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Characterizations of strongly compact spaces are given based on the existence of a star-countable
open refinement for every increasing open cover. It is proved that a countably paracompact normal
space (a perfectly normal space or a monotonically normal space) is strongly paracompact if and
only if every increasing open cover of the space has a star-countable open refinement. Moreover,
it is shown that a space is linearly D provided that every increasing open cover of the space has a
point-countable open refinement.

1. Introduction

The strongly paracompact property has been an interesting covering property in general
topology. It is a natural generalization of compact spaces. It retains enough structure to
enjoy many of the properties of compact spaces, yet sufficiently general to include a much
wider class of spaces. On one hand, the strongly paracompact property is special since it
is different in many aspects with other covering properties. For example, it is not implied
even by metrizability; it is not preserved under finite-to-one closed mappings; it has no Fσ-
heredity. On the other hand, the property is general since every regular Lindelöf space is
strongly paracompact.

Unlike paracompactness, the strongly paracompact property has not many characteri-
zations. The definition of the property is based on the existence of star-finite open refinement
of every open cover. It is difficult to discover strongly paracompact spaces with only such
a definition. So it has been an interesting subject to characterize the class in easier ways. In
[1], Smirnov characterized the class in the way that a regular space is strongly paracompact
if and only if every open cover of the space has a star-countable open refinement. Recently,
Qu showed us another characterization in [2] that a regular space is strongly paracompact
if and only if every increasing open cover of the space has a star-finite open refinement.
The Tychonoff linearly Lindelöf nonparacompact space constructed in [3] helps us to know
that we cannot obtain the conclusion only by weakening the condition “star-finite” in Qu’s
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result to “star-countable.” Then, it is natural to consider what more conditions we need to
characterize the strongly paracompact space in the way that every increasing open cover of
the space has a star-countable open refinement.

In Section 2, we mainly deal with this problem and first obtain that a countably para-
compact normal space is strongly paracompact if and only if every increasing open cover of
the space has a star-countable open refinement. Moreover, we also obtain a characterization
of linearly D-spaces introduced in [4], that is, a space is linearly D provided that every
increasing open cover of the space has a point-countable open refinement. It helps us to know
that a monotonically normal space is strongly paracompact if and only if every increasing
open cover of the space has a star-countable open refinement.

Throughout the paper, all spaces are assumed to be regular T1-spaces.

2. Definitions

Note that throughout the paper, we denote by (F)A the family {F ∈ F : F ∩ A/= ∅} and by
St(A;F) the set⋃{F ∈ F : F∩A/= ∅} for any setA and any familyF of a spaceX. In particular,
if A = {x}, then we use the symbols (F)x and St(x;F) instead of (F){x} and St({x};F).

To make it easier to read, we recall some definitions.
A familyA of subsets of a space is star-finite (star-countable) if (A)A is finite (countable)

for every A ∈ A.
A space X is strongly paracompact if every open cover of X has a star-finite open

refinement.
A family A of subsets of a space X is locally finite if each x ∈ X has a neighborhood

meeting only finitely many A ∈ A.
A space X is paracompact if every open cover of X has a locally finite open refinement.
A space X is countably paracompact if every countable open cover of X has a locally

finite open refinement.
A space X is perfectly normal if each pear of disjoint closed sets A and B in X, there is a

continuous function f : X → I such that A = f−1(0) and A = f−1(1). Here, the space I is the
open interval (0, 1) of reals equipped with usual metric topology.

A subset B of a space X is discrete if each x ∈ X has a neighborhood meeting at most
one element in B.

The extent of a space X is the smallest infinite cardinal number τ such that |F| ≤ τ for
every discrete subset F of X.

A space X is linearly Lindelöf if every increasing open cover of X has a countable
subcover. In the paper, we call a family O of subsets of X is increasing if the family is well
ordered by proper inclusion.

A space X is linearly D provided that every increasing open cover U of X without a
countable subcover has a closed and discreteU-big set. Here, a setA isU-big ifA/⊆U for every
U ∈ U. Note that in T1-spaces, every discrete subset is closed. So in the proof of Theorem 3.6,
we only need to prove that the increasing open cover U has a discrete U-big set.

A space X is monotonically normal if to each pair (H,K) of disjoint closed subsets of X,
one can assign an open set D(H,K) such that

(i) H ⊂ D(H,K) ⊂ D(H,K) ⊂ X \K;

(ii) ifH ⊂ H ′ and K ⊃ K′, then D(H,K) ⊂ D(H ′, K′).

For terminologies without definitions that appear in the paper, we refer the readers to
[5, 6].
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3. Main Results

Theorem 3.1. A countably paracompact normal space is strongly paracompact if and only if every
increasing open cover of the space has a star-countable open refinement.

In order to prove Theorem 3.1, we need the following results.

Lemma 3.2 (see [2]). A space is strongly paracompact if and only if every increasing open cover of
the space has a star-finite open refinement.

Lemma 3.3 (see [7]). Every countable open cover of a countably paracompact normal space has a
star-finite open refinement.

Proof of Theorem 3.1. Necessity. By the definition of a strongly paracompact space, it is trivial
to know that every increasing open cover of the space has a star-countable open refinement.

Sufficiency. Assume that X is a countably paracompact normal space and every
increasing open cover of X has a star-countable open refinement. To prove that X is strongly
paracompact, let O be an increasing open cover of X and suppose that U is a star-countable
open refinement of O. With the help of Lemma 3.2, we prove that the cover O has a star-finite
open refinement.

Firstly, we present the family U in the following way.
Claim. The family U can be presented as U = {Bα : α ∈ Λ}, where each Bα is a countable
family and (

⋃Bα)
⋂
(
⋃Bβ) = ∅ for α/= β.

Proof of claim. For all A,B ∈ U, we call the finite subfamily {C1, C2, . . . , Cn} a chain from A to
B, if A = C1, B = Cn, and Ci ∩ Ci+1 /= ∅ for 1 ≤ i < n. For every A ∈ U, denote

B(A) = {B ∈ U : there is a chain from A to B}. (3.1)

It is easy to know that B(A) is countable, and, for any A1, A2 ∈ U, (
⋃B(A1))

⋂

(
⋃B(A2))/= ∅ if and only if B(A1) = B(A2). We complete the proof of the claim.

For every α ∈ Λ, let Zα = ∪Bα. By the above claim, we know that the family {Zα : α ∈
Λ} is an open and closed disjoint family of X. Since X is countably paracompact, the closed
subspace Zα of X is countably paracompact for every α ∈ Λ. Moreover, it follows from the
above claim that the family Bα is a countable open cover of Zα. By Lemma 3.3, we find a star-
finite open family Wα of the subspace Zα refining Bα. Since each Zα is open in X and since
X =

⋃
α∈Λ Zα, it follows that the family

⋃
α∈Λ Wα is an open cover of X. The family

⋃
α∈Λ Wα is

also star-finite since {Zα : α ∈ Λ} is a disjoint family of X. On the other hand, it is easy to see
that

⋃
α∈Λ Wα is a refinement of O since U refines O.
By Lemma 3.2, the space X is strongly paracompact.

Remark 3.4. It is well known that space Γ constructed in [3] is not strongly paracompact, while
every increasing open cover of the space has a star-countable refinement since it is linearly
Lindelöf. It helps us to know that in Theorem 3.1 we cannot get the conclusion if we remove
the countably paracompact property.

Corollary 3.5. Every perfectly normal space is strongly paracompact if and only if every increasing
open cover of the space has a star-countable open refinement.

Proof. Necessity. It is trivial by the definition of strongly paracompact spaces.
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Sufficiency. It is known that every perfectly normal space is countably paracompact and
normal (see [5]). Then it follows from Theorem 3.1 that a perfectly normal space is strongly
paracompact if every increasing open cover of the space has a star-countable open refinement.

Motivated by Theorem 3.1, we obtain a characterization of linearly D-spaces in the
way that every open cover of the space has a point-countable open refinement, which will
help us to obtain a new characterization of strongly paracompact spaces in monotonically
normal spaces.

Theorem 3.6. A space X is linearly D provided that every increasing open cover of X has a point-
countable open refinement.

Proof. Assume that U is an increasing open cover of X without a countable subcover, and V
is a point-countable open refinement of U.

In order to prove easily, well order X as {xα : α < Γ} and let y0 = x0. Since V is point
countable, the family (V)y0

is countable. For every V ∈ (V)y0
, letUV be the first set of U such

that UV ⊃ V and let U0 = {UV ∈ U : V ∈ (V)y0
}. The family U0 cannot cover X since U0

is a countable family and U has no countable subcover according to our assumption above.
We then take the first point of X which is not contained in ∪U0 and denote it by y1. For
every V ∈ (V)y1

, let UV be the first set of U such that V ⊂ UV . The family U1 = {UV ∈ U :
V ∈ (V){y0,y1}} is still not a cover of X. Consequently, we are able to take the first point of
X which is not contained in ∪U1 and denote it by y2. Thus, we continue to define the family
U2 = {UV ∈ U : V ∈ V{y0,y1,y2}}, where each UV is the first set of U such that UV ⊃ V . Define
yα and Uα successively in the same way. There must exist an ordinal Λ ≤ Γ such that the set
A = {yα : α < Λ} satisfies that the family U′ = {UV ∈ U : V ∈ (V)A} covers X.

To prove that the set A is closed and discrete in X, it suffices to show that A is discrete
since X is T1. For every x ∈ X, if there exists some V ′ ∈ (V)x such that V ′ ∩A/= ∅, let β < Λ be
the least such that yβ ∈ V ′ ∩A. Then V ′ ∈ (V)yβ

and yα /∈ V ′ for every yα with α < β. On the
other hand, for every α > β, we know that yα /∈ ∪Uβ and V ′ ∈ Uβ, where Uβ = {UV ∈ U : V ∈
(V){yδ :δ≤β}}. It follows that yα /∈ V ′. Thus we have proved that such a neighborhood V ′ of x
contains only one element of A. By the arbitrariness of x, we know that the set A is discrete.

To prove X is linearly D, it is enough to show that A is a U-big set. To show this, pick
an arbitrary U ∈ U. Assume on the contrary that U′ ⊂ U for every U′ ∈ U′. Then ∪U′ ⊂ U.
It is contradicted with the fact that U has no countable subcover. Therefore, there exists some
U′ ∈ U′ such that U ⊂ U′. Then, we have A/⊂U. Thus we know that A is a U-big set.

We complete the proof of Theorem 3.6.

Since a space of countable extent is linearly Lindelöf if and only if it is linearly D (see
[4]), we have the following consequence of Theorem 3.6.

Corollary 3.7. A space of countable extent is linearly Lindelöf if and only if every increasing open
cover of the space has a point-countable open refinement.

At last, we close the paper with another main result with the help of foregoing results
and the following lemma.

Lemma 3.8 (see [4]). Every monotonically normal linearly D-space is paracompact.
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Theorem 3.9. A monotonically normal space X is strongly paracompact if and only if every increas-
ing open cover of X has a star-countable open refinement.

Proof. Necessity. It is trivial by the definition of a strongly paracompact space.
Sufficiency. Assume that X is a monotonically normal space and every increasing open

cover of X has a star-countable open refinement. It follows from Theorem 3.6 and Lemma 3.8
that X is paracompact. By Theorem 3.1, we know that X is strongly paracompact.
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