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In fractional calculus, there are two approaches to obtain fractional derivatives. The first approach is by iterating the integral and
then defining a fractional order by using Cauchy formula to obtain Riemann fractional integrals and derivatives. The second
approach is by iterating the derivative and then defining a fractional order by making use of the binomial theorem to obtain
Grünwald-Letnikov fractional derivatives. In this paper we formulate the delta and nabla discrete versions for left and right
fractional integrals and derivatives representing the second approach.Then, we use the discrete version of the Q-operator and some
discrete fractional dual identities to prove that the presented fractional differences and sums coincide with the discrete Riemann
ones describing the first approach.

1. Introduction and Preliminaries

Fractional calculus (FC) is developing very fast in both theo-
retical and applied aspects. As a result, FC is used intensively
and successfully in the last few decades to describe the ano-
malous processes which appear in complex systems [1–6].
Very recently, important results in the field of fractional
calculus and its applications were reported (see e.g., [7–10]
and the references therein). The complexity of the real world
phenomena is a great source of inspiration for the researchers
to invent new fractional tools which will be able to dig much
dipper into the mysteries of the mother nature. Historically
the FC passed through different periods of evolutions, and
it started to face very recently a new provocation: how to
formulate properly its discrete counterpart [11–24]. At this
stage, we have to stress on the fact that in the classical
discrete equations their roots are based on the functional
difference equations, therefore, the natural question is to find
the generalization of these equations to the fractional case. In
other words, we will end up with generalizations of the basic
operators occurring in standard difference equations. As it
was expected, there were several attempts to do this gener-
alization as well as to apply this new techniques to investigate

the dynamics of some complex processes. In recent years,
the discrete counterpart of the fractional Riemann-Liouville,
Caputo, was investigated mainly thinking how to apply tech-
niques from the time scales calculus to the expressions of the
fractional operators. Despite of the beauty of the obtained
results, one simple question arises: can we obtain the same
results from a new point of view which is more simpler
and more intuitive? Having all above mentioned thinks in
mind we are going to use the binomial theorem in order
to get Grünwald-Letnikov fractional derivatives. After that,
we proved that the results obtained coincide with the ones
obtained by the discretization of the Riemann-Liouville oper-
ator. In this manner, we believe that it becomes more clear
what the fractional difference equations bring new in descrip-
tion of the related complex phenomena described.

For a natural number 𝑛, the fractional polynomial is
defined by

𝑡
(𝑛)

=

𝑛−1

∏

𝑗=0

(𝑡 − 𝑗) =

Γ (𝑡 + 1)

Γ (𝑡 + 1 − 𝑛)

, (1)
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where Γ denotes the special gamma function and the product
is zero when 𝑡 + 1 − 𝑗 = 0 for some 𝑗. More generally, for
arbitrary 𝛼, define

𝑡
(𝛼)

=

Γ (𝑡 + 1)

Γ (𝑡 + 1 − 𝛼)

, (2)

where the convention of that division at pole yields zero.
Given that the forward and backward difference operators are
defined by

Δ𝑓 (𝑡) = 𝑓 (𝑡 + 1) − 𝑓 (𝑡) , ∇𝑓 (𝑡) = 𝑓 (𝑡) − 𝑓 (𝑡 − 1) ,

(3)

respectively, we define iteratively the operatorsΔ𝑚 = Δ(Δ𝑚−1)
and ∇𝑚 = ∇(∇𝑚−1), where𝑚 is a natural number.

Here are some properties of the factorial function.

Lemma 1 (see [13]). Assume the following factorial functions
are well defined.

(i) Δ𝑡(𝛼) = 𝛼𝑡(𝛼−1).
(ii) (𝑡 − 𝜇)𝑡(𝜇) = 𝑡(𝜇+1), where 𝜇 ∈ R.

(iii) 𝜇(𝜇) = Γ(𝜇 + 1).

(iv) If 𝑡 ≤ 𝑟, then 𝑡(𝛼) ≤ 𝑟(𝛼) for any 𝛼 > 𝑟.

(v) If 0 < 𝛼 < 1, then 𝑡(𝛼]) ≥ (𝑡(]))𝛼.

(vi) 𝑡(𝛼+𝛽) = (𝑡 − 𝛽)(𝛼)𝑡(𝛽).

Also, for our purposes we list down the following two
properties, the proofs of which are straightforward:

∇𝑠(𝑠 − 𝑡)
(𝛼−1)

= (𝛼 − 1) (𝜌 (𝑠) − 𝑡)
(𝛼−2)

∇𝑡(𝜌 (𝑠) − 𝑡)
(𝛼−1)

= − (𝛼 − 1) (𝜌 (𝑠) − 𝑡)
(𝛼−2)

.

(4)

For the sake of the nabla fractional calculus, we have the
following definition.

Definition 2 (see [25–28]). (i) For a natural number𝑚, the𝑚
rising (ascending) factorial of 𝑡 is defined by

𝑡
𝑚
=

𝑚−1

∏

𝑘=0

(𝑡 + 𝑘) , 𝑡
0
= 1. (5)

(ii) For any real number, the 𝛼 rising function is defined
by

𝑡
𝛼
=

Γ (𝑡 + 𝛼)

Γ (𝑡)

, 𝑡 ∈ R − {. . . , −2, −1, 0} , 0
𝛼
= 0. (6)

Regarding the rising factorial function, we observe the
following:

(i)

∇ (𝑡
𝛼
) = 𝛼𝑡

𝛼−1
, (7)

(ii)

(𝑡
𝛼
) = (𝑡 + 𝛼 − 1)

(𝛼)
, (8)

(iii)

Δ 𝑡(𝑠 − 𝜌 (𝑡))
𝛼
= −𝛼(𝑠 − 𝜌 (𝑡))

𝛼−1
. (9)

Notation:

(i) For a real 𝛼 > 0, we set 𝑛 = [𝛼] + 1, where [𝛼] is the
greatest integer less than 𝛼.

(ii) For real numbers 𝑎 and 𝑏, we denoteN𝑎 = {𝑎, 𝑎+1, . . .}
and 𝑏N = {𝑏, 𝑏 − 1, . . .}.

(iii) For 𝑛 ∈ N and real 𝑎, we denote

⊝Δ
𝑛
𝑓 (𝑡) ≜ (−1)

𝑛
Δ
𝑛
𝑓 (𝑡) . (10)

(iv) For 𝑛 ∈ N and real 𝑏, we denote

∇
𝑛

⊝𝑓 (𝑡) ≜ (−1)
𝑛
∇
𝑛
𝑓 (𝑡) . (11)

The following definition and the properties followed can
be found in [29] and the references therein.

Definition 3 (see [29]). Let 𝜎(𝑡) = 𝑡+1 and 𝜌(𝑡) = 𝑡−1 be the
forward and backward jumping operators, respectively. Then

(i) the (delta) left fractional sum of order 𝛼 > 0 (starting
from 𝑎) is defined by

Δ
−𝛼

𝑎 𝑓 (𝑡) =
1

Γ (𝛼)

𝑡−𝛼

∑

𝑠=𝑎

(𝑡 − 𝜎 (𝑠))
(𝛼−1)

𝑓 (𝑠) , 𝑡 ∈ N𝑎+𝛼. (12)

(ii) The (delta) right fractional sum of order 𝛼 > 0

(ending at 𝑏) is defined by

𝑏Δ
−𝛼
𝑓 (𝑡) =

1

Γ (𝛼)

𝑏

∑

𝑠=𝑡+𝛼

(𝑠 − 𝜎 (𝑡))
(𝛼−1)

𝑓 (𝑠)

=

1

Γ (𝛼)

𝑏

∑

𝑠=𝑡+𝛼

(𝜌 (𝑠) − 𝑡)
(𝛼−1)

𝑓 (𝑠) , 𝑡 ∈ 𝑏−𝛼N .

(13)

(iii) The (nabla) left fractional sumof order𝛼 > 0 (starting
from 𝑎) is defined by

∇
−𝛼

𝑎 𝑓 (𝑡) =
1

Γ (𝛼)

𝑡

∑

𝑠=𝑎+1

(𝑡 − 𝜌 (𝑠))
𝛼−1

𝑓 (𝑠) , 𝑡 ∈ N𝑎+1. (14)

(iv) The (nabla) right fractional sum of order 𝛼 > 0

(ending at 𝑏) is defined by

𝑏∇
−𝛼
𝑓 (𝑡) =

1

Γ (𝛼)

𝑏−1

∑

𝑠=𝑡

(𝑠 − 𝜌 (𝑡))
𝛼−1

𝑓 (𝑠)

=

1

Γ (𝛼)

𝑏−1

∑

𝑠=𝑡

(𝜎 (𝑠) − 𝑡)
𝛼−1

𝑓 (𝑠) , 𝑡 ∈ 𝑏−1N .

(15)



Discrete Dynamics in Nature and Society 3

Regarding the delta left fractional sum, we observe the
following:

(i) Δ−𝛼𝑎 maps functions defined on N𝑎 to functions
defined on N𝑎+𝛼.

(ii) 𝑢(𝑡) = Δ
−𝑛
𝑎 𝑓(𝑡), 𝑛 ∈ N, satisfies the initial value pro-

blem:
Δ
𝑛
𝑢 (𝑡) = 𝑓 (𝑡) , 𝑡 ∈ 𝑁𝑎,

𝑢 (𝑎 + 𝑗 − 1) = 0, 𝑗 = 1, 2, . . . , 𝑛.

(16)

(iii) The Cauchy function (𝑡 − 𝜎(𝑠))(𝑛−1)/(𝑛 − 1)! vanishes
at 𝑠 = 𝑡 − (𝑛 − 1), . . . , 𝑡 − 1.

Regarding the delta right fractional sum, we observe the
following:

(i) 𝑏Δ
−𝛼 maps functions defined on 𝑏N to functions

defined on 𝑏−𝛼N.
(ii) 𝑢(𝑡) = 𝑏Δ

−𝑛
𝑓(𝑡), 𝑛 ∈ N, satisfies the initial value

problem:

∇
𝑛

⊖𝑢 (𝑡) = 𝑓 (𝑡) , 𝑡 ∈ 𝑏𝑁,

𝑢 (𝑏 − 𝑗 + 1) = 0, 𝑗 = 1, 2, . . . , 𝑛.

(17)

(iii) The Cauchy function (𝜌(𝑠) − 𝑡)(𝑛−1)/(𝑛 − 1)! vanishes
at 𝑠 = 𝑡 + 1, 𝑡 + 2, . . . , 𝑡 + (𝑛 − 1).

Regarding the nabla left fractional sum, we observe the
following:

(i) ∇−𝛼𝑎 maps functions defined on N𝑎 to functions
defined on N𝑎.

(ii) ∇−𝑛𝑎 𝑓(𝑡) satisfies the 𝑛th-order discrete initial value
problem:

∇
𝑛
𝑦 (𝑡) = 𝑓 (𝑡) , ∇

𝑖
𝑦 (𝑎) = 0, 𝑖 = 0, 1, . . . , 𝑛 − 1.

(18)

(iii) The Cauchy function (𝑡 − 𝜌(𝑠))
𝑛−1

/Γ(𝑛) satisfies
∇
𝑛
𝑦(𝑡) = 0.

Regarding the nabla right fractional sum we observe the
following:

(i) 𝑏∇
−𝛼 maps functions defined on 𝑏N to functions

defined on 𝑏N.
(ii) 𝑏∇

−𝑛
𝑓(𝑡) satisfies the 𝑛th-order discrete initial value

problem:

⊖Δ
𝑛
𝑦 (𝑡) = 𝑓 (𝑡) , ⊖Δ

𝑖
𝑦 (𝑏) = 0, 𝑖 = 0, 1, . . . , 𝑛 − 1.

(19)

The proof can be done inductively. Namely, assuming
it is true for 𝑛, we have

⊖Δ
𝑛+1

𝑏∇
−(𝑛+1)

𝑓 (𝑡) = ⊖Δ
𝑛
[−Δ 𝑏∇

−(𝑛+1)
𝑓 (𝑡)] . (20)

By the help of (9), it follows that

⊖Δ
𝑛+1

𝑏∇
−(𝑛+1)

𝑓 (𝑡) = ⊖Δ
𝑛

𝑏∇
−𝑛
𝑓 (𝑡) = 𝑓 (𝑡) . (21)

The other part is clear by using the convention that
∑
𝑠

𝑘=𝑠+1 = 0.

(iii) The Cauchy function (𝑠 − 𝜌(𝑡))
𝑛−1

/Γ(𝑛) satisfies
⊖Δ
𝑛
𝑦(𝑡) = 0.

Definition 4. (i) [12] The (delta) left fractional difference of
order 𝛼 > 0 (starting from 𝑎) is defined by

Δ
𝛼

𝑎𝑓 (𝑡) = Δ
𝑛
Δ
−(𝑛−𝛼)

𝑎 𝑓 (𝑡)

=

Δ
𝑛

Γ (𝑛 − 𝛼)

𝑡−(𝑛−𝛼)

∑

𝑠=𝑎

(𝑡 − 𝜎 (𝑠))
(𝑛−𝛼−1)

𝑓 (𝑠) ,

𝑡 ∈ N𝑎+(𝑛−𝛼).

(22)

(ii) [19]The (delta) right fractional difference of order 𝛼 >
0 (ending at 𝑏) is defined by

𝑏Δ
𝛼
𝑓 (𝑡) = ∇

𝑛

⊝ 𝑏Δ
−(𝑛−𝛼)

𝑓 (𝑡)

=

(−1)
𝑛
∇
𝑛

Γ (𝑛 − 𝛼)

𝑏

∑

𝑠=𝑡+(𝑛−𝛼)

(𝑠 − 𝜎 (𝑡))
(𝑛−𝛼−1)

𝑓 (𝑠) ,

𝑡 ∈ 𝑏−(𝑛−𝛼)N.

(23)

(iii) [20]The (nabla) left fractional difference of order 𝛼 >
0 (starting from 𝑎) is defined by

∇
𝛼

𝑎𝑓 (𝑡) = ∇
𝑛
∇
−(𝑛−𝛼)

𝑎 𝑓 (𝑡)

=

∇
𝑛

Γ (𝑛 − 𝛼)

𝑡

∑

𝑠=𝑎+1

(𝑡 − 𝜌 (𝑠))
𝑛−𝛼−1

𝑓 (𝑠) ,

𝑡 ∈ N𝑎+1.

(24)

(iv) [29, 30] The (nabla) right fractional difference of
order 𝛼 > 0 (ending at 𝑏) is defined by

𝑏∇
𝛼
𝑓 (𝑡) = ⊝Δ

𝑛

𝑏∇
−(𝑛−𝛼)

𝑓 (𝑡)

=

(−1)
𝑛
Δ
𝑛

Γ (𝑛 − 𝛼)

𝑏−1

∑

𝑠=𝑡

(𝑠 − 𝜌 (𝑡))
𝑛−𝛼−1

𝑓 (𝑠) ,

𝑡 ∈ 𝑏−1N .

(25)

Regarding the domains of the fractional type differences
we observe the following.

(i) The delta left fractional difference Δ𝛼𝑎 maps functions
defined on N𝑎 to functions defined on N𝑎+(𝑛−𝛼).

(ii) The delta right fractional difference 𝑏Δ
𝛼 maps func-

tions defined on 𝑏N to functions defined on 𝑏−(𝑛−𝛼)N.

(iii) The nabla left fractional difference ∇𝛼𝑎 maps functions
defined on N𝑎 to functions defined on N𝑎+𝑛.

(iv) The nabla right fractional difference 𝑏∇
𝛼 maps func-

tions defined on 𝑏N to functions defined on 𝑏−𝑛N.
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Lemma 5 (see [15]). Let 0 ≤ 𝑛 − 1 < 𝛼 ≤ 𝑛, and let 𝑦(𝑡) be
defined on N𝑎. Then the following statements are valid:

(i) (Δ𝛼𝑎)𝑦(𝑡 − 𝛼) = ∇
𝛼
𝑎−1𝑦(𝑡) for 𝑡 ∈ N𝑛+𝑎,

(ii) (Δ−𝛼𝑎 )𝑦(𝑡 + 𝛼) = ∇
−𝛼
𝑎−1𝑦(𝑡) for 𝑡 ∈ N𝑎.

Lemma 6 (see [29]). Let 𝑦(𝑡) be defined on 𝑏+1N. Then the
following statements are valid:

(i) (𝑏Δ
𝛼
)𝑦(𝑡 + 𝛼) = 𝑏+1∇

𝛼
𝑦(𝑡) for 𝑡 ∈ 𝑏−𝑛N,

(ii) (𝑏Δ
−𝛼
)𝑦(𝑡 − 𝛼) = 𝑏+1∇

−𝛼
𝑦(𝑡) for 𝑡 ∈ 𝑏N.

If 𝑓(𝑠) is defined on 𝑁𝑎 ∩ 𝑏𝑁 and 𝑎 ≡ 𝑏 (mod1) then
(𝑄𝑓)(𝑠) = 𝑓(𝑎 + 𝑏 − 𝑠). The Q-operator generates a dual
identity by which the left type and the right type fractional
sums and differences are related. Using the change of variable
𝑢 = 𝑎 + 𝑏 − 𝑠, in [18] it was shown that

Δ
−𝛼

𝑎 𝑄𝑓 (𝑡) = 𝑄 𝑏Δ
−𝛼
𝑓 (𝑡) , (26)

and, hence,

Δ
𝛼

𝑎𝑄𝑓 (𝑡) = (𝑄 𝑏Δ
𝛼
𝑓) (𝑡) . (27)

The proof of (27) follows by (26) and by noting that

−𝑄∇𝑓 (𝑡) = Δ𝑄𝑓 (𝑡) . (28)

Similarly, in the nabla case we have

∇
−𝛼

𝑎 𝑄𝑓 (𝑡) = 𝑄 𝑏∇
−𝛼
𝑓 (𝑡) , (29)

and, hence,

∇
𝛼

𝑎𝑄𝑓 (𝑡) = (𝑄 𝑏∇
𝛼
𝑓) (𝑡) . (30)

The proof of (30) follows by (29) and that

−𝑄Δ𝑓 (𝑡) = ∇𝑄𝑓 (𝑡) . (31)

For more details about the discrete version of the Q-operator
we refer to [29].

From the difference calculus or time scale calculus, for a
natural 𝑛 and a sequence 𝑓, we recall

Δ
𝑛
𝑓 (𝑡) =

𝑛

∑

𝑘=0

(−1)
𝑘
(

𝑛

𝑘
)𝑓 (𝑡 + 𝑛 − 𝑘) ,

∇
𝑛
𝑓 (𝑡) =

𝑛

∑

𝑘=0

(−1)
𝑘
(

𝑛

𝑘
)𝑓 (𝑡 − 𝑛 + 𝑘) .

(32)

2. The Fractional Differences and Sums with
Binomial Coefficients

We first give the definition of fractional order of (32) in the
left and right sense.

Definition 7. The (binomial) delta left fractional difference
and sum of order 𝛼 > 0 for a function 𝑓 defined on N𝑎 are
defined by

(a)

𝐵Δ
𝛼

𝑎 =

𝛼+𝑡−𝑎

∑

𝑘=0

(−1)
𝑘
(

𝛼

𝑘
)𝑓 (𝑡 + 𝛼 − 𝑘) , 𝑡 ∈ N𝑎+𝑛−𝛼, (33)

(b)

𝐵Δ
−𝛼

𝑎 =

𝛼+𝑡−𝑎

∑

𝑘=0

(−1)
𝑘
(

−𝛼

𝑘
)𝑓 (𝑡 − 𝛼 − 𝑘) , 𝑡 ∈ N𝑎+𝛼, (34)

where (−1)𝑘 ( −𝛼𝑘 ) = ( 𝛼+𝑘−1𝑘 ).

Definition 8. The (binomial) nabla left fractional difference
and sum of order 𝛼 > 0 for a function 𝑓 defined on N𝑎, are
defined by

(a)

𝐵∇
𝛼

𝑎 =

𝑡−𝑎−1

∑

𝑘=0

(−1)
𝑘
(

𝛼

𝑘
)𝑓 (𝑡 − 𝑘) , 𝑡 ∈ N𝑎+𝑛, (35)

(b)

𝐵∇
−𝛼

𝑎 =

𝑡−𝑎−1

∑

𝑘=0

(−1)
𝑘
(

−𝛼

𝑘
)𝑓 (𝑡 − 𝑘) , 𝑡 ∈ N𝑎. (36)

Analogously, in the right case we can define the following.

Definition 9. The (binomial) delta right fractional difference
and sum of order 𝛼 > 0 for a function 𝑓 defined on 𝑏N are
defined by

(a)

𝑏Δ𝐵
𝛼
=

𝛼+𝑏−𝑡

∑

𝑘=0

(−1)
𝑘
(

𝛼

𝑘
)𝑓 (𝑡 − 𝛼 + 𝑘) , 𝑡 ∈ 𝑏 − 𝑛 + 𝛼N,

(37)

(b)

𝑏Δ𝐵
−𝛼

=

−𝛼+𝑏−𝑡

∑

𝑘=0

(−1)
𝑘
(

−𝛼

𝑘
)𝑓 (𝑡 + 𝛼 + 𝑘) , 𝑡 ∈ 𝑏 − 𝛼N.

(38)

Definition 10. The(binomial) nabla right fractional difference
and sum of order 𝛼 > 0 for a function 𝑓 defined on 𝑏N are
defined by

(a)

𝑏∇𝐵
𝛼
=

𝑏−𝑡−1

∑

𝑘=0

(−1)
𝑘
(

𝛼

𝑘
)𝑓 (𝑡 − 𝑘) , 𝑡 ∈ 𝑏−𝑛N, (39)

(b)

𝑏∇𝐵
−𝛼

=

𝑏−𝑡−1

∑

𝑘=0

(−1)
𝑘
(

−𝛼

𝑘
)𝑓 (𝑡 − 𝑘) , 𝑡 ∈ 𝑏N . (40)
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We next proceed to show that the Riemann fractional
differences and sums coincide with the binomial ones defined
above. We will use the dual identities in Lemma 5 and
Lemma 6, and the action of the discrete version of the Q-
operator to follow easy proofs and verifications. In [20], the
author used a delta Leibniz’s rule to obtain the following alter-
native definition for Riemann delta left fractional differences:

Δ
𝛼

𝑎𝑓 (𝑡) =
1

Γ (−𝛼)

𝑡+𝛼

∑

𝑠=𝑎

(𝑡 − 𝜎 (𝑠))
(−𝛼−1)

𝑓 (𝑠) ,

𝛼 ∉ N, 𝑡 ∈ N𝑎+𝑛−𝛼,

(41)

then proceeded with long calculations and showed, actually,
that

Δ
𝛼

𝑎𝑓 (𝑡) = 𝐵Δ
𝛼

𝑎𝑓 (𝑡) , Δ
−𝛼

𝑎 𝑓 (𝑡) = 𝐵Δ
−𝛼

𝑎 𝑓 (𝑡) . (42)

Theorem 11. Let 𝑓 be defined on suitable domains and 𝛼 > 0.
Then,

(1)

Δ
𝛼

𝑎𝑓 (𝑡) = 𝐵Δ
𝛼

𝑎𝑓 (𝑡) , Δ
−𝛼

𝑎 𝑓 (𝑡) = 𝐵Δ
−𝛼

𝑎 𝑓 (𝑡) , (43)

(2)

𝑏Δ
𝛼
𝑓 (𝑡) = 𝑏Δ𝐵

𝛼
𝑓 (𝑡) , 𝑏Δ

−𝛼
𝑓 (𝑡) = Δ𝐵

−𝛼

𝑎 𝑓 (𝑡) , (44)

(3)

∇
𝛼

𝑎𝑓 (𝑡) = 𝐵∇
𝛼

𝑎𝑓 (𝑡) , ∇
−𝛼

𝑎 𝑓 (𝑡) = 𝐵∇
−𝛼

𝑎 𝑓 (𝑡) , (45)

(4)

𝑏∇
𝛼
𝑓 (𝑡) = 𝑏∇𝐵

𝛼
𝑓 (𝑡) , 𝑏∇

−𝛼
𝑓 (𝑡) = 𝑏∇𝐵

−𝛼
𝑓 (𝑡) .

(46)

Proof. (1) follows by (42).
(2) By the discrete Q-operator action we have

𝑏Δ
𝛼
𝑓 (𝑡) = 𝑄Δ 𝑎 (𝑄𝑓) (𝑡)

= 𝑄

𝛼+𝑡−𝑎

∑

𝑘=0

(−1)
𝑘
(

𝛼

𝑘
) (𝑄𝑓) (𝑡 + 𝛼 − 𝑘)

= 𝑏Δ𝐵
𝛼
𝑓 (𝑡) .

(47)

The fractional sum part is also done in a similar way by using
the Q-operator.

(3) By the dual identity in Lemma 5 (i) and (42), we have

∇
𝛼

𝑎𝑓 (𝑡) = Δ
𝛼

𝑎+1𝑓 (𝑡 + 𝛼) = 𝐵Δ
𝛼

𝑎+1𝑓 (𝑡 + 𝛼) = 𝐵∇
𝛼

𝑎𝑓 (𝑡) .

(48)

The fractional sum part can be proved similarly by using
Lemma 5 (ii) and (42).

(4) The proof can be achieved by either (2) and Lemma 6
or, alternatively, by (3) and the discrete Q-operator.

Remark 12. In analogous to (41), the authors in [31] used a
nabla Leibniz’s rule to prove that

∇
𝛼

𝑎𝑓 (𝑡) =
1

Γ (−𝛼)

𝑡

∑

𝑠=𝑎+1

(𝑡 − 𝜌 (𝑠))
−𝛼−1

𝑓 (𝑠) . (49)

In [30], the authors used a delta Leibniz’s Rule to prove
the following formula for nabla right fractional differences:

𝑏∇
𝛼
𝑓 (𝑡) =

1

Γ (−𝛼)

𝑏−1

∑

𝑠=𝑡

(𝑠 − 𝜌 (𝑡))
−𝛼−1

𝑓 (𝑠) . (50)

Similarly, we can use a nabla Leibniz’s rule to prove the fol-
lowing formula for the delta right fractional differences:

𝑏Δ
𝛼
𝑓 (𝑡) =

1

Γ (−𝛼)

𝑏

∑

𝑠=𝑡−𝛼

(𝑠 − 𝜎 (𝑡))
(−𝛼−1)

𝑓 (𝑠) . (51)

We here remark that the proofs of the last three parts of
Theorem 11 can be done alternatively by proceeding as in [20]
starting from (49), (50), and (51). Also, it is worthmentioning
that mixing both delta and nabla operators in defining delta
and nabla right Riemann fractional differences was essential
in proceeding, through the dual identities and the discrete Q-
operator or delta and nabla type Leibniz’s rules, to obtain the
main results in this paper [29].

3. Conclusion

The impact of fractional calculus in both pure and applied
branches of science and engineering started to increase
substantially.Themain idea of iterating an operator and then
generalizing to any order (real or complex) started to be used
in the last decade to obtain appropriate discretization for the
fractional operators. We mention, from the theory of time
scales view point, that how to obtain the fractional operators
was a natural question and it was not correlated to the well-
known Grünwald-Letnikov approach. We believe that the
discretizations obtained recently in the literature for the frac-
tional operators are different from the one reported within
Grünwald-Letnikov method. Bearing all of these thinks in
mind we proved that the discrete operators via binomial
theorem will lead to the same results as the ones by using
the discretization of theRiemann-Liouville operators via time
scales techniques. The discrete version of the impressive dual
tool Q-operator has been used to prove the equivalency.
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