 7, respectively; the punishment coefficient ¢, 77, and ¢
are given as 1.5, 28 and 0.2.

In applying PS*O and PSO to this case, the continuous and binary algorithms are
used in top level and base level of the optimization model respectively. For the top-level
algorithms, the maximum generation in each execution for each algorithm is 100; the initial-
ized population size of 10 particles is the same for PS?°0 and PSO, while the whole popu-
lation is divided into 2 swarms (each possesses 5 individuals) for PS*O in the initialization
step; the interaction topology illustrated in Figure 1(a) is used for continuous PS?O; the other
parameters of continuous PS?O and PSO were set to the same values as in Section 4. For
the base-level algorithms, the maximum generation for each algorithm is 100; the initialized
population size of 20 particles is the same for PS?0 and PSO, while the whole population
is divided into 4 swarms (each possesses 5 individuals) for PS?O in the initialization step;
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Table 6: The summary of parameter 6.

A

P 1 2 3

1 0.10 0.07 0.13
2 0.23 0.20 0.17
3 0.33 0.27 0.30
4 0.37 0.40 043
5 0.50 0.47 0.53
6 0.63 0.57 0.60
7 0.73 0.70 0.67
8 0.83 0.77 0.80
9 0.87 0.90 0.93
10 1.00 0.97 1.03

Table 7: The summary of parameter Tg.

Risk factor 1 2 3 4 5 6 7 8 9 10
Tg 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

the interaction topology illustrated in Figure 1(b) is used for binary PS?O; the other para-
meters of binary PS*?O and PSO were set to the same values as in Section 4. The experiment
runs 30 times, respectively, for each algorithm.

The top-level and base-level search progresses of the averaged best-so-far fitness
values over 20 runs are shown in Figures 13 and 14, respectively. It should be noted that the
total iteration of base-level searching is 100 (base-level maximum generation) x10 (top-level
population size) x10 (top-level maximum generation) = 10*. That is, the base-level algorithms
will be restarted after every 100 iterations. From the figures, we can see that PS?O converges
with a higher speed compared to PSO and obtains better results in both levels searching
progresses.

The average solutions over 30 runs obtained by PS*O and PSO are summarized in
Table 8. Before proceeding with the risk management procedure, the risk levels are one for
both the VE and the partner, which is a high risk level. Table 8 shows that the resulting
risk levels of the VE and the owner are in the low risk level, while all the partners are in
the medium risk level. Therefore the budget and the actions selected by the owner and the
partner are very effective to reduce the risk of the VE.

To fully demonstrate the risk management performance using the PS*O algorithm, risk
investment budget, and risk level controlling processes of each VE member based on PS?O is
shown in Figure 15. Generally, an effective actions sequence corresponds to a higher cost and
a lower risk level. From the figures, it can be concluded that the additional cost of selecting
effect actions can not result in a remarkable decrease in the risk level.

6. Conclusions

In this paper, we develop an optimization model for minimizing the risks of the virtual
enterprise based on a novel multi swarm optimizer PS?0. In PS?0O, the hierarchical interaction
topology consists of two levels (i.e., the individual level and the swarm level), in which
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Figure 13: The top-level search process based on PS>0 and PSO.
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Figure 14: The base-level search process based on PS?O and PSO.

information exchanges take place not only between the particles within each swarm but also
between different swarms. The dynamical update equations of our multi-swarm approach
are enhanced by a significant ingredient, which takes into account the symbiotic coevolution
(or heterogeneous cooperation) between different swarms. Because of this, each individual
of the proposed model evolves based on the knowledge integration of itself (associate with
individual’s own cognition), its swarm members (associate social interaction within each
swarm), and its symbiotic partners from other swarm (associate heterogeneous cooperation
between different swarms). With five mathematical benchmark functions, PS?O is proved to
have significantly better performance than four successful variants of PSO.

In the proposed risk management model of VE, a two-level optimization scheme was
introduced to describe the decision processes of the owner and the partners. This DDM model
considers the situation that the owner allocates the budget to each member of the VE in
order to minimize the risk level of the VE. Accordingly, a transfer optimization model, which
can easily use EA and SI algorithms to treat the risk manage problem in VE, is elaborately
developed. PS?O is then employed to solve the real-world VE risk management problem. The
simulation studies, which compared to Canonical PSO algorithm, show that the PS?O obtains
superior risk management solutions than PSO methods in terms of optimization accuracy and
convergence speed.
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Figure 15: The base-level search process based on PS?0O and PSO.
Table 8: Simulation results of both algorithms.
Value of risk probability PSO PS?O
Risk level of VE 0.3667 0.3628
0.2268 0.2340

Risk level of owner
Risk level of partner

0.6191, 0.6172, 0.6006, 0.6285

0.6148, 0.6180, 0.5694, 0.5751

3.4223e + 003

Total budget 3.4455e + 003
Each member’s budget  754.12, 67047, 693.35, 674.78, 652.81  734.17, 668.18, 673.69, 684.84, 661.39
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