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The present work is mainly concerned with the Dullin-Gottwald-Holm (DGH) equation with strong dissipation. We establish a
sufficient condition to guarantee global-in-time solutions, then present persistence property for the Cauchy problem, and describe
the asymptotic behavior of solutions for compactly supported initial data.

1. Introduction

Dullin et al. [1] derived a new equation describing the
unidirectional propagation of surface waves in a shallow
water regime:
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where the constants 𝛼
2 and 𝛾/𝑐

0
are squares of length scales

and the constant 𝑐
0

> 0 is the critical shallow water wave
speed for undisturbed water at rest at spatial infinity. Since
this equation is derived by Dullin, Gottwald, and Holm,
in what follows, we call this new integrable shallow water
equation (1) DGH equation.

If 𝛼 = 0, (1) becomes the well-known KdV equation,
whose solutions are global as long as the initial data is square
integrable. This is proved by Bourgain [2]. If 𝛾 = 0 and
𝛼 = 1, (1) reduces to the Camassa-Holm equation which
was derived physically by Camassa and Holm in [3] by
approximating directly the Hamiltonian for Euler’s equations
in the shallow water regime, where 𝑢(𝑥, 𝑡) represents the
free surface above a flat bottom. The properties about the
well-posedness, blow-up, global existence, and propagation
speed have already been studied in recent works [4–13],

and the generalized version of a family of dispersive equa-
tions related to Camassa-Holm equation was discussed in
[14].

It is very interesting that (1) preserves the bi-Hamiltonian
structure and has the following two conserved quantities:
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Recently, in [15], local well-posedness of strong solutions
to (1) was established by applying Kato’s theory [16], and
some sufficient conditionswere found to guarantee finite time
blow-up phenomenon. Moreover, Zhou [17] found the best
constants for two convolution problems on the unit circle via
variational method and applied the best constants on (1) to
give some blow-up criteria. Later, Zhou and Guo improved
the results and got some new criteria for wave breaking [18].

In general, it is quite difficult to avoid energy dissipation
mechanism in the real world. Ghidaglia [19] studied the long
time behavior of solutions to the weakly dissipative KdV
equation as a finite dimensional dynamic system. Moreover,
some results on blow-up criteria and the global existence
condition for the weakly dissipative Camassa-Holm equation
are presented in [20], and very related work can be found in
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[21, 22]. In this work, we are interested in the followingmodel,
which can be viewed as the DGH equation with dissipation
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where 𝑥 ∈ R, 𝑡 > 0, 𝜆(1 − 𝛼
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term and 𝜆 is a positive dissipation parameter. Set 𝑄 = (1 −
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1/2, then the operator 𝑄

−2 can be expressed by
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(R) with 𝐺(𝑥) = (1/2𝛼)𝑒

−|𝑥|/𝛼. With this
in hand, we can rewrite (3) as a quasilinear equation of
hyperbolic type
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It is the dissipative term that causes the previous conserved
quantities 𝐸(𝑢) and 𝐹(𝑢) to be no longer conserved for (3),
and this model could also be regarded as a model of a
type of a certain rate-dependent continuum material called
a compressible second grade fluid [23]. Our consideration
is based on this fact. Furthermore, we will show how the
dissipation term affects the behavior of solutions in our
forthcoming paper. As a whole, the current dissipationmodel
is of great importancemathematically and physically, and it is
worthy of being considered. In what follows, we assume that
𝑐
0
+ 𝛾/𝛼

2
= 0 and 𝛼 > 0 just for simplicity. Since 𝑢(𝑥, 𝑡) is
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2
̸= 0

does not change our results essentially, but it would lead to
unnecessary technical complications. So the above equation
is reduced to a simpler form as follows:
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where
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The rest of this paper is organized as follows. In Section 2,
we list the local well-posedness theorem for (6) with initial
datum 𝑢

0
∈ 𝐻
𝑠, 𝑠 > 3/2 and collect some auxiliary results.

In Section 3, we establish the condition for global existence
in view of the initial potential. Persistence properties of
the strong solutions are explored in Section 4. Finally, in
Section 5, we give a detailed description of the corresponding
solution with compactly supported initial data.

2. Preliminaries

In this section, we make some preparations for our consider-
ation. Firstly, the local well-posedness of the Cauchy problem

of (6) with initial data 𝑢
0
∈ 𝐻
𝑠 with 𝑠 > 3/2 can be obtained

by applying Kato’s theorem [16]. More precisely, we have the
following local well-posedness result.
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Applying Kato’s theory for abstract quasilinear evolution
equation of hyperbolic type, we can obtain the local well-
posedness of (6) in 𝐻

𝑠, 𝑠 > 3/2 and 𝑢 ∈ 𝐶 ([0, 𝑇);𝐻
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The maximal value of 𝑇 in Theorem 1 is called the
lifespan of the solution in general. If 𝑇 < ∞, that is
lim sup

𝑡→𝑇
‖𝑢(⋅, 𝑡)‖

𝐻
𝑠 = ∞, we say that the solution blows up

in finite time, otherwise, the solution exists globally in time.
Next, we show that the solution blows up if and only if its
first-order derivative blows up.
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Summarizing (11) and (12), we obtain
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2
)}.Therefore, the𝐻

3-norm of the
solution to (10) does not blow up in finite time. Furthermore,
similar argument shows that the 𝐻
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Lemma 3. Let 𝑢
0

∈ 𝐻
1

𝛼
, then as long as the solution 𝑢(𝑥, 𝑡)

given by Theorem 1 exists, for any 𝑡 ∈ [0, 𝑇), one has

‖𝑢‖
2

𝐻
1

𝛼

= exp (−2𝜆𝑡)
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1

𝛼

, (15)

where the norm is defined as

‖𝑢‖
2

𝐻
1

𝛼

= ∫

R

(𝑢
2
+ 𝛼
2
𝑢
2

𝑥
) 𝑑𝑥. (16)

Proof. Multiplying both sides of (10) by 𝑢 and integrating by
parts on R, we get

∫

R

𝑢𝑦
𝑡
𝑑𝑥 + ∫

R

(𝑦𝑢)
𝑥
𝑢 𝑑𝑥 + ∫

R

1

2

(𝑢
2
− 𝛼
2
𝑢
2

𝑥
)
𝑥
𝑢 𝑑𝑥

+ ∫

R

𝑐
0
𝑦
𝑥
𝑢 𝑑𝑥 + ∫

R

𝜆𝑦𝑢 𝑑𝑥 = 0.

(17)

Note that

∫

R

(𝑦𝑢)
𝑥
𝑢 𝑑𝑥 + ∫

R

1

2

(𝑢
2
− 𝛼
2
𝑢
2

𝑥
)
𝑥
𝑢 𝑑𝑥 = 0,

∫

R

𝑐
0
𝑦
𝑥
𝑢 𝑑𝑥 = 0.

(18)

Then, we have

∫

R

𝑢 (𝑢
𝑡
− 𝛼
2
𝑢
𝑥𝑥𝑡

) 𝑑𝑥 + ∫

R

𝜆 (𝑢
2
− 𝛼
2
𝑢𝑢
𝑥𝑥

) 𝑑𝑥 = 0. (19)

Hence,

∫

R

𝑢𝑢
𝑡
𝑑𝑥 − 𝛼

2
∫

R

𝑢𝑢
𝑥𝑥𝑡

𝑑𝑥 + 𝜆∫

R

𝑢
2
𝑑𝑥

− 𝜆𝛼
2
∫

R

𝑢𝑢
𝑥𝑥

𝑑𝑥 = 0.

(20)

Thus, we easily get

∫

R

(𝑢𝑢
𝑡
+ 𝛼
2
𝑢
𝑥
𝑢
𝑥𝑡
) 𝑑𝑥 + 𝜆∫

R

(𝑢
2
+ 𝛼
2
𝑢
2

𝑥
) 𝑑𝑥 = 0, (21)

and, therefore,

𝑑

𝑑𝑡

‖𝑢‖
2

𝐻
1

𝛼

+ 2𝜆‖𝑢‖
2

𝐻
1

𝛼

= 0. (22)

By integration from 0 to 𝑡, we get

‖𝑢‖
2

𝐻
1

𝛼

= exp (−2𝜆𝑡)
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1

𝛼

, for any 𝑡 ∈ [0,T) . (23)

Hence, the lemma is proved.

We also need to introduce the standard particle trajectory
method for later use. Consider now the following initial value
problem as follows:

𝑞
𝑡
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which means that 𝑞(𝑡, ⋅) : R → R is a diffeomorphism of
the line for every 𝑡 ∈ [0, 𝑇). Consequently, the 𝐿
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of any function V(𝑡, ⋅) is preserved under the family of the
diffeomorphism 𝑞(𝑡, ⋅), that is,
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Moreover, one can verify the following important identity for
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From the expression of 𝑢(𝑥, 𝑡) in terms of 𝑦(𝑥, 𝑡), for all
𝑡 ∈ [0, 𝑇), 𝑥 ∈ R, we can rewrite 𝑢(𝑥, 𝑡) and 𝑢

𝑥
(𝑥, 𝑡) as

follows:
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3. Global Existence

It is shown that it is the sign of initial potential not the size of
it that can guarantee the global existence of strong solutions.

Theorem 4. Assume that 𝑢
0

∈ 𝐻
𝑠, 𝑠 > 3/2, and 𝑦

0
= 𝑢
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−

𝛼
2
𝑢
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𝑦
0
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0
) ,

𝑦
0
(𝑥) ≥ 0, 𝑥 ∈ (𝑥

0
,∞) ,

(33)

for some point 𝑥
0

∈ R. Then, the solution 𝑢(𝑥, 𝑡) to (6) exists
globally in time.

Proof. From the hypothesis and (30), we obtain that 𝑦(𝑥, 𝑡) ≥

0, 𝑞(𝑥
0
, 𝑡) ≤ 𝑥 < ∞; 𝑦(𝑥, 𝑡) ≤ 0, −∞ < 𝑥 ≤ 𝑞(𝑥

0
, 𝑡).

According to (31) and (32), one can get that when 𝑥 > 𝑥
0
,

𝑢 (𝑞 (𝑥, 𝑡) , 𝑡) + 𝛼𝑢
𝑥
(𝑞 (𝑥, 𝑡) , 𝑡)

=

1

𝛼

𝑒
𝑞(𝑥,𝑡)/𝛼

∫

∞

𝑞(𝑥,𝑡)

𝑒
−𝜉/𝛼

𝑦 (𝜉, 𝑡) 𝑑𝜉 ≥ 0,

(34)

it follows that
−𝛼𝑢
𝑥
(𝑞 (𝑥, 𝑡) , 𝑡) ≤ 𝑢 (𝑞 (𝑥, 𝑡) , 𝑡) ≤ ‖𝑢‖

𝐿
∞

≤

exp (−𝜆𝑡)

√2𝛼

󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩𝐻
1

𝛼

≤

1

√2𝛼

󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩𝐻
1

𝛼

,

(35)

that is, 𝑢
𝑥
(𝑥, 𝑡) is bounded below. Similarly, when 𝑥 < 𝑥

0
,

𝑢 (𝑞 (𝑥, 𝑡) , 𝑡) − 𝛼𝑢
𝑥
(𝑞 (𝑥, 𝑡) , 𝑡)

=

1

𝛼

𝑒
−𝑞(𝑥,𝑡)/𝛼

∫

𝑞(𝑥,𝑡)

−∞

𝑒
𝜉/𝛼

𝑦 (𝜉, 𝑡) 𝑑𝜉 ≤ 0,

(36)

so −𝛼𝑢
𝑥
(𝑞(𝑥, 𝑡), 𝑡) ≤ −𝑢(𝑞(𝑥, 𝑡), 𝑡). We also get the bounded

below result as above. Therefore, the theorem is proved by
Lemma 2.

Corollary 5. Assume that 𝑢
0

∈ 𝐻
𝑠, 𝑠 > 3/2, and 𝑦

0
= 𝑢
0
−

𝛼
2
𝑢
0𝑥𝑥

is of one sign, then the corresponding solution 𝑢(𝑥, 𝑡) to
(6) exists globally.

In fact, if 𝑥
0
is regarded as ±∞, we prove this corollary

immediately fromTheorem 4.

4. Persistence Properties

In this section, we will investigate the following property
for the strong solutions to (6) in 𝐿

∞-space which behave
algebraically at infinity as their initial profiles do. The main
idea comes from the recent work of Himonas and his
collaborators [7].

Theorem 6. Assume that for some 𝑇 > 0 and 𝑠 > 3/2, 𝑢 ∈

𝐶([0, 𝑇];𝐻
𝑠
) is a strong solution of the initial value problem

associated to (6), and that 𝑢
0
(𝑥) = 𝑢(𝑥, 0) satisfies

󵄨
󵄨
󵄨
󵄨
𝑢
0
(𝑥)

󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
𝑢
0𝑥

(𝑥)
󵄨
󵄨
󵄨
󵄨
∼ 𝑂 (𝑥

−𝜃/𝛼
) 𝑥 ↑ ∞, (37)

for some 𝜃 ∈ (0, 1) and 𝛼 ≥ 1. Then,

|𝑢 (𝑥, 𝑡)| ,
󵄨
󵄨
󵄨
󵄨
𝑢
𝑥
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
∼ 𝑂 (𝑥

−𝜃/𝛼
) 𝑥 ↑ ∞, (38)

uniformly in the time interval [0, 𝑇].

Proof. The proof is organized as follows. Firstly, we will
estimate ‖𝑢(𝑥, 𝑡)‖

𝐿
∞ and ‖𝑢

𝑥
(𝑥, 𝑡)‖

𝐿
∞ . Then, we apply the

weight function to obtain the desired result. In the following
proof, we denote some constants by 𝑐; they may be different
from instance to instance, changing even within the same
line.

Multiplying (6) by 𝑢
2𝑛−1 with 𝑛 ∈ Z+, then integrating

both sides with respect to 𝑥 variable, we can get

∫

R

𝑢
2𝑛−1

𝑢
𝑡
𝑑𝑥 + ∫

R

𝑢
2𝑛−1

(𝑢 + 𝑐
0
) 𝑢
𝑥
𝑑𝑥

+ ∫

R

𝑢
2𝑛−1

𝜕
𝑥
𝐺 ∗ 𝐹 (𝑢) 𝑑𝑥 = −𝜆∫

R

𝑢
2𝑛
𝑑𝑥.

(39)

The first term of the above identity is

∫

R

𝑢
2𝑛−1

𝑢
𝑡
𝑑𝑥 =

1

2𝑛

𝑑

𝑑𝑡

‖𝑢 (𝑡)‖
2𝑛

𝐿
2𝑛

= ‖𝑢 (𝑡)‖
2𝑛−1

𝐿
2𝑛

𝑑

𝑑𝑡

‖𝑢 (𝑡)‖
𝐿
2𝑛 ,

(40)

and the estimates of the second term is

∫

R

𝑢
2𝑛−1

𝑢𝑢
𝑥
𝑑𝑥 ≤

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡)

󵄩
󵄩
󵄩
󵄩𝐿
∞‖𝑢 (𝑡)‖

2𝑛

𝐿
2𝑛 ,

𝑐
0
∫

R

𝑢
2𝑛−1

𝑢
𝑥
𝑑𝑥 = 𝑐

0
∫

R

(

𝑢
2𝑛

2𝑛

)

𝑥

𝑑𝑥 = 0.

(41)

In view of Hölder’s inequality, we can obtain the following
estimate for the third term in (39)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R

𝑢
2𝑛−1

𝜕
𝑥
𝐺 ∗ 𝐹 (𝑢) 𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ‖𝑢 (𝑡)‖
2𝑛−1

𝐿
2𝑛

󵄩
󵄩
󵄩
󵄩
𝜕
𝑥
𝐺 ∗ 𝐹(𝑢)

󵄩
󵄩
󵄩
󵄩𝐿
2𝑛 .

(42)

For the last term
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R

𝑢
2𝑛−1

𝜆𝑢 𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜆‖𝑢 (𝑡)‖
2𝑛

𝐿
2𝑛 , (43)
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putting all the inequalities above into (39) yields

𝑑

𝑑𝑡

‖𝑢 (𝑡)‖
𝐿
2𝑛 ≤ (

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡)

󵄩
󵄩
󵄩
󵄩𝐿
2𝑛 + 𝜆) ‖𝑢 (𝑡)‖

𝐿
2𝑛

+
󵄩
󵄩
󵄩
󵄩
𝜕
𝑥
𝐺 ∗ 𝐹 (𝑢)

󵄩
󵄩
󵄩
󵄩𝐿
2𝑛 .

(44)

Using the Sobolev embedding theorem, there exists a con-
stant

𝑀 = sup
𝑡∈[0,𝑇]

‖𝑢 (𝑥, 𝑡)‖
𝐻
𝑠 , (45)

such that we have by applying Gronwall’s inequality

‖𝑢 (𝑡)‖
𝐿
2𝑛 ≤ 𝑐𝑒

𝑀𝑡
(‖𝑢 (0)‖

𝐿
2𝑛 + ∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
𝜕
𝑥
𝐺 ∗ 𝐹 (𝑢)

󵄩
󵄩
󵄩
󵄩𝐿
2𝑛𝑑𝜏) .

(46)

For any 𝑓 ∈ 𝐿
1
(R) ∩ 𝐿

∞
(R), we know that

lim
𝑞↑∞

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐿
𝑞 =

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐿
∞ . (47)

Taking the limits in (46) (notice that 𝐺 ∈ 𝐿
1 and 𝐹(𝑢) ∈ 𝐿

1
∩

𝐿
∞) from (47), we get

‖𝑢 (𝑡)‖
𝐿
∞ ≤ 𝑐𝑒

𝑀𝑡
(‖𝑢 (0)‖

𝐿
∞ + ∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
𝜕
𝑥
𝐺 ∗ 𝐹 (𝑢)

󵄩
󵄩
󵄩
󵄩𝐿
∞𝑑𝜏) .

(48)

Then, differentiating (6) with respect to variable 𝑥 produces
the following equation:

𝑢
𝑥𝑡

+ 𝑢𝑢
𝑥𝑥

+ 𝑐
0
𝑢
𝑥𝑥

+ 𝑢
2

𝑥
+ 𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢) + 𝜆𝑢

𝑥
= 0. (49)

Again, multiplying (49) by 𝑢
2𝑛−1

𝑥
with 𝑛 ∈ Z+, integrating the

result in 𝑥 variable, and considering the second term and the
third term in the above identity with integration by parts, one
gets

∫

R

𝑢𝑢
𝑥𝑥

𝑢
2𝑛−1

𝑥
𝑑𝑥 = ∫

R

𝑢(

𝑢
2𝑛−1

𝑥

2𝑛

)

𝑥

𝑑𝑥

= −

1

2𝑛

∫

R

𝑢
𝑥
𝑢
2𝑛

𝑥
𝑑𝑥,

𝑐
0
∫

R

𝑢
𝑥𝑥

𝑢
2𝑛−1

𝑥
𝑑𝑥 = 𝑐

0
∫

R

(

𝑢
2𝑛−1

𝑥

2𝑛

)

𝑥

𝑑𝑥 = 0,

(50)

so, we have

∫

R

𝑢
𝑥𝑡
𝑢
2𝑛−1

𝑥
𝑑𝑥 −

1

2𝑛

∫

R

𝑢
𝑥
𝑢
2𝑛

𝑥
𝑑𝑥 + ∫

R

𝑢
2𝑛+1

𝑥
𝑑𝑥

= −∫

R

𝑢
2𝑛−1

𝑥
𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢) 𝑑𝑥 − 𝜆∫

R

𝑢
2𝑛−1

𝑥
𝑢
𝑥
𝑑𝑥.

(51)

Similarly, the following inequality holds

𝑑

𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡)

󵄩
󵄩
󵄩
󵄩𝐿
2𝑛 ≤ (2

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡)

󵄩
󵄩
󵄩
󵄩𝐿
∞ + 𝜆)

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡)

󵄩
󵄩
󵄩
󵄩𝐿
2𝑛

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢) (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2𝑛
,

(52)

and therefore as before, we obtain

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡)

󵄩
󵄩
󵄩
󵄩𝐿
2𝑛 ≤ 𝑐𝑒

2𝑀𝑡
(
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(0)

󵄩
󵄩
󵄩
󵄩𝐿
2𝑛 + ∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2𝑛
𝑑𝜏) .

(53)

Taking the limits in (53), we obtain

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡)

󵄩
󵄩
󵄩
󵄩𝐿
∞ ≤ 𝑐𝑒

2𝑀𝑡
(
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(0)

󵄩
󵄩
󵄩
󵄩𝐿
∞ + ∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
𝑑𝜏) .

(54)

Next, we will introduce the weight function to get our
desired result. This function 𝜑

𝑁
(𝑥) with 𝑁 ∈ Z+ is

independent of 𝑡 as the following:

𝜑
𝑁

(𝑥) =

{
{

{
{

{

1, 𝑥 ≤ 1,

𝑥
𝜃/𝛼

, 𝑥 ∈ (1,𝑁) ,

𝑁
𝜃/𝛼

, 𝑥 ≥ 𝑁.

(55)

From (6) and (49), we get the following two equations:

𝜑
𝑁
𝑢
𝑡
+ 𝜑
𝑁
𝑢𝑢
𝑥
+ 𝜑
𝑁
𝑐
0
𝑢
𝑥
+ 𝜑
𝑁
𝜕
𝑥
𝐺 ∗ 𝐹 (𝑢) + 𝜆𝜑

𝑁
𝑢 = 0,

𝜑
𝑁
𝑢
𝑥𝑡

+ 𝜑
𝑁
𝑢𝑢
𝑥𝑥

+ 𝜑
𝑁
𝑐
0
𝑢
𝑥𝑥

+ 𝜑
𝑁
𝑢
2

𝑥

+ 𝜑
𝑁
𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢) + 𝜆𝜑

𝑁
𝑢
𝑥
= 0.

(56)

Weneed some tricks to deal with the following term as in [18]:

∫

R

(𝜑
𝑁
)
2𝑛−1

𝑢
2𝑛−1

𝜑
𝑁
𝑢
𝑥
𝑑𝑥

= ∫

R

(𝜑
𝑁
𝑢)
2𝑛−1

[(𝑢𝜑
𝑁
)
𝑥
− 𝑢(𝜑

𝑁
)
𝑥
] 𝑑𝑥

= ∫

R

(𝜑
𝑁
𝑢)
2𝑛−1

𝑑 (𝜑
𝑁
𝑢) − ∫

R

(𝜑
𝑁
𝑢)
2𝑛−1

𝑢(𝜑
𝑁
)
𝑥
𝑑𝑥

≤ ∫

R

(𝜑
𝑁
𝑢)
2𝑛

𝑑𝑥,

(57)

where we have used the fact 0 ≤ 𝜑
󸀠

𝑁
(𝑥) ≤ 𝜑

𝑁
(𝑥),

a.e. 𝑥 ∈ R. Similar technique is used for the term
∫
R
(𝜑
𝑁
)
2𝑛−1

𝑢
2𝑛−1

𝑥
𝜑
𝑁
𝑢
𝑥𝑥

𝑑𝑥. Hence, as in the weightless case,
we get the following inequality in view of (48) and (54) as
follows:
󵄩
󵄩
󵄩
󵄩
𝑢 (𝑡) 𝜑

𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡) 𝜑
𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞

≤ 𝑐𝑒
2𝑀𝑡

(
󵄩
󵄩
󵄩
󵄩
𝑢 (0) 𝜑

𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(0) 𝜑
𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞) + 𝑐𝑒

2𝑀𝑡

× (∫

𝑡

0

(
󵄩
󵄩
󵄩
󵄩
𝜑
𝑁
𝜕
𝑥
𝐺 ∗ 𝐹 (𝑢)

󵄩
󵄩
󵄩
󵄩𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
𝑁
𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
) 𝑑𝜏) .

(58)

On the other hand, a simple calculation shows that there
exists 𝐶 > 0, depending only on 𝛼 and 𝜃 such that for any
𝑁 ∈ Z+,

𝜑
𝑁

(𝑥) ∫

R

𝑒
−|𝑥−𝑦|/𝛼 1

𝜑
𝑁

(𝑦)

𝑑𝑦 ≤ 𝐶. (59)
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Therefore, for any appropriate function 𝑔, one obtains that
󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
𝑁
𝜕
𝑥
𝐺 ∗ 𝑔

2
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

2𝛼

𝜑
𝑁

(𝑥) ∫

R

𝑒
−|𝑥−𝑦|/𝛼

𝑔
2
(𝑦) 𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

2𝛼

𝜑
𝑁

(𝑥) ∫

R

𝑒
−|𝑥−𝑦|/𝛼 1

𝜑
𝑁

(𝑦)

𝜑
𝑁

(𝑦) 𝑔 (𝑦) 𝑔 (𝑦) 𝑑𝑦

≤

1

2𝛼

(𝜑
𝑁

(𝑥) ∫

R

𝑒
−|𝑥−𝑦|/𝛼 1

𝜑
𝑁

(𝑦)

𝑑𝑦)
󵄩
󵄩
󵄩
󵄩
𝑔𝜑
𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞

󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩𝐿
∞

≤

𝐶

𝛼

󵄩
󵄩
󵄩
󵄩
𝑔𝜑
𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞

󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩𝐿
∞ ,

(60)

and similarly, |𝜑
𝑁
𝜕
2

𝑥
𝐺∗𝑔
2
(𝑥)| ≤ (𝐶/𝛼)‖𝑔𝜑

𝑁
‖
𝐿
∞‖𝑔‖
𝐿
∞ . Using

the same method, we can estimate the following two terms
󵄨
󵄨
󵄨
󵄨
𝜑
𝑁
𝐺 ∗ 𝑔 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤

𝐶

𝛼

󵄩
󵄩
󵄩
󵄩
𝑔𝜑
𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞ ,

󵄨
󵄨
󵄨
󵄨
𝜑
𝑁
𝜕
𝑥
𝐺 ∗ 𝑔 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤

𝐶

𝛼

󵄩
󵄩
󵄩
󵄩
𝑔𝜑
𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞ .

(61)

Therefore, it follows that there exists a constant
𝐶
1
(𝑀, 𝑇, 𝛼, 𝜆) > 0 such that
󵄩
󵄩
󵄩
󵄩
𝑢 (𝑡) 𝜑

𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡) 𝜑
𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞

≤ 𝐶
1
(
󵄩
󵄩
󵄩
󵄩
𝑢 (0) 𝜑

𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(0) 𝜑
𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞)

+ 𝐶
1
∫

𝑡

0

((‖𝑢 (𝜏)‖
𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝜏)

󵄩
󵄩
󵄩
󵄩𝐿
∞)

⋅ (
󵄩
󵄩
󵄩
󵄩
𝜑
𝑁
𝑢 (𝜏)

󵄩
󵄩
󵄩
󵄩𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
𝜑
𝑁
𝑢
𝑥
(𝜏)

󵄩
󵄩
󵄩
󵄩𝐿
∞)) 𝑑𝜏

≤ 𝐶
1
(
󵄩
󵄩
󵄩
󵄩
𝑢 (0) 𝜑

𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(0) 𝜑
𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞

+∫

𝑡

0

(
󵄩
󵄩
󵄩
󵄩
𝜑
𝑁
𝑢 (𝜏)

󵄩
󵄩
󵄩
󵄩𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
𝜑
𝑁
𝑢
𝑥
(𝜏)

󵄩
󵄩
󵄩
󵄩𝐿
∞) 𝑑𝜏) .

(62)

Hence, the following inequality is obtained for any 𝑁 ∈ Z+

and any 𝑡 ∈ [0, 𝑇]:
󵄩
󵄩
󵄩
󵄩
𝑢 (𝑡) 𝜑

𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(𝑡) 𝜑
𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞

≤ 𝐶
1
(
󵄩
󵄩
󵄩
󵄩
𝑢 (0) 𝜑

𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(0) 𝜑
𝑁

󵄩
󵄩
󵄩
󵄩𝐿
∞)

≤ 𝐶
1
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 (0)max (1, 𝑥

𝜃/𝛼
)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(0)max (1, 𝑥

𝜃/𝛼
)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
) .

(63)

Finally, taking the limit as 𝑁 goes to infinity in the above
inequality, we can find that for any 𝑡 ∈ [0, 𝑇],

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑥, 𝑡) 𝑥

𝜃/𝛼󵄨󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑥
(𝑥, 𝑡) 𝑥

𝜃/𝛼󵄨󵄨
󵄨
󵄨
󵄨
)

≤ 𝐶
1
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 (0)max (1, 𝑥

𝜃/𝛼
)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥
(0)max (1, 𝑥

𝜃/𝛼
)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
) ,

(64)

which completes the proof of Theorem 6.

5. Asymptotic Description

The following result is to give a detailed description on the
corresponding strong solution 𝑢(𝑥, 𝑡) in its lifespan with
𝑢
0
(𝑥) being compactly supported.

Theorem 7. Assume that the initial datum 0 ̸≡ 𝑢
0
(𝑥) ∈

𝐻
𝑠 with 𝑠 > 5/2 is compactly supported in [𝑎, 𝑐], then the

corresponding solution 𝑢(𝑥, 𝑡) ∈ 𝐶([0, 𝑇);𝐻
𝑠
) to (6) has the

following property: for any 𝑡 ∈ (0, 𝑇),

𝑢 (𝑥, 𝑡) = 𝐿 (𝑡) 𝑒
−𝑥/𝛼 as 𝑥 > 𝑞 (𝑐, 𝑡) ,

𝑢 (𝑥, 𝑡) = 𝑙 (𝑡) 𝑒
𝑥/𝛼 as 𝑥 < 𝑞 (𝑎, 𝑡) ,

(65)

where 𝑞(𝑥, 𝑡) is defined by (24) and 𝑇 is its lifespan. Further-
more, 𝐿(𝑡) and 𝑙(𝑡) denote continuous nonvanishing functions,
with 𝐿(𝑡) > 0 and 𝑙(𝑡) < 0 for 𝑡 ∈ (0, 𝑇). Moreover, 𝐿(𝑡) is a
strictly increasing function, while 𝑙(𝑡) is strictly decreasing.

Remark 8. This is an interesting phenomenon for our model;
it implies that the strong solution does not have compact 𝑥-
support for any 𝑡 > 0 in its lifespan anymore, although the
corresponding 𝑢

0
(𝑥) is compactly supported. No matter that

the initial profile 𝑢
0
(𝑥) is (nomatter it is positive or negative),

for any 𝑡 > 0 in its lifespan, the nontrivial solution 𝑢(𝑥; 𝑡)

is always positive at infinity and negative at negative infinity.
Moreover, we found that the dissipative coefficient does not
affect this behavior.

Proof. First, since 𝑢
0
(𝑥) has a compact support, so does

𝑦
0
(𝑥) = (1 − 𝛼

2
𝜕
2

𝑥
)𝑢
0
(𝑥). Equation (30) tells us that 𝑦 =

(1 − 𝛼
2
𝜕
2

𝑥
)𝑢(𝑥, 𝑡) = ((1 − 𝛼

2
𝜕
2

𝑥
)𝑢
0
(𝑞
−1

(𝑥, 𝑡)) exp(−𝜆𝑡))/

(𝜕
𝑥
𝑞
−1

((𝑥, 𝑡), 𝑡))
2 is compactly supported in [𝑞(𝑎, 𝑡), 𝑞(𝑐, 𝑡)] in

its lifespan. Hence, the following functions are well defined

𝐸 (𝑡) = ∫

R

𝑒
𝜉/𝛼

𝑦 (𝜉, 𝑡) 𝑑𝜉, 𝐹 (𝑡) = ∫

R

𝑒
−𝜉/𝛼

𝑦 (𝜉, 𝑡) 𝑑𝜉,

(66)

with

𝐸 (0) = ∫

R

𝑒
𝜉/𝛼

𝑦
0
(𝜉) 𝑑𝜉

= ∫

R

𝑒
𝜉/𝛼

𝑢
0
(𝜉) 𝑑𝜉 − 𝛼

2
∫

R

𝑒
𝜉/𝛼

𝑢
0𝑥𝑥

(𝜉) 𝑑𝜉 = 0.

(67)

And 𝐹(0) = 0 by integration by parts.
Then, for 𝑥 > 𝑞(𝑐, 𝑡), we have

𝑢 (𝑥, 𝑡) =

1

2𝛼

𝑒
−|𝑥|/𝛼

∗ 𝑦 (𝑥, 𝑡)

=

1

2𝛼

𝑒
−𝑥/𝛼

∫

𝑞(𝑐,𝑡)

𝑞(𝑎,𝑡)

𝑒
𝜉/𝛼

𝑦 (𝜉, 𝑡) 𝑑𝜉 =

1

2𝛼

𝑒
−𝑥/𝛼

𝐸 (𝑡) ,

(68)

where (66) is used.
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Similarly, when 𝑥 < 𝑞(𝑎, 𝑡), we get

𝑢 (𝑥, 𝑡) =

1

2𝛼

𝑒
−|𝑥|/𝛼

∗ 𝑦 (𝑥, 𝑡)

=

1

2𝛼

𝑒
𝑥/𝛼

∫

𝑞(𝑐,𝑡)

𝑞(𝑎,𝑡)

𝑒
−𝜉/𝛼

𝑦 (𝜉, 𝑡) 𝑑𝜉 =

1

2𝛼

𝑒
𝑥/𝛼

𝐹 (𝑡) .

(69)

Because 𝑦(𝑥, 𝑡) has a compact support in 𝑥 in the interval
[𝑞(𝑎, 𝑡), 𝑞(𝑐, 𝑡)] for any 𝑡 ∈ [0, 𝑇], we get 𝑦(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) −

𝛼
2
𝑢
𝑥𝑥

(𝑥, 𝑡) = 0, for 𝑥 > 𝑞(𝑐, 𝑡) or 𝑥 < 𝑞(𝑎, 𝑡). Hence, as
consequences of (68) and (69), we have

𝑢 (𝑥, 𝑡) = − 𝛼𝑢
𝑥
(𝑥, 𝑡) = 𝛼

2
𝑢
𝑥𝑥

(𝑥, 𝑡)

=

1

2𝛼

𝑒
−𝑥/𝛼

𝐸 (𝑡) , as 𝑥 > 𝑞 (𝑐, 𝑡) ,

𝑢 (𝑥, 𝑡) = 𝛼𝑢
𝑥
(𝑥, 𝑡) = 𝛼

2
𝑢
𝑥𝑥

(𝑥, 𝑡)

=

1

2𝛼

𝑒
𝑥/𝛼

𝐹 (𝑡) , as 𝑥 < 𝑞 (𝑎, 𝑡) .

(70)

On the other hand,

𝑑𝐸 (𝑡)

𝑑𝑡

= ∫

R

𝑒
𝜉/𝛼

𝑦
𝑡
(𝜉, 𝑡) 𝑑𝑥. (71)

Substituting the identity (10) into 𝑑𝐸(𝑡)/𝑑𝑡, we obtain

𝑑𝐸 (𝑡)

𝑑𝑡

= −∫

R

𝑒
𝜉/𝛼

[(𝑦𝑢)
𝑥
+

1

2

(𝑢
2
− 𝛼
2
𝑢
2

𝑥
)
𝑥
+ 𝑐
0
𝑦
𝑥
+ 𝜆𝑦] 𝑑𝜉

=

1

𝛼

∫

R

𝑒
𝜉/𝛼

𝑦𝑢 𝑑𝜉 +

1

2𝛼

∫

R

𝑒
𝜉/𝛼

(𝑢
2
− 𝛼
2
𝑢
2

𝑥
) 𝑑𝜉

+

𝑐
0

𝛼

∫

R

𝑒
𝜉/𝛼

𝑦𝑑𝜉 + 𝛼
2
∫

R

𝑒
𝜉/𝛼

𝜆𝑢
𝑥𝑥

𝑑𝜉

− ∫

R

𝑒
𝜉/𝛼

𝜆𝑢 𝑑𝜉 =

3

2𝛼

∫

R

𝑒
𝜉/𝛼

𝑢
2
𝑑𝜉 +

𝛼

2

∫

R

𝑒
𝜉/𝛼

𝑢
2

𝑥
𝑑𝜉

+ ∫

R

𝑒
𝜉/𝛼

𝑢𝑢
𝑥
𝑑𝜉 = ∫

R

𝑒
𝜉/𝛼

(

1

𝛼

𝑢
2
+

𝛼

2

𝑢
2

𝑥
)𝑑𝜉 > 0,

(72)

where we used (70).Therefore, in the lifespan of the solution,
we have that 𝐸(𝑡) is an increasing function with 𝐸(0) = 0;
thus, it follows that 𝐸(𝑡) > 0 for 𝑡 ∈ (0, 𝑇]; that is,

𝐸 (𝑡) = ∫

𝑡

0

∫

R

𝑒
𝜉/𝛼

(

1

𝛼

𝑢
2
+

𝛼

2

𝑢
2

𝑥
) (𝜉, 𝜏) 𝑑𝜉 𝑑𝜏 > 0. (73)

By similar argument, one can verify that the following
identity for 𝐹(𝑡) is true:

𝐹 (𝑡) = −∫

𝑡

0

∫

R

𝑒
−𝜉/𝛼

(

1

𝛼

𝑢
2
+

𝛼

2

𝑢
2

𝑥
) (𝜉, 𝜏) 𝑑𝜉 𝑑𝜏 < 0. (74)

In order to finish the proof, it is sufficient to let 𝐿(𝑡) =

(1/2𝛼)𝐸(𝑡), and to let 𝑙(𝑡) = (1/2𝛼)𝐹(𝑡), respectively.
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