
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2012, Article ID 948126, 11 pages
doi:10.1155/2012/948126

Research Article
Design and Synchronization of Master-Slave
Electronic Horizontal Platform System

Hang-Hong Kuo,1 Teh-Lu Liao,1 and Jun-Juh Yan2

1 Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
2 Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan

Correspondence should be addressed to Jun-Juh Yan, jjyan@mail.stu.edu.tw

Received 22 October 2011; Accepted 16 December 2011

Academic Editor: Mingshu Peng

Copyright q 2012 Hang-Hong Kuo et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Horizontal platform system (HPS) is one of the mechanical systems with rich behavior and has
extensively been applied in offshore and earthquake engineering. A corresponding electronic
HPS is proposed in this paper to reduce the research cost and time when studying dynamics of
the mechanical HPS. Furthermore, an output feedback controller is proposed for global synchro-
nization between coupled electronic HPS systems and its stability condition is also derived by
employing the Lyapunov stability theory. The experimental simulations verify the dynamics of the
proposed electronic HPS and the synchronization effectiveness of the proposed control scheme.

1. Introduction

In recent years, the study for the dynamics analysis of chaotic systems has become a very
popular research field [1–3]. A chaotic system is with several potential properties, such
as highly complex dynamics, broad-band Fourier power spectrums, and strange attractors.
Chaos synchronization has been found to be useful in many areas of physics and engineering
systems such as those in power converters, flow dynamics and liquid mixing, biological
systems, and information processing, especially in encryption and communication [4–8].
Beside that, many effective methods based on the experimental implementation for syn-
chronization problems have been thoroughly investigated [1–10].

Horizontal platform system (HPS) is a mechanical system with rich chaos behavior,
which can freely rotate around the horizontal axis and extensively applied in offshore and
earthquake engineering [11] however, not as electronic circuits, to establish a mechanical
system for research costs much time and money. In the present paper, we propose a cor-
responding electronic HPS model which has chaotic dynamics as the mechanical HPS
owns. After establishing the electronic HPS, a new sufficient criterion for global chaos
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synchronization of two electronic HPS coupled by an output feedback controller is deduced.
This methodmakes it possible to construct all of the state information from only a transmitted
signal.

This paper is organized as follows. The original mechanical HPS is illustrated in
Section 2. In Section 3, the corresponding electronic HPS is introduced and the corresponding
chaotic behavior is verified. Section 4 formulates the design of an output feedback controller
for synchronization of two identical electronic HPSs. The experimental simulations are given
to verify the effectiveness of the proposed approach in Section 5. Finally, a concise conclusion
is made in Section 6.

2. Mechanical Horizontal Platform System

Figure 1 depicts the system structure of mechanical HPS. The platform can freely rotate
around the horizontal axis, which penetrates its mass center. An accelerometer is located
on the platform to detect the position. The accelerometer will give an output signal to the
actuator, which generates a torque to inverse the rotation of the platform to balance the HPS
if the platform deviates from horizon. The dynamics of HPS can be described as

Aẍ(t) +Dẋ(t) + rg sinx(t) − 3g
R

(B − C) cosx(t) sinx(t) = F cosωt, (2.1)

where A, B, and C are the inertia moments of the platform for axes 1, 2, and 3, respectively.
D is the damping coefficient. R is the radius of the earth, r is the proportional constant of the
accelerometer, and g is the constant of gravity. x indicates the rotation of the platform relative
to the earth, and F cos ωt is the harmonic torque. A more detailed analysis of this system can
be found in [12]. As shown in [11, 12], this mechanical HPS has rich chaos behavior.

3. The Corresponding Electronic HPS Model and Its Chaotic Behavior

By denoting x1(t) = x(t) and x2(t) = ẋ(t) as the state variables, the HPS model (2.1) can be
rewritten as follows:

ẋ1(t) = x2(t),

ẋ2(t) = −D
A
x2(t) −

rg

A
sinx1(t) +

3g
RA

(B − C) cosx1(t) sinx1(t) +
F

A
cosωt.

(3.1)

The typical parameters of HPS dynamics are given as A = 0.3, B = 0.5, C = 0.2, D =
0.4, r = 0.11559633, R = 6378000, g = 9.8, F = 3.4, and ω = 1.8, respectively. The phase
portrait is illustrated in Figure 2. The largest Lyapunov exponent of electronic HPS is 0.3424;
therefore, the chaotic behavior of the corresponding electronic HPS is guaranteed [13, 14].

The electronic HPS circuit corresponding to the mechanical one is shown in Figure 2
which consists of one AC voltage (v4), two integral circuits (U1A, U6B), one addition circuit
(U7A), and two nonlinear circuits (cos, sin). The state portrait of the proposed circuit is
shown in Figure 3.
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Figure 1: (a) The horizontal platform system. (b) The horizontal platform system on the earth.

4. Output Feedback Design for Synchronizing the Coupled
Electronic HPSs

In this section, we further propose a sufficient criterion for global chaos synchronization
of two identical electronic HPSs coupled by an output feedback controller. Several works
utilizing all states to fulfil the synchronization problem have been developed in the literature
[4–8, 15–17]. In contrast to the previous works, this paper only uses the available output
to construct the control scheme for achieving global synchronization. The main steps for
designing the output feedback controller are stated as follows.
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Figure 2: The electronic HPS circuit.
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Figure 3: The simulation of HPS in phase plane.

Step 1. Rewrite the HPS system (3.1) in the state space as

ẋ1 = x2,

ẋ2 = −ax2 − b sinx1 + l cosx1 sinx1 + h cosωt,
(4.1)
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where

a =
D

A
> 0, b =

rg

A
> 0, l =

3g
RA

(B − C), h =
F

A
> 0. (4.2)

Let x = (x1, x2)
T ∈ R2×1, the vector form of the system (4.1) is obtained as

ẋ = Ax + f(x) + Bh cosωt, (4.3)

with

A =
[
0 1
0 −a

]
, B =

[
0
1

]
, f(x) =

[
0

−b sinx1 + l cosx1 sinx1

]
. (4.4)

Step 2. Define the master-slave systems as below, respectively.

Master system

ẋ = Ax + f(x) + Bh cosωt,

y = Cx,
(4.5)

where y ∈ R denotes the output variable, x ∈ R2×1 represents the state vector, and C = [1 0].

Slave system

˙̂x = Ax̂ + f(x̂) + Bh cosωt + L
(
y − ŷ

)
,

ŷ = Cx̂,
(4.6)

where x̂ ∈ R2×1 represents the state vector of slave system, ŷ ∈ R denotes the slave system
output, and L = [l1 l2]

T denotes the gain matrix of output feedback control.
Defining the error vector e = x − x̂, we have the following error dynamics:

ė = ẋ − ˙̂x = Ax + f(x) −Ax̂ − f(x̂) − L
(
y − ŷ

)
=
(
A − LC

)
e + f(x) − f(x̂). (4.7)

The error dynamics (4.7) is further described as

ė =
(
A − LC +Q(x)

)
e, (4.8)

where

Q(x) =
[

0 0
q(x) 0

]
, q(x) =

−b(sinx1 − sin x̂1) + l(sinx1 cosx1 − sin x̂1 cos x̂1)
x1 − x̂1

. (4.9)
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Our goal is to select the coupling matrix L in (4.6) such that the orbits x(t) and x̂(t) of
master-slave systems satisfy

lim
t→∞

‖x(t) − x̂(t)‖ = 0, (4.10)

where ‖ · ‖ denotes the 2-norm of the vector.

Theorem 4.1. Suppose the feedback gain matrix L is selected such that

(a) (A − LC,M) and (A − LC) are observable and stable, respectively, where

M =
[

0 0
b + |l| 0

]
; (4.11)

(b) the following Hamiltonian matrix H with some

γ > 1H =

⎡
⎣A − LC γI2

−MTM −
(
A − LC

)T

⎤
⎦ (4.12)

has no eigenvalues on the imaginary axis.

Then the master-slave system defined in (4.5) and (4.6) achieves global chaos synchronization.

The following lemmas will be needed for the main theorem.

Lemma 4.2 (see [18]). For any γ > 1, define the Hamiltonian matrix as (4.12); assume that (i)
(A − LC,M) and (A − LC) are observable and stable, respectively, and (ii) H has no eigenvalues on
the imaginary axis. Then the algebraic Riccati equation (ARE)

(
A − LC

)T
P + P

(
A − LC

)
+ γPP +MTM = 0 (4.13)

has a positive definite solution P.

Proof. It is an immediate result of the work of Doyle et al. [18] and hence is omitted.

Lemma 4.3. For matrix Q(x) defined in (4.9), the following inequality holds:

‖Q(x)‖ ≤ b + |l|. (4.14)

Proof. By the differential mean-value theorem, we have

sinx1 − sin x̂1 = cos ξ(x1 − x̂1), ξ ∈ [x1, x̂1] or [x̂1, x1],

sin 2x1 − sin 2x̂1 = 2 cos
(
2η

)
(x1 − x̂1), η ∈ [x1, x̂1] or [x̂1, x1],

q(x) =
−b(sinx1 − sin x̂1) + l(sinx1 cosx1 − sin x̂1 cos x̂1)

x1 − x̂1
= −b cos ξ + l cos

(
2η

)
.

(4.15)
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Thus, we have

‖Q(x)‖ =
∣∣q(x)∣∣ ≤ b + |l|. (4.16)

Proof of Theorem 4.1. Suppose the feedback gainmatrix L is selected such that (A−LC,M) and
(A−LC) are observable and stable, respectively. According to Lemma 4.2, if the Hamiltonian
matrix (4.12) has no eigenvalue on the imaginary axis, then we have the following ARE:

(
A − LC

)T
P + P

(
A − LC

)
+ γPP +MTM = 0, (4.17)

where P is a positive definition solution. Now, introducing a Lyapunov function V (t) as
V (t) = eT (t)Pe(t) ≥ 0, it is easily verified that V (t) is a nonnegative function over [0,+∞) and
unbounded; that is, V (t) → ∞ as e(t) → ∞. Subsequently, evaluating the time derivative of
V along the trajectory of (4.8), we have

V̇ = ėTPe + eTPė

=
[(

A − LC +Q(x)
)
e
]T
Pe + eTP

[(
A − LC +Q(x)

)
e
]

= eT
[(

A − LC
)T

P + P
(
A − LC

)]
e + 2eTPQ(x)e

≤ eT
[(

A − LC
)T

P + P
(
A − LC

)]
e + 2

∥∥∥eTP∥∥∥‖Q(x)e‖.

(4.18)

Since

2
∥∥∥eTP∥∥∥‖Q(x)e‖ ≤

∥∥∥eTP∥∥∥2
+ ‖Q(x)e‖2 = eTPPe + eTQT (x)Q(x)e,

eTQT (x)Q(x)e = q2(x)e21 ≤ (b + |l|)2e21 = eTMTMe,
(4.19)

we have

V̇ ≤ eT
[
(A − LC)TP + P(A − LC) + PP +MTM

]
e

< eT
[
(A − LC)TP + P(A − LC) + γPP +MTM

]
e,

(4.20)

where γ > 1. According to the Lyapunov stability theory, the last inequality V̇ (t) < 0 indicates
V (t) as well as e(t) converges to zero asymptotically. This completes the proof.

5. Numerical Simulation

In this section, simulation results are presented to demonstrate the effectiveness of the
proposed synchronization scheme. All the simulation procedures are coded and executed
using the software of OrCAD. The system parameters are chosen as follows: A = 0.3,
B = 0.5, C = 0.2, D = 0.4, r = 0.11559633, R = 6378000, g = 9.8, F = 3.4, ω = 1.8 such
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Figure 4: (a) The slave electronic HPS system. (b) The output error state and output error feedback control
gain.

that b = rg/A = 3.7761, l = (3g/RA)(B − C) = 4.6096 ∗ 10−6. The initial states of the
master system (4.5) are (x1(0), x2(0)) = (−2.2, 3.2), and initial states of the slave system
(4.6) are (x̂1(0), x̂2(0)) = (−5, 5). The output feedback control gain matrix is selected as
L = [l1 l2]

T = [4.3333 3.1111]T . Obviously, the resulting (A − LC,M) and (A − LC) are
observable and stable, respectively. Then according to [11], we construct the Hamiltonian
matrix with γ = 1.1, which is shown as

H =

⎡
⎢⎢⎣
−4.3333 1 1.1 0
−3.1111 −0.6667 0 1
−14.2589 0 4.3333 3.1111

0 0 −1 0.6667

⎤
⎥⎥⎦. (5.1)
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Figure 5: The time responses of x1 and x̂1, x2 and x̂2.

It is easy to check that the eigenvalues of H are [−1.042 + 1.5899i − 1.042 −
1.5899i 1.042 + 1.5899i 1.042 − 1.5899i] and obviously no eigenvalues are on the imaginary
axis. Thus according to Theorem 4.1, the master-slave system defined in (4.5) and (4.6)
achieves global chaos synchronization. The controlled slave electronic HPS system is shown
in Figure 4.

The simulation results are shown in Figures 5–7. The time responses of master and
slave systems are shown in Figure 5. Figure 6 showing the time responses of output errors
between master and slave systems. Finally, the output feedback control of L(y − ŷ) is shown
in Figure 7. The above simulation results show that the trajectories of master-slave systems
are synchronized and the synchronization error surely converges to zero.

6. Conclusion

In this paper, two main results have been proposed. First, we have presented an electronic
HPS model to reduce the cost and time when studying the mechanical one. Second, we have
investigated the global chaos synchronization of two identical electronic horizontal platform
systems only coupled by an output feedback control. A new sufficient criterion has been
proposed based on the Lyapunov stability theory. Numerical simulations have verified the
effectiveness of the proposed method.
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