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The drive-response synchronization of delayed neural networks with discontinuous activation functions is investigated via adaptive
control.The synchronization of this paper means that the synchronization error approaches to zero for almost all time as time goes
to infinity. The discontinuous activation functions are assumed to be monotone increasing which can be unbounded. Due to the
mild condition on the discontinuous activations, adaptive control technique is utilized to control the response system. Under the
framework of Filippov solution, by using Lyapunov function and chain rule of differential inclusion, rigorous proofs are given to
show that adaptive control can realize complete synchronization of the consideredmodel.The results of this paper are also applicable
to continuous neural networks, since continuous function is a special case of discontinuous function. Numerical simulations verify
the effectiveness of the theoretical results. Moreover, when there are parameter mismatches between drive and response neural
networks with discontinuous activations, numerical example is also presented to demonstrate the complete synchronization by
using discontinuous adaptive control.

1. Introduction

In the last decades, synchronization of coupled chaotic
systems (including fractional-order chaotic systems and
integer-order chaotic systems [1–3]) has received increasing
research attention from different branches of science and
application fields due to its potential applications such as
secure communication, biological systems, and information
science [4, 5]. Along with the presentation of different kinds
of synchronization, such as complete synchronization [6],
lag synchronization [7, 8], quasi-synchronization [9, 10],
projective synchronization [11–13], and generalized synchro-
nization [14, 15], many controlmethods have been developed,
for instance, state feedback control [9, 16], and adaptive
control [7, 15, 17]. The adaptive control technique derives
special attention since its control gains need not to be known
in advance and can self-adjust according to the designed
adaptive law.

Delayed neural networks, as a class of important func-
tional differential equations, have witnessed many applica-
tions in different areas such as signal processing, associa-
tive memories, classification of patterns, and optimization.
Therefore, investigating dynamical behaviors of neural net-
works with various parameters has long been an intensive
research topic, such as stability of equilibrium point [18]
and chaos synchronization [7]. However, the activation
functions in most of known models including those in [7,
18] are accompanied by the assumption of continuity or
even Lipschitz continuity. Actually, neural networks with
discontinuous neuron activations are ideal models for the
case where the gain of the neuron amplifiers is very high and
is frequently arising in the applications [19, 20]. Therefore,
in the literature, there were some results on dynamical
behaviors of neural networks with discontinuous activation
functions. For instance, Forti et al. investigated the stability
and global convergence of delayed and nondelayed neural
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networks with discontinuous activations in [19, 20]; authors
in [21–23] studied the global robust stability of delayed
neural networks with discontinuous neuron activations; in
[24, 25], authors considered existence and global convergence
of periodic and almost periodic solutions of neural networks
with discontinuous activations.

On the other hand, although there were many results
concerning synchronization of chaotic neural networks, few
published papers considered the same issue for neural net-
works with discontinuous activations, and we only found
[10, 26]. The difficulty comes from the discontinuity of
activations. The methods utilized to analyze the stability
of neural networks with discontinuous activations cannot
be extended to chaos synchronization case directly. In [10],
authors investigated quasi-synchronization of discontinuous
neural networks with and without parameter mismatches,
that is, synchronization error can only be controlled to a small
region around zero, but cannot approach to zero. Results
of [10] revealed that complete synchronization is difficult to
be realized due to the discontinuity of activation function.
It is known that one of the most important applications of
chaos synchronization is in secure communication. When
chaos synchronization is applied to secure communication,
only when the drive and response systems achieve complete
synchronization can the transmitted signal be fingered out.
Therefore, it is necessary to study complete synchroniza-
tion of neural networks with discontinuous activations. In
[26], complete synchronization of discontinuous neural net-
works was investigated via approximation and linear matrix
inequality (LMI) approach. But we find that, through the
approximation approach used in [26], the control gain is
uncertain and may be very large, which leads to inappli-
cablility in practice. On the other hand, some results on
synchronization and control of discontinuous dynamical
systems are complex, which are difficult to be verified. For
instance, synchronization criteria obtained in [27] were in
terms of integral inequality, and the restrict condition on
the discontinuity of discontinuous function was weakened,
that is, as time goes to infinity, the discontinuous function
approaches to a continuous function. From the above analy-
sis, investigating the synchronization of neural networks with
discontinuous activations is really a tough task.

Being motivated by the above analysis, this paper inves-
tigates asymptotic complete synchronization of neural net-
works with discontinuous activation functions via adaptive
control technique. Because of the discontinuity of the acti-
vation functions, the solution is in the sense of differential
inclusion by the Filippov theory [28], and the complete syn-
chronization of this paper means that the state error between
the derive (or master) and response systems approaches to
zero for almost all (a.a.) time as time goes to infinity. We do
not impose the restriction conditions of growth condition on
activation function. The discontinuous activations are only
assumed to be monotone increasing and can be unbounded.
Due to the mild condition on the discontinuous activations,
the precise control gain is difficult to be determined, and
the state feedback control is not so good as the adaptive
control technique. Under the framework of Filippov solution,
by using Lyapunov function and chain rule of differential

inclusion, rigorous proofs are given for the asymptotic sta-
bility of the error system of the coupled systems. Numerical
simulations show the effectiveness of the theoretical results.
Moreover, when there are parameter mismatches between
driver and response neural networks with discontinuous acti-
vations, numerical example is presented to demonstrate the
complete synchronization by using discontinuous adaptive
control.

Notations. In the sequel, if not explicitly stated, matrices
are assumed to have compatible dimensions. 𝐼

𝑚
stands for

the identity matrix of 𝑚-dimension. R is the space of real
number. The Euclidean norm in R𝑚 is denoted as ‖ ⋅ ‖,
accordingly, for vector 𝑥 ∈ R𝑚, ‖𝑥‖ = √𝑥𝑇𝑥, where 𝑇
denotes transposition. 𝑥 = 0 represents each component of
𝑥 is zero. 𝐴 = (𝑎

𝑖𝑗
)
𝑚×𝑚

denotes a matrix of 𝑚-dimension,

‖𝐴‖ = √𝜆max(𝐴
𝑇𝐴).

The rest of this paper is organized as follows. In Section 2,
a model of delayed neural networks with discontinuous
activation functions is described. Some necessary assump-
tions, definitions, and lemmas are also given in this section.
Our main results and their rigorous proofs are described in
Section 3. In Section 4, two examples with their numerical
simulations are offered to show the effectiveness of our
results. In Section 5, conclusions are given, and at last,
acknowledgments.

2. Preliminaries

In this paper, we consider the delayed neural network which
is described as follows:

𝑥̇ (𝑡) = −𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜃)) + 𝐽, (1)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)) ∈ R𝑛 is the state

vector; 𝐶 = diag(𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
), in which c

𝑖
> 0, 𝑖 =

1, 2, . . . , 𝑛 are the neuron self-inhibitions; 𝜃 > 0 is the
transmission delay; 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

and 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

are
the connection weight matrix and the delayed connection
weight matrix, respectively; the activation function𝑓(𝑥(𝑡)) =
(𝑓
1
(𝑥
1
(𝑡)), 𝑓

2
(𝑥
2
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡)))
𝑇 represents the output of

the network; 𝐽 = (𝐽
1
, 𝐽
2
, . . . , 𝐽

𝑛
) is the external input vector.

As for neural networks (1), we give the following assump-
tion condition.

Assumption 1. For every 𝑖 = 1, 2, . . . , 𝑛, 𝑓
𝑖
: R → R is

monotone nondecreasing and has at most a finite number of
jump discontinuities in every compact interval.

Remark 2. Assumption 1 was used in [20]. Any function
satisfying this assumption condition does not need to be
continuously differentiable in compact interval. However, the
continuous differentiability is necessary in [10, 26]. On the
other hand, the “monotone nondecreasing” can be replaced
by “monotonic function.” For instance, if we replace the



Discrete Dynamics in Nature and Society 3

matrices 𝐴 and 𝐵 in Example 13 (see Section 4 of this paper)
with

𝐴 = (
2 0.1

−5 −4.5
) , 𝐵 = (

−1.5 0.1

−0.2 4
) , (2)

𝑓
1
(𝑥
1
) is the same function as that in example and

𝑓
2
(𝑥
2
) = {

− tanh (𝑥
2
) − 0.02√𝑥2 − 0.03, 𝑥2 > 0,

− tanh (𝑥
2
) − 0.018𝑥

2
+ 0.03, 𝑥

2
< 0.

(3)

Obviously, the 𝑓
1
is monotone increasing, and the 𝑓

2
is

monotone decreasing, but the obtained system and the
original system are identical. Furthermore, the results of this
paper are also applicable to neural networks with continuous
monotone activation functions, since continuous function is
a special case of discontinuous function.

Since𝑓(𝑥) is discontinuous at isolate jumping points, one
cannot define a solution in the conventional sense.Therefore,
we resort to the notion of Filippov solution and stability
results on differential inclusion [28]. Filippov solution is one
of notions to deal with the discontinuity that determine
the solution on the discontinuous surface with a set-valued
mapping.

The Filippov set-valued map of 𝑓(𝑥) at 𝑥 ∈ R𝑛 is defined
as follows [28]:

𝐹 (𝑥) = ⋂

𝛿>0

⋂

𝜇(𝑁)=0

𝐾[𝑓 (𝐵 (𝑥, 𝛿) \ 𝑁)] , (4)

where 𝐾[𝐸] is the closure of the convex hull of the set 𝐸,
𝐵(𝑥, 𝛿) = {𝑦 : ‖𝑦−𝑥‖ ≤ 𝛿}, and 𝜇(𝑁) is the Lebesguemeasure
of set𝑁.

When 𝑓(𝑥) satisfies Assumption 1, it is not difficult to get
from (4) that

𝐹 (𝑥) = 𝐾 [𝑓 (𝑥)]

= (𝐾 [𝑓
1
(𝑥
1
)] , 𝐾 [𝑓

2
(𝑥
2
)] , . . . , 𝐾 [𝑓

𝑛
(𝑥
1
)]) ,

(5)

where𝐾[𝑓
𝑖
(𝑥
𝑖
)] = [𝑓

−

𝑖
(𝑥
𝑖
), 𝑓
+

𝑖
(𝑥
𝑖
)], 𝑖 = 1, 2, . . . , 𝑛.

Definition 3 (see [19]). A function 𝑥 : [−𝜃, 𝑇) → R𝑛,
𝑇 ∈ (0, +∞], is a solution (in the sense of Filippov) of the
discontinuous system (1) on [−𝜃, 𝑇) if

(i) 𝑥 is continuous on [−𝜃, 𝑇) and absolutely continuous
on [0, 𝑇);

(ii) there exists a measurable function 𝛾 =

(𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑛
)
𝑇

: [−𝜃, 𝑇) → R𝑛, such that
𝛾(𝑥(𝑡)) ∈ 𝐾[𝑓(𝑥(𝑡))] for almost all (a.a.) 𝑡 ∈ [−𝜃, 𝑇)
and
𝑥̇ (𝑡) = −𝐶𝑥 (𝑡) + 𝐴𝛾 (𝑥 (𝑡)) + 𝐵𝛾 (𝑥 (𝑡 − 𝜃)) + 𝐽,

for a.a. 𝑡 ∈ [0, 𝑇) .
(6)

Note that the measurable function 𝛾(𝑥(𝑡)) is a single-
value function which is called the measurable selection of
𝐾[𝑓(𝑥(𝑡))]. Any function 𝛾(𝑥(𝑡)) satisfying (6) is called an
output associated to 𝑥(𝑡). In this paper, we assume that the
trajectory of the solution 𝑥(𝑡) of neural network (1) is chaotic.

The next definition is the initial value problem (IVP)
associated to system (1).

Definition 4 ((IVP), see [20]). For any continuous function
𝜙 : [−𝜃, 0] → R𝑛 and measurable selection 𝜓 : [−𝜃, 0] →
R𝑛 such that𝜓(𝑠) ∈ 𝐾[𝑓(𝜙(𝑠))] for a.a. 𝑠 ∈ [−𝜃, 0] by an initial
value problem associated to (1) with initial condition (𝜙, 𝜓),
one means the following problem: find a couple of functions
[𝑥, 𝛾] : [−𝜃, 𝑇) → R𝑛 ×R𝑛, such that 𝑥 is a solution of (1) on
[−𝜃, 𝑇) for some 𝑇 > 0, 𝛾 is an output associated to 𝑥, and

𝑥̇ (𝑡) = −𝐶𝑥 (𝑡) + 𝐴𝛾 (𝑥 (𝑡)) + 𝐵𝛾 (𝑥 (𝑡 − 𝜃)) + 𝐽,

for a.a. 𝑡 ∈ [0, 𝑇) ,

𝛾 (𝑥 (𝑡)) ∈ 𝐾 [𝑓 (𝑥 (𝑡))] , for a.a. 𝑡 ∈ [0, 𝑇) ,

𝑥 (𝑠) = 𝜙 (𝑠) , ∀𝑠 ∈ [−𝜃, 0] ,

𝛾 (𝑥 (𝑠)) = 𝜓 (𝑠) , for a.a. 𝑠 ∈ [−𝜃, 0] .

(7)

Lemma 5 (see [20]). Suppose that Assumption 1 is satisfied.
Then, any IVP for (1) has at least a local solution [𝑥, 𝛾] defined
on [0, 𝑇) for some 𝑇 ∈ (0, +∞].

Since chaotic system has strange attractors, there exists
a bounded region containing all attractors of it such that
every orbit of the system never leaves them. Hence, in view of
Lemma 5, the solution of (1) is defined on [0, +∞).

Lemma 6 ((Chain rule), see [29]). If 𝑉(𝑥) : R𝑛 → R is
C-regular, and 𝑥(𝑡) is absolutely continuous on any compact
subinterval of [0, +∞). Then, 𝑥(𝑡) and 𝑉(𝑥(𝑡)) : [0, +∞) →
R are differentiable for a.a. 𝑡 ∈ [0, +∞) and

𝑑

𝑑𝑡
𝑉 (𝑥 (𝑡)) = 𝛾 (𝑡) 𝑥̇ (𝑡) , ∀𝛾 ∈ 𝜕𝑉 (𝑥 (𝑡)) , (8)

where 𝜕𝑉(𝑥(𝑡)) is the Clark generalized gradient of 𝑉 at 𝑥(𝑡).

Lemma 7 (see [30, page 174]). Let 𝑎 ≤ 𝑏, 𝑎, 𝑏 ∈ R. Assume
[𝑎, 𝑏] ⊂ R, 𝑥(𝑡) is a measurable function on [𝑎, 𝑏]. If 𝑥(𝑡) is
monotone on [𝑎, 𝑏], then 𝑥(𝑡) is differentiable for a.a. 𝑡 ∈ [𝑎, 𝑏]
and

(i) −∞ < 𝐷
−
𝑥(𝑡) = 𝐷

−

𝑥(𝑡) = 𝐷
+
𝑥(𝑡) = 𝐷

+

𝑥(𝑡) < +∞,
for a.a. 𝑡 ∈ [𝑎, 𝑏];

(ii) 𝑚{𝑥 : 𝑎 < 𝑥 < 𝑏,𝐷+𝑓(𝑥) = ±∞} = 0,
where𝐷

−
𝑥(𝑡) = lim

ℎ→0
−

(𝑓(𝑥+ℎ)−𝑥(𝑡))/ℎ, 𝐷
−

𝑥(𝑡) =

lim
ℎ→0

−(𝑓(𝑥+ℎ)−𝑥(𝑡))/ℎ,𝐷
+
𝑥(𝑡) = lim

ℎ→0
+

(𝑓(𝑥+

ℎ) − 𝑥(𝑡))/ℎ, 𝐷
+

𝑥(𝑡) = lim
ℎ→0

+(𝑓(𝑥 + ℎ) − 𝑥(𝑡))/ℎ.

Consider the neural network model (1) as the driver
system, the controlled response system is

𝑦̇ (𝑡) = −𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑓 (𝑦 (𝑡 − 𝜃)) + 𝐽 + 𝑢 (𝑡) ,

(9)

where 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇 is the state of the

response system, 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢
2
(𝑡), . . . , 𝑢

𝑛
(𝑡))
𝑇 is the

controller to be designed, and the other parameters are the
same as those defined in system (1).
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Definition 8. The neural network (9) with discontinuous
activations is said to be asymptotically synchronized with
system (1) if, for any initial values, there holds

lim
𝑡→+∞

󵄩󵄩󵄩󵄩𝑦 (𝑡) − 𝑥 (𝑡)
󵄩󵄩󵄩󵄩 = 0, for a.a. 𝑡 ∈ R. (10)

3. Main Results

In this section, rigorous mathematical proofs about complete
synchronization between systems (9) and (1) under adaptive
control are given. Remarks are given to specify that, under
Assumption 1, state feedback control is not applicable.

By virtue of the above preparations, in order to study the
synchronization issue between (1) and (9), we only need to
consider the same problem of the following systems:

𝑥̇ (𝑡) = −𝐶𝑥 (𝑡) + 𝐴𝛾 (𝑥 (𝑡)) + 𝐵𝛾 (𝑥 (𝑡 − 𝜃)) + 𝐽, (11)

𝑦̇ (𝑡) = −𝐶𝑦 (𝑡) + 𝐴𝛾 (𝑦 (𝑡)) + 𝐵𝛾 (𝑦 (𝑡 − 𝜃)) + 𝐽 + 𝑢 (𝑡) .

(12)

Let 𝑒(𝑡) = (𝑒
1
(𝑡), 𝑒
2
(𝑡), . . . , 𝑒

𝑛
(𝑡))
𝑇

= 𝑦(𝑡) − 𝑥(𝑡). Subtract-
ing (11) from (12) yields the following error system:

̇𝑒 (𝑡) = −𝐶𝑒 (𝑡) + 𝐴𝛽 (𝑒 (𝑡)) + 𝐵𝛽 (𝑒 (𝑡 − 𝜃)) + 𝑢 (𝑡) , (13)

where 𝛽(𝑒(𝑡)) = 𝛾(𝑒(𝑡) + 𝑥(𝑡)) − 𝛾(𝑥(𝑡)).
Obviously, 𝑒(𝑡) = 0 is the equilibrium point of the error

system (13) when 𝑢(𝑡) = 0. If system (13) realizes global
asymptotical stability at the origin for any given initial con-
dition, then the global asymptotical synchronization between
(11) and (12) (or (1) and (9)) is achieved.

Theorem 9. Suppose that Assumption 1 is satisfied. Then the
neural networks (1) and (9) can achieve global asymptotical
synchronization under the following adaptive controller:

𝑢
𝑖
(𝑡) = −𝑙

𝑖
(𝑡) 𝑒
𝑖
(𝑡) ,

̇𝑙
𝑖
(𝑡) = 𝜀

𝑖
𝑒
2

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛,

(14)

where 𝜀
𝑖
> 0 is an arbitrary positive constant.

Proof. Since 𝑓(𝑥) satisfies Assumption 1, 𝛾(𝑥) is a single-
valued measurable function satisfying 𝛾(𝑥) ∈ 𝐾[𝑓(𝑥)].
Therefore 𝛾

𝑖
(𝜉) (𝑖 = 1, 2, . . . , 𝑛) are monotone increasing and

measurable functions on R. In view of Lemma 7, 𝛾
𝑖
(𝜉) is

differentiable for a.a 𝜉 ∈ R and there exist positive constants
𝑚
𝑖
such that 0 ≤ 𝛾󸀠

𝑖
(𝜉) ≤ 𝑚

𝑖
, 𝑖 = 1, 2, . . . , 𝑛. Consequently, for

a.a. 𝑥, 𝑦 ∈ R𝑛, there holds
󵄩󵄩󵄩󵄩𝛾 (𝑥) − 𝛾 (𝑦)

󵄩󵄩󵄩󵄩 ≤ 𝑚
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , (15)

where𝑚 = max{𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
}.

Define the following Lyapunov functional candidate:

𝑉 (𝑡) =
1

2
𝑒
𝑇

(𝑡) 𝑒 (𝑡) + 𝜇∫

𝑡

𝑡−𝜃

𝑒
𝑇

(𝑠) 𝑒 (𝑠) 𝑑𝑠

+

𝑚

∑

𝑖=1

1

2𝜀
𝑖

(𝑙
𝑖
(𝑡) − 𝑘

𝑖
)
2

,

(16)

where 𝜇 and 𝑘
𝑖
𝑖 = 1, 2, . . . , 𝑛 are positive constants to be

determined.
Then, for a.a. 𝑡 ∈ [0, +∞), computing the derivative

of 𝑉(𝑡) along trajectories of error system (13), we get from
Lemma 6 and the calculus for differential inclusion in [31]
that

𝑉̇ (𝑡)

= 𝑒
𝑇

(𝑡) [−𝐶𝑒 (𝑡) + 𝐴𝛽 (𝑒 (𝑡)) + 𝐵𝛽 (𝑒 (𝑡 − 𝜃)) − 𝑙 (𝑡) 𝑒 (𝑡)]

+ 𝜇𝑒
𝑇

(𝑡) 𝑒 (𝑡) − 𝜇𝑒
𝑇

(𝑡 − 𝜃) 𝑒 (𝑡 − 𝜃) +

𝑚

∑

𝑖=1

(𝑙
𝑖
(𝑡) − 𝑘

𝑖
) 𝑒
2

𝑖
(𝑡)

= −𝑒
𝑇

(𝑡) 𝐶𝑒 (𝑡) + 𝑒
𝑇

(𝑡) 𝐴𝛽 (𝑒 (𝑡)) + 𝑒
𝑇

(𝑡) 𝐵𝛽 (𝑒 (𝑡 − 𝜃))

+ 𝜇𝑒
𝑇

(𝑡) 𝑒 (𝑡) − 𝜇𝑒
𝑇

(𝑡 − 𝜃) 𝑒 (𝑡 − 𝜃) − 𝑒
𝑇

(𝑡) 𝐾𝑒 (𝑡)

≤ −𝑒
𝑇

(𝑡) 𝐶𝑒 (𝑡) + ‖𝑒 (𝑡)‖ ‖𝐴‖
󵄩󵄩󵄩󵄩𝛽 (𝑒 (𝑡))

󵄩󵄩󵄩󵄩

+ ‖𝑒 (𝑡)‖ ‖𝐵‖
󵄩󵄩󵄩󵄩𝛽 (𝑒 (𝑡 − 𝜃))

󵄩󵄩󵄩󵄩 + 𝜇𝑒
𝑇

(𝑡) 𝑒 (𝑡)

− 𝜇𝑒
𝑇

(𝑡 − 𝜃) 𝑒 (𝑡 − 𝜃) − 𝑒
𝑇

(𝑡) 𝐾𝑒 (𝑡) ,

(17)

where 𝑙(𝑡) = diag(𝑙
1
(𝑡), 𝑙
2
(𝑡), . . . , 𝑙

𝑛
(𝑡)),𝐾 = diag(𝑘

1
, 𝑘
2
, . . .,

𝑘
𝑛
).
It follows from (15) and (17) that

𝑉̇ (𝑡) ≤ −𝑒
𝑇

(𝑡) 𝐶𝑒 (𝑡) + ‖𝑒 (𝑡)‖ ‖𝐴‖𝑚 ‖𝑒 (𝑡)‖

+ ‖𝑒 (𝑡)‖ ‖𝐵‖𝑚 ‖𝑒 (𝑡 − 𝜃)‖ + 𝜇𝑒
𝑇

(𝑡) 𝑒 (𝑡)

− 𝜇𝑒
𝑇

(𝑡 − 𝜃) 𝑒 (𝑡 − 𝜃) − 𝑒
𝑇

(𝑡) 𝐾𝑒 (𝑡)

≤ −𝑒
𝑇

(𝑡) 𝐶𝑒 (𝑡) + 𝑚 ‖𝐴‖ ‖𝑒 (𝑡)‖
2

+
1

2
𝑚 ‖𝐵‖ ‖𝑒 (𝑡)‖

2

+
1

2
𝑚 ‖𝐵‖ ‖𝑒(𝑡 − 𝜃)‖

2

+ 𝜇𝑒
𝑇

(𝑡) 𝑒 (𝑡)

− 𝜇𝑒
𝑇

(𝑡 − 𝜃) 𝑒 (𝑡 − 𝜃) − 𝑒
𝑇

(𝑡) 𝐾𝑒 (𝑡) .

(18)

Take 𝜇 = (1/2)𝑚‖𝐵‖. Then one derives from (18) that

𝑉̇ (𝑡) ≤ 𝑒
𝑇

(𝑡) (−𝐶 + 𝑚 ‖𝐴‖ 𝐼
𝑛
+ 𝑚 ‖𝐵‖ 𝐼

𝑛
− 𝐾) 𝑒 (𝑡) . (19)

Take 𝑘
𝑖
= −𝑐
𝑖
+ 𝑚‖𝐴‖ + 𝑚‖𝐵‖ + 1. Then

𝑉̇ (𝑡) ≤ −𝑒
𝑇

(𝑡) 𝑒 (𝑡) ≤ 0. (20)

Therefore, for a.a. 𝑡 ∈ [0, +∞) we have

lim
𝑡→+∞

‖𝑒 (𝑡)‖ = 0. (21)

According to Definition 8, the neural networks (1) and (9)
achieve global asymptotical synchronization.Moreover, from
(16), 𝑙

𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛, approach to some constants as

‖𝑒(𝑡)‖ → 0. This completes the proof.
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Remark 10. Although for a.a. 𝜉 ∈ R there exist positive
constants 𝑚

𝑖
such that |𝛾󸀠

𝑖
(𝜉)| ≤ 𝑚

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, these 𝑚

𝑖

are usually unknown because the function 𝛾
𝑖
(𝜉) is uncertain.

Hence, in this paper, for neural networks with discontinuous
activations, using state feedback control to synchronize (1)
and (8) is not good, since the maximum value of control gain
cannot be ascertained. However, adaptive control technique
can synchronize this class of neural networks as the control
gains increase according to the adaptive laws.This is themain
reason why we choose adaptive control method to study the
synchronization issue of the considered model.

Remark 11. Under Assumption 1, complete synchronization
of neural networks with discontinuous activation functions
can be achieved in this paper. However, based on the growth
condition used in [32, 33], authors in [10] only got the
quasi-synchronization criteria of systems (1) and (9) by state
feedback control. Therefore, results of this paper improve
corresponding parts of those in [10].

Remark 12. The synchronization criteria in this paper are
simple and can be easily verified in practice. In [27], new
conditions on synchronization of linearly coupled dynamical
networks with non-Lipschitz right-hand sides were derived,
but the discontinuous functions were weakened to be weak-
QUAD and semi-QUAD, which means that the discontin-
uous function approaches to a continuous function, and
the criteria were expressed in integral inequalities. Such
synchronization criteriamay be not easily verified in practice,
especially in the case that there are countable discontinuities
for the discontinuous functions. Hence, results of this paper
improve those in [27].

4. Numerical Examples

In this section, we provide two examples to show that our
theoretical results obtained above are effective. Example
also show that, when the discontinuous neural networks
have parameters mismatches, synchronization is still realized
under the discontinuous adaptive control developed in our
previous works.

Example 13. Consider the delayed neural network model (1)
with the following parameters: 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥
2
(𝑡))
𝑇, 𝐽 =

(0, 0)
𝑇, 𝜃 = 1, 𝐶 is identity matrix of 2-dimension, and

𝐴 = (
2 −0.1

−5 4.5
) , 𝐵 = (

−1.5 −0.1

−0.2 −4
) , (22)

the activation function is 𝑓(𝑥) = (𝑓
1
(𝑥
1
), 𝑓
2
(𝑥
2
)) with

𝑓
𝑖
(𝑥
𝑖
) = {

tanh (𝑥
𝑖
) + 0.02√𝑥𝑖 + 0.03, 𝑥𝑖 > 0, 𝑖 = 1, 2,

tanh (𝑥
𝑖
) + 0.018𝑥

𝑖
− 0.03, 𝑥

𝑖
< 0, 𝑖 = 1, 2.

(23)

Figure 1 shows chaotic-like trajectory of (1) with initial
condition 𝑥(𝑡) = (0.4, −0.6)𝑇, 𝑡 ∈ [−1, 0].

Obviously, 𝑓
𝑖
(V) in this example is monotone increasing

and is discontinuous at V = 0, so the activation function
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

𝑥
2
(𝑡
)

𝑥1(𝑡)

Figure 1: Trajectory of system (1) with initial value 𝑥(𝑡) =
(0.4, −0.6)

𝑇, 𝑡 ∈ [−1, 0].
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𝑒1(𝑡)
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𝑒 2
(𝑡
)
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Figure 2: Time response of synchronization error 𝑒(𝑡) = 𝑦(𝑡)−𝑥(𝑡).

satisfies Assumption 1. It follows fromTheorem 9 that system
(9) can synchronize the driver system (1) under the adaptive
controller (14).

In the numerical simulations, we use the forward Euler
method, which was used in [34] to obtain numerical solution
of differential inclusions. The parameters in the simulations
are taken as step-length is 0.01, 𝑦(𝑡) = (−0.2, 1.1)𝑇, 𝑙

1
(𝑡) =

𝑙
2
(𝑡) = 1, for all 𝑡 ∈ [−1, 0], 𝜀

𝑖
= 0.05. we get the simulation

results shown in Figures 2 and 3. Figure 2 describes the
trajectories of the error states. Figure 3 represents the time
response of 𝑙(𝑡) = (𝑙

1
(𝑡), 𝑙
2
(𝑡))
𝑇. Figures 2 and 3 show that

synchronization error approaches to zero quickly as time
goes and the control gain 𝑙(𝑡) turns out to be some constants
when the synchronization has been realized. Numerical
simulations verify the theoretical results perfectly.
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Figure 3: Trajectories of control parameters 𝑙
1
(𝑡) and 𝑙

2
(𝑡).

Remark 14. In Example 13, the activation function𝑓(𝑥) is not
generalized differentiable at 𝑥 = 0, nor is global Lipschitz.
However, these two conditions are necessary in [26]. Hence,
this example demonstrates that results of this paper improve
corresponding results in [26].

When there are parameter mismatches between drive
and response systems, only quasi-synchronization is realized
if state feedback control technique or continuous adaptive
control technique is utilized. In our previous research, a
simple but all-powerful discontinuous adaptive control was
designed to synchronize chaotic systems with uncertain
perturbations.The following example is given to demonstrate
that the discontinuous adaptive control is also applicable to
synchronize neural networks with discontinuous activations.
For more details of the discontinuous adaptive controller, see
[6, 7, 15].Themodels used in the following example are taken
from example in [10].

Example 15. Consider the delayed neural network model (1)
with the activation function 𝑓(𝑥) = (𝑓

1
(𝑥
1
), 𝑓
2
(𝑥
2
)) as

𝑓
𝑖
(𝑥
𝑖
) = {

tanh (𝑥
𝑖
) + 0.025𝑥

𝑖
+ 0.028, 𝑥

𝑖
> 0, 𝑖 = 1, 2,

tanh (𝑥
𝑖
) + 0.025𝑥

𝑖
− 0.028, 𝑥

𝑖
< 0, 𝑖 = 1, 2,

(24)

the other parameters are the same as those in Example 13.We
label system (1) with such activation as (∗). The chaotic-like
trajectory of system (∗) can be seen in Figure 4.

The response system with parameter mismatches is
assumed to be the same as that in [10], which is described
as follows:

𝑦̇ (𝑡) = − 𝐶̃ (𝑡) 𝑥 (𝑡) + 𝐴̃ (𝑡) 𝑓 (𝑥 (𝑡)) + 𝐵̃ (𝑡) 𝑓 (𝑥 (𝑡 − 𝜃))

+ 𝐽̃ (𝑡) + 𝑢 (t) ,
(25)
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−8
−1.5 −0.5 0 0.5 1 1.5

𝑥
2
(𝑡
)

𝑥1(𝑡)

−1

Figure 4: Trajectory of system (∗) with initial value 𝑥(𝑡) =
(0.4, −0.6)

𝑇, 𝑡 ∈ [−1, 0].

where

𝐴̃ (𝑡) = (
2 −0.1

−5 + 0.1 cos (𝑡) 4.5 ) ,

𝐵̃ (𝑡) = (
−1.5 −0.1

−0.2 −4 + 0.1 sin (𝑡)) ,

𝐶̃ (𝑡) = diag (1, 1 + 0.1 cos (𝑡)) , 𝐽̃ (𝑡) = 0.

(26)

The chaotic-like trajectory of system (25) is shown in
Figure 5, which is different from that in Figure 4.

According to the analysis in [7, 15], the systems (∗)
and (25) can realize synchronization under the following
discontinuous adaptive controller:

𝑢
𝑖
(𝑡) = −𝑙

𝑖
(𝑡) 𝑒
𝑖
(𝑡) − 𝛼𝛽

𝑖
(𝑡) sign (𝑒

𝑖
(𝑡)) ,

̇𝑙
𝑖
(𝑡) = 𝜀

𝑖
𝑒
2

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛,

𝛽̇
𝑖
(𝑡) = 𝜉

𝑖

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)
󵄨󵄨󵄨󵄨 , 𝑖 = 1, 2, . . . , 𝑛,

(27)

where 𝜀
𝑖
> 0, 𝜉
𝑖
> 0 and𝛼 > 1 are arbitrary positive constants.

In the numerical simulations, we still use the Euler
method.The parameters in the simulations are taken as step-
length is 0.001, 𝑦(𝑡) = (−0.5, 1.5)𝑇, 𝑙

1
(𝑡) = 𝑙

2
(𝑡) = 0.1,

𝛽
1
(𝑡) = 𝛽

2
(𝑡) = 0.2, for all 𝑡 ∈ [−1, 0], 𝜀

𝑖
= 𝜉
𝑖
= 0.05,

𝑖 = 1, 2, 𝛼 = 2. We get the simulation results shown in
Figures 6–8. Figure 6 describes the trajectories of the error
states as time involves. Figures 7 and 8 represent the time
response of 𝑙(𝑡) = (𝑙

1
(𝑡), 𝑙
2
(𝑡))
𝑇 and 𝛽(𝑡) = (𝛽

1
(𝑡), 𝛽
2
(𝑡))
𝑇.

Simulations demonstrate that the neural networks with dis-
continuous activations and parameters mismatches achieve
synchronization by utilizing the discontinuous adaptive con-
trol technique.

Remark 16. It can be seen from Figures 7 and 8 that the
final control gains are 𝑙

𝑖
(𝑡) < 0.9 and 𝛽

𝑖
(𝑡) ≤ 0.51,

which are much smaller than 𝐺 = diag(24.6, 24.6). In [10],
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Figure 5: Trajectory of system (25) with initial value 𝑥(𝑡) =
(−0.5, 1.5)

𝑇 and 𝑢(𝑡) = 0, 𝑡 ∈ [−1, 0].

4

3

2

1

0

−1

−2

−3

−4
0 5 10 15

𝑒2(𝑡)
𝑒1(𝑡)

𝑒 1
(𝑡
),
𝑒 2
(𝑡
)

𝑡

Figure 6: Time response of synchronization error 𝑒(𝑡) = 𝑦(𝑡)−𝑥(𝑡).

𝑢(𝑡) = −𝐺(𝑦(𝑡) − 𝑥(𝑡)) was utilized to control system (25),
and only quasi-synchronization was achieved. This exam-
ple demonstrates that the designed discontinuous adaptive
controller is really useful. Since in our previous works such
adaptive controller has been discussed in details, we use it
here without any proof.

5. Conclusions

In this paper, newdefinition of synchronization for discontin-
uous dynamical systems is proposed. Under this definition,
synchronization of delayed neural networks with discontin-
uous activation functions via adaptive control is studied. The
discontinuous activations in the neural networks are assumed
to be monotone increasing and can be unbounded. By utiliz-
ing the framework of Filippov solution, Lyapunov function

𝑙2(𝑡)

1
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Figure 7: Trajectories of control parameters 𝑙
1
(𝑡) and 𝑙

2
(𝑡).
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Figure 8: Trajectories of control parameters 𝛽
1
(𝑡) and 𝛽

2
(𝑡).

and chain rule of differential inclusion, sufficient conditions
guaranteeing the realization of asymptotic complete synchro-
nization of the considered model are derived. Numerical
simulations verify the effectiveness of the theoretical results.
When there are parametermismatches between the drive and
response neural networks with discontinuous activations,
a useful discontinuous adaptive controller can achieve the
same goal. Results of this paper are also applicable to neural
networks with continuous monotone activation functions.
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