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Let n > 1 be an integer, let A be an algebra, and X be an A-module. A quadratic function
D : A → X is called a quadratic n-derivation if D(

∏n
i=1ai) = D(a1)a22 · · ·a2n + a21D(a2)a23 · · ·a2n +

· · · + a21a22 · · ·a2n−1D(an) for all a1,...,an ∈ A. We investigate the Hyers-Ulam stability of quadratic
n-derivations from non-Archimedean Banach algebras into non-Archimedean Banach modules by
using the Banach fixed point theorem.

1. Introduction

A functional equation (ξ) is stable if any function g satisfying the equation (ξ) approximately
is near to a true solution of (ξ).

The stability of functional equations was first introduced by Ulam [1] in 1964. In 1941,
Hyers [2] gave a first affirmative answer to the question of Ulam for Banach spaces. In 1978,
Th. M. Rassias [3] generalized the theorem of Hyers by considering the stability problemwith
unbounded Cauchy differences ‖f(x+y)−f(x)−f(y)‖ ≤ ε(‖x‖p+‖y‖p), (ε > 0, p ∈ [0, 1)). In
1994, a generalization of Th. M. Rassias theorem was obtained by Gǎvruţa [4], who replaced
the bound ε(‖x‖p + ‖y‖p) by a general control function ϕ(x, y) (see also [5–7]).

Every solution of the following functional equation

f
(
x + y

)
+ f

(
x − y) = 2f(x) + 2f

(
y
)

(1.1)
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is said to be a quadratic function [8]. It is well known that a mapping f between real
vector spaces is quadratic mapping if and only if there exists a unique symmetric biadditive
mapping B1 such that f(x) = B1(x, x) for all x. The biadditive mapping B1 is given by
B1(x, y) = (1/4)(f(x + y) − f(x − y)).

The stability problem of the quadratic functional equation was proved by Skof [9] for
mappings f : A → B, where A is a normed space and B is a Banach space (see also [10, 11]).
Let A be an algebra and let X be a A-bimodule. A quadratic function D : A → X is called a
quadratic n-derivation if

D

(
n∏

i=1

ai

)

= D(a1)a22 · · ·a2n + a21D(a2)a23 · · ·a2n + · · · + a21a22 · · ·a2n−1D(an) (1.2)

for all a1, . . . , an ∈ A. Recently, Gordji and Ghobadipour [12] introduced the quadratic
derivations on Banach algebras. Indeed, they investigated the Hyers-Ulam-Aoki-Rassias
stability and Ulam-Gavruta-Rassias type stability of quadratic derivations on Banach
algebras.

More recently, Gordji et al. [13] investigated the Hyers-Ulam stability and the
superstability of higher ring derivations on non-Archimedean Banach algebras (see also
[12–32]). In this paper we investigate the Hyers-Ulam stability of quadratic n-derivations
from non-Archimedean Banach algebras into non-Archimedean Banach modules by using
the weighted space method (see [33]).

2. Preliminaries

Let us recall that a non-Archimedean field is a field K equipped with a function (valuation) |·|
fromK into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s|, and |r+s| ≤ max{|r|, |s|} for
all r, s ∈ K. An example of a non-Archimedean valuation is the mapping | · | taking everything
but 0 into 1 and |0| = 0. This valuation is called trivial (see [34]).

Definition 2.1. Let X be a vector space over a scalar field K with a non-Archimedean non-
trivial valuation | · |. A function ‖ · ‖ : X → R is a non-Archimedean norm (valuation) if it
satisfies the following conditions:

(NA1) ‖x‖ = 0 if and only if x = 0;

(NA2) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;

(NA3) ‖x + y‖ ≤ max{‖x‖, ‖y‖} for all x, y ∈ X (the strong triangle inequality).

In 1897, Hensel [35] introduced a normed space which does not have the Archimedean
property. It turned out that non-Archimedean spaces have many nice applications. The
most important examples of non-Archimedean spaces are p-adic numbers. Let p be a prime
number. For any nonzero rational number x = (a/b)pnx such that a and b are integers not
divisible by p, define the p-adic absolute value |x|p := p−nx . Then | · |p is a non-Archimedean
norm on Q. The completion of Q with respect to | · |p is denoted by Qp which is called the
p-adic number field.
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Definition 2.2. Let X be a nonempty set and let d : X × X → [0,∞) satisfy the following
properties:

(D1) d(x, y) = 0 if and only if x = y,

(D2) d(x, y) = d(y, x) (symmetry),

(D3) d(x, z) ≤ max{d(x, y), d(y, z)} (strong triangle inequality),

for all x, y, z ∈ X. Then (X, d) is called a non-Archimedean metric space. (X, d) is called a
non-Archimedean complete metric space if every d-Cauchy sequence in X is d-convergent.

Theorem 2.3 (Non-Archimedean Banach Contraction Principle). Let (X, d) be a non-
Archimedean complete metric space and let T : X → X be a contraction; that is, there exists α ∈ [0, 1)
such that

d
(
Tx, Ty

) ≤ αd(x, y), ∀x, y ∈ X. (2.1)

Then there exists a unique element a ∈ X such that Ta = a. Moreover, a = limn→∞Tnx, and

d(a, x) ≤ d(x, Tx), ∀x ∈ X. (2.2)

Proof. A similar argument as Archimedean case can be applied to show that T has a unique
element a ∈ X such that Ta = a and a = limn→∞Tnx. It follows from strong triangle inequality
that for all x ∈ X and for each n ∈ N, we have

d(Tnx, x) ≤ max
{
d(T(x), x), . . . , d

(
Tn(x), Tn−1(x)

)}

≤ max
{
d(T(x), x), . . . , αn−1d(T(x), (x))

}

= d(T(x), x).

(2.3)

3. Main Results

In this section A denotes a non-Archimedean Banach algebra over a non-Archimedean field
K and X is a non-Archimedean Banach A-module.

Theorem 3.1. Let ϕ : A ×A → [0,∞), ψ : A × · · · ×A → [0,∞) be functions. Let f : A → X be
a given mapping such that f(0) = 0,

∥
∥f

(
x + y

)
+ f

(
x − y) − 2f(x) − 2f

(
y
)∥
∥ ≤ ϕ(x, y) (3.1)

and that
∥
∥
∥
∥
∥
f

(
n∏

i=1

xi

)

− f(x1)x2
2 · · ·x2

n − x2
1f(x2)x

2
3 · · ·x2

n − · · · − x2
1 · · ·x2

n−1f(xn)

∥
∥
∥
∥
∥
≤ ψ(x1, . . . , xn)

(3.2)
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for all x1, . . . , xn, x, y ∈ A. Suppose that there exist a natural number k ∈ K and L,K ∈ (0, 1), such
that

|k|2ϕ
(
k−1x, k−1y

)
≤ Lϕ(x, y), |k|2ψ

(
k−1x1, . . . , k−1xn

)
≤ Kψ(x1, . . . , xn) (3.3)

for all x1, . . . , xn, x, y ∈ A. Then there exists a unique quadratic n-derivation h from A into X such
that

∥
∥f(x) − h(x)∥∥ ≤ LΦ(x)

|k|2
(3.4)

for all x ∈ A, where

Φ(x) = max
{
ϕ(0, 0), ϕ(x, x), ϕ(2x, x), . . . , ϕ((k − 1)x, x)

}
(x ∈ A). (3.5)

Proof. By induction on i, one can show that for all x ∈ A and i ≥ 2,

∥
∥
∥f(ix) − i2f(x)

∥
∥
∥ ≤ max

{
ϕ(0, 0), ϕ(x, x), ϕ(2x, x), . . . , ϕ((i − 1)x, x)

}
. (3.6)

Let x = y in (3.1). Then

∥
∥
∥f(2x) − 22f(x)

∥
∥
∥ ≤ max

{
ϕ(0, 0), ϕ(x, x)

}
(x ∈ A). (3.7)

This proves (3.6) for i = 2. Let (3.6) hold for i = 1, 2, . . . , j. Replacing x by jx and y by x in
(3.1) for all x ∈ A, we get

∥
∥f

((
j + 1

)
x
)
+ f

((
j − 1

)
x
) − 2f

(
jx

) − 2f(x)
∥
∥ ≤ max

{
ϕ(0, 0), ϕ

(
jx, x

)}
(3.8)

for all x ∈ A. Since

f
((
j + 1

)
x
)
+ f

((
j − 1

)
x
) − 2f

(
jx

) − 2f(x) = f
((
j + 1

)
x
) − (

j + 1
)2
f(x)

+ f
((
j − 1

)
x
) − (

j − 1
)2
f(x) − 2

[
f
(
jx

) − j2f(x)
] (3.9)

for all x ∈ A, it follows from induction hypothesis and (3.8) that for all x ∈ A,

∥
∥
∥f

((
j + 1

)
x
) − (

j + 1
)2
f(x)

∥
∥
∥ ≤ max

{∥
∥f

((
j + 1

)
x
)
+ f

((
j − 1

)
x
) − 2f

(
jx

) − 2f(x)
∥
∥,

∥
∥
∥f

((
j − 1

)
x
) − (

j − 1
)2
f(x)

∥
∥
∥, |2|

∥
∥
∥j2f(x) − f(jx)

∥
∥
∥
}

≤ max
{
ϕ(0, 0), ϕ(x, x), ϕ(2x, x), . . . , ϕ

((
j
)
x, x

)}
.

(3.10)
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This proves (3.6) for all i ≥ 2. In particular

∥
∥
∥f(kx) − k2f(x)

∥
∥
∥ ≤ Φ(x) (x ∈ A). (3.11)

Replacing x by k−1x in (3.11), we get

∥
∥
∥f(x) − k2f

(
k−1x

)∥
∥
∥ ≤ Φ

(
k−1x

)
≤ L

|k|2
Φ(x) (3.12)

for all x ∈ A. Let Ω be the set of all functions u : A → X. We define the metric d on Ω as
follows:

d(u, v) = sup
x∈A

D(x), (3.13)

whereD(x) = (‖u(x)−v(x)‖)/Φ(x) ifΦ(x)/= 0 andD(x) = ‖u(x)−v(x)‖ ifΦ(x) = 0. One has
the operator J : Ω → Ω by J(u)(x) = k2u(k−1x). Then J is strictly contractive on Ω; in fact, if

‖u(x) − v(x)‖ ≤ αΦ(x) (x ∈ A), (3.14)

then by (3.3),

‖J(u)(x) − J(v)(x)‖ = |k|2
∥
∥
∥u

(
k−1x

)
− v

(
k−1x

)∥
∥
∥

≤ α|k|2Φ
(
k−1x

)
≤ LαΦ(x), (x ∈ A).

(3.15)

It follows that

d(J(u), J(v)) ≤ Ld(u, v) (u, v ∈ Ω). (3.16)

Hence J is a contractive with Lipschitz constant L. By Theorem 2.3, J has a unique fixed point
h : A → X and

h(x) = lim
m→∞

Jm
(
f(x)

)
= lim k2mf

(
k−mx

)
(3.17)

for all x ∈ A.
Therefore

∥
∥h

(
x + y

)
+ h

(
x − y) − 2h(x) − 2h

(
y
)∥
∥

= lim
m→∞

|k|2m∥∥f(k−m(x + y
))

+ f
(
k−m

(
x − y)) − 2f

(
k−mx

) − 2f
(
k−my

)∥
∥

≤ lim
m→∞

|k|2mϕ(k−mx, k−my)

≤ lim
m→∞

Lmϕ
(
x, y

)
= 0

(3.18)
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for all x, y ∈ A. This shows that h is quadratic. It follows from Theorem 2.3 that

d
(
f, h

) ≤ d(J(f), f), (3.19)

that is,

∥
∥f(x) − h(x)∥∥ ≤ LΦ(x)

|k|2
(x ∈ A). (3.20)

Replacing xi by k−mxi, i = 1, . . . , n in (3.2), we get

∥
∥
∥
∥
∥
f

(
n∏

i=1

k−mnxi

)

− f(k−mx1
)
k−2m(n−1)x2

2 · · ·x2
n

−k−2m(n−1)x2
1f

(
k−mx2

)
x2
3 · · · k−2m(n−1)x2

n − · · · − x2
1 · · ·x2

n−1f
(
k−mxn

)
∥
∥
∥
∥
∥

≤ ψ(k−mx1, . . . , k−mxn
)
,

(3.21)

and so

|k|2mn
∥
∥
∥
∥
∥
f

(
n∏

i=1

k−mnxi

)

− f(k−mx1
)
k−2m(n−1)x2

2 · · ·x2
n

−k−2m(n−1)x2
1f

(
k−mx2

)
x2
3 · · ·x2

n − · · · − k−2m(n−1)x2
1 · · ·x2

n−1f
(
k−mxn

)
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
22mnf

(
n∏

i=1

k−mnxi

)

− k2mf(k−mx1
)
x2
2 · · ·x2

n

−x2
1k

2mf
(
k−mx2

)
x2
3 · · ·x2

n − · · · − x2
1 · · ·x2

n−1k
2mf

(
k−mxn

)
∥
∥
∥
∥
∥

≤ |k|2mnψ(k−mx1, . . . , k−mxn
) ≤ |k|2mn K

m

|k|2m
ψ(x1, . . . , xn)

(3.22)

for all x1, . . . , xn ∈ A and eachm ∈ N. By takingm → ∞, we have

h

(
n∏

i=1

xi

)

= h(x1)x2
2 · · ·x2

n + x
2
1h(x2)x

2
3 · · ·x2

n + · · · − x2
1 · · ·x2

n−1h(xn) (3.23)

for all x1, . . . , xn ∈ A.

In the following corollaries we will assume that A is a non-Archimedean Banach
algebra over K = Qp the field of p-adic numbers, where p > 2 is a prime number.
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Corollary 3.2. Let r < 1 and let ε be δ be positive real numbers. Suppose that f : A → X is a
mapping such that

∥
∥f

(
x + y

)
+ f

(
x − y) − 2f(x) − 2

(
y
)‖ ≤ ε‖x‖r‖y∥∥r ,

∥
∥
∥
∥
∥
f

(
n∏

i=1

xi

)

− f(x1)x2
2 · · ·x2

n − x2
1f(x2)x

2
3 · · ·x2

n − · · · − x2
1 · · ·x2

n−1f(xn)

∥
∥
∥
∥
∥

≤ δmax
{‖x1‖r, . . . , ‖xn‖r

}

(3.24)

for all x1, . . . , xn, x, y ∈ A. Then there exists a unique quadratic n-derivation h from A into X such
that

∥
∥f(x) − h(x)∥∥ ≤ εp2r‖x‖2r (3.25)

for all x ∈ A.

Proof. By (3.24), f(0) = 0. Let ϕ(x, y) = ε‖x‖r‖y‖r and ψ(x1, . . . , xn} = δmax{‖x1‖r , . . . , ‖xn‖r}
for all x1, . . . , xn, x, y ∈ A. Then

∣
∣p
∣
∣2ϕ

(
p−1x, p−1y

)
= p2r−2ϕ

(
x, y

)
,

∣
∣p
∣
∣2ψ

(
p−1x1, . . . , p−1xn

}
= pr−2ψ(x1, . . . , xn} (3.26)

for all x1, . . . , xn, x, y ∈ A.
Moreover,

Φ(x) = max
{
ϕ(0, 0), ϕ(x, x), ϕ(2x, x), . . . , ϕ

((
p − 1

)
x, x

)}
= ε‖x‖2r (x ∈ A). (3.27)

Put L = p2r−2 and K = pr−2 in Theorem 3.1. Then there exists a unique quadratic n-derivation
h from A into X such that

∥
∥f(x) − h(x)∥∥ ≤ εp2r‖x‖2r (3.28)

for all x ∈ A.

Similarly, we can prove the following result.

Corollary 3.3. Let r < 2 and let ε be δ be positive real numbers. Suppose that f : A → X is a
mapping such that

∥
∥f

(
x + y

)
+ f

(
x − y) − 2f(x) − 2

(
y
)∥
∥ ≤ εmax

{‖x‖r ,∥∥y∥∥r},
∥
∥
∥
∥
∥
f

(
n∏

i=1

xi

)

− f(x1)x2
2 · · ·x2

n − x2
1f(x2)x

2
3 · · ·x2

n − · · · − x2
1 · · ·x2

n−1f(xn)

∥
∥
∥
∥
∥

≤ δmax
{‖x1‖r , . . . , ‖xn‖r

}

(3.29)
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for all x1, . . . , xn, x, y ∈ A. Then there exists a unique quadratic n-derivation h from A into X such
that

∥
∥f(x) − h(x)∥∥ ≤ εpr‖x‖r (3.30)

for all x ∈ A.

Remark 3.4. We can use similar arguments to obtain corollaries like Corollaries 3.2 and 3.3,
when r > 1 and r > 2.

By using the same technique of proving Theorem 3.1, we can prove the following
result.

Remark 3.5. Let ϕ : A ×A → [0,∞), ψ : A × · · · ×A → [0,∞) be functions. Let f : A → X be
a given mapping such that f(0) = 0,

∥
∥f

(
x + y

)
+ f

(
x − y) − 2f(x) − 2f

(
y
)∥
∥ ≤ ϕ(x, y) (3.31)

and that

∥
∥
∥
∥
∥
f

(
n∏

i=1

xi

)

− f(x1)x2
2 · · ·x2

n − x2
1f(x2)x

2
3 · · ·x2

n − · · · − x2
1 · · ·x2

n−1f(xn)

∥
∥
∥
∥
∥
≤ ψ(x1, . . . , xn)

(3.32)

for all x1, . . . , xn, x, y ∈ A. Suppose that there exist a natural number k ∈ K and L,K ∈ (0, 1),
such that

ϕ
(
kx, y

) ≤ |k|2Lϕ(x, y), ψ(kx1, . . . , kxn) ≤ |k|2Kψ(x1, . . . , xn) (3.33)

for all x1, . . . , xn, x, y ∈ A. Then there exists a unique quadratic n-derivation d from A into X
such that

∥
∥f(x) − d(x)∥∥ ≤ |k|2LΦ(x) (3.34)

for all x ∈ A, where

Φ(x) = max
{

ϕ(0, 0), ϕ(x, x), ϕ
(x

2
, x

)
, . . . , ϕ

(
x

(k − 1)
, x

)}

(x ∈ A). (3.35)
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