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This paper considers the M/M/N repairable queuing system. The customers’ arrival is a Poisson process. The servers are subject
to breakdown according to Poisson processes with different rates in idle time and busy time, respectively. The breakdown servers
are repaired by repairmen, and the repair time is an exponential distribution. Using probability generating function and transform
method, we obtain the steady-state probabilities of the system states, the steady-state availability of the servers, and the mean

queueing length of the model.

1. Introduction

In queuing researches, many researchers have studied the
queuing system with repairable servers. Most of the works
of the repairable queuing system deal with the single-server
models [1-9]. The works about multiserver repairable sys-
tems is not sufficient. Mitrany and Avi-Itzhak [10] analyzed
the model with N units of servers and the same amount
of repairmen, they obtained the steady-state mean queuing
length of customers. Neuts and Lucantoni [11] studied the
model with N units of repairable servers and ¢ (0 < ¢ <
N) repairmen by matrix analysis method and obtained the
steady-state properties of the model.

In recent years, many flexible policies have been intro-
duced to the repairable systems. Gray et al. [5] studied the
model with a single server which may take a vacation in idle
times and may breakdown in busy times; they obtained the
mean queue length. Altman and Yechiali [12] presented a
comprehensive analysis of the M/M/1 and M/G/1 queues,
as well as of the M/M/c queue with server vacations; they
obtained various closed-form results for the probability
generating function (PGF) of the number of the customers.
Zhang and Hou [6] analyzed an M/G/1 queue with working
vacations and vacation interruptions; they obtained the
queue length distribution and steady-state service status
probability. Yang et al. [7] analyzed an M/G/1 queuing system

with second optional service, server breakdowns, and general
startup times under (N, p)-policy, they obtained the explicit
closed-form expression of the joint optimum threshold val-
ues of (N, p) at the minimum cost. Chang et al. [8] studied
the optimal management problem of a finite capacity M/H2/1
queuing system, where the unreliable server operates F-
policy, a cost model is developed to determine the optimal
capacity K, the optimal threshold F, the optimal setup rate,
and the optimal repair rate at a minimum cost. Wang [9] used
a quasi-birth-and-death (QBD) modeling approach to model
queuing-inventory systems with a single removable server,
performance measures are obtained by using both hybrid and
standard procedures; an optimal control policy is proposed
and verified through numerical studies.

The most works of repairable queuing system assumed
that the server breakdown rate is constant, but the breakdown
rate of a server may be variable in a real system. It is well
known that many kinds of machine are easy to breakdown
at their busy times, and some equipments may be easy
to fail after a long idle period. For example, the tires of
the truck prefer to breakdown when the truck is running
on the road. On the other hand, the storage battery in
an automobile may not work if the automobile is idle for
long period. For the actual demands of the above cases,
we study a multiserver repairable queuing system in this
paper, and assume that the unreliable servers have different



breakdown rates in their busy times and idle times, respec-
tively.

The rest of this paper is organized as follows. Section
2 describes the model and gives the balance equations.
Section 3 presents the equations of PGE. The steady-state
availability of the system is derived in Section 4. The steady-
state probabilities of the system states and mean queuing
length are obtained in Section 5. Case analysis is given in
Section 6. Section 7 presents the conclusions.

2. Model Description

The model characteristics are as follows.

(1) There are N units of identical servers in the system.
The servers are subject to breakdown according to
Poisson processes with different rates which are &, in
idle times and &, in busy times, respectively.

(2) Customers arrive according to a Poisson process with
rate A. The service discipline is first come first served
(FCES). The service which is interrupted by a server
breakdown will become the first one of the queue
of customers. The service time distribution is an
exponential distribution with parameter y.

(3) There are ¢ (1 < ¢ < N) reliable repairmen to
maintain the unreliable servers. The repair disci-
pline is first come first repaired (FCFR). The repair
time distribution is an exponential distributions with
parameter #. A server is as good as a new one after
repair.

We define

X(t) = the number of available servers in the system
at the moment ¢ (0 < X(t) < N),

Y (t) = the number of customers in the system at the
moment ¢ (0 < Y(¢)).

The stochastic process {X(¢),Y(t),t > 0} is a two-dimen-
sional Markov process which is called quasi-birth-and-death
(QBD) process [11] with state space {(i, /), 0 <i < N, j > 0}.

Let P; ;(t) denote the probability that the system is in a
state of (i, j) at the moment ¢, and P; ; denote the steady-state
probability of P; ;(f), then we have

lim P, (t), i=0,1,2...,N, j=0,1,2,...,

ij= t—oo
0, other.

(1)

Assuming that the system is positive recurrent, the balance
equations are as follows:

(A+cn) Py = &Py,
(A+cn) Py;=APy; ; +&P; j>0,
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(A+en+i&) Py =cnP;_y o+ pPiy + (i + 1) &Py, 05
0<i<N-¢ j=0,
P;; [A+en+ ju+(i=j)& +j&] = AP +cnPiy
+(+ D) Py + [(i+1-7) &+ j&] Piyy js
0<i<N-¢ 0<j<i
Py i[A+cn+ip+ik,]
= AP, j y +cnPiyj+iuP; i + (&) + &) Py js
0<i<N-g¢ j=4i
Py [A+cn+ip+ik,]
= AP i+ cnPiyj+ipP; . + (i + 1) § Py
0<i<N-g¢ j>i,
Pio[A+(N-i)n+i&]
=(N—i+1)nP;_ 1o+ puP;; + i+ 1) Py,
N-c<i<N, j=0,
P;; A+ (N =) n+ju+(i-j)& +j&]
= (N =i+ )yPiy;+AP; i+ (j+1)uP;
+[(+1-7)& + j&] Piiyjs
N-c<i<N, 0<j<i
P [A+ (N —i)n+ip+id,]
=AP;j + (N —i+1)nP_y;+ipP;j,
+(El+jEZ)Pi+l,j’ N-c<i<N, j=i
P [A+ (N =i)n+ip+id,]
= )uP,-,J-_1 +(N—-i+ 1);7P,-_1,j +ipP;
+(i+1)£2P1-+1)j, N-c<i<N, j>i,
Pyo(A+N&)=nPy_g+pPyy, i=N, j=0,
Py, A+ ju+ (N =j)& +j&,]
= APy i1 +1PN_1j + (j+ 1)MPN,]'+1’
i=N, 0<j<N,
Py j(A+Nu+N&) = APy +1Py 1+ NuPy i

i=N, j=N.
()
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Here, we give the derivation of the second equation of
(2). Since the process {X(t),Y(t),t > 0} is a vector Markov
process of continuous time, we write the equations of the state
of (0, j) by considering the transitions occurring between the
moments ¢ and t + At (At > 0) as follows:

Py (t+At) = Py (1) AAt + Py ; () §,At

3)
+Po; (1) [1 = (A +cn) At] + o (A1),

then we have

PO,J- (t+ At) — PO,]. )
=Py () AAE+ Py (D) EAL (4)
=Py (1) (A +cn) At +0(At),
Py ; (t + At) = Py ; (1)
At

=Py, ()A+P ()&,

A
=Py () (A+en) + %.

(5)

Letting At — 01in (5), we have

PO,j(t), =Py (HOA+Py; (1) & - Py ; () (A+cen). (6)

If the system is positive recurrent, we have the formulas
limtéOOPO’j(t) = 0 [13]. Letting t — 0 in (6), we obtain
the second equation of (2). The derivations of other formulas
in (2) are similar.

3. Equations of Probability
Generating Functions

The PGFs of the number of customers are defined as follows:

00 N
G;(2) = ZZJPi,j’ G(z) = ZGi (2),
=0 i=0 (7)
0<i<N, |z] < 1.

Then

G,(1)=)P,; (i=0,12,.,N), (8)
j=0

where G;(1) is the steady-state probability that the number of
the available servers of the system is i. Hence,

N
2Gi(1) =1 )
i=0

Multiplying the two sides of every equation of (2) by z/*',
and summing over j (j =0,1,2,...) for every i, we obtain

z(A=Az +cn) Gy (2) - 28,G, (2) =z (&, - &,) Py s
- cnzG;_y (2) + [z (ip+i& + A +cn) - Az” - iy] G, (z)

- (i+1)2§,G, (2)

—

i—

= (52 - El) (i-m) Pi,mzerl
0

3
I

+ z (& -&) (i +1-m) Py, 2"
m=0

i-1
+(z-1) Z‘u(i—m)P,»,mzm, 0<i<N-g,

m=0
- (N-i+1)nzG;_; (2)
+{z[ip+i&, + A+ (N - i)n] - Az* - ip} G, (2)

—(i+1)28,Gy, (2)

—

i—

(fz - 51) (i-m) Pi,mzmH

0

3
I

+ Z (E1-&) i+ 1-m) Py, 2"
m=0

i—1
+(z=1) Y p(i-m)P,,z", N-c<i<N,

m=0

-nzGy_, (2) + [z (Np+NE, + 1) - A2” - Ny] Gy (2)

N-1
= Z (8 =&) (N -m) PN,mZm+1
m=0

N-1
+(z-1) Z u (N —m) Py, 2"
m=0

(10)

We give some explanations of (10), the first equation of
(2) multiplied by z, we get

(A+cen) Pyoz =& Pz (11)
The second equation of (2) multiplied b 21 we get
q P y 8
(A+cn) P(,)]-szrl = /\PO)]-_lszrl + EzPl,jzj”, j>0. (12)

Summing (11) and (12) over j and using (7), we obtain
the first equation of (10). The other equations of (10) are
obtained in the same way.



In order to simplify (10), we defined the following
notations:
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fi@) = [ip+i& + A+ (N-in]z-Az" —iy,
i=N-c+1, N-c+2,...,N,

fi(z)z(i‘u+if;2+)t+cr])z—/\z2—iy, (13)
i=01,2,...,N —gc,
rfo(2) &2 -
-cnz  f, ('z) —25.22
—cﬁz fN._H1 (2) —(N-c+2)¢&,z
A(z) = (c-1)nz Freers () —(N-c+3)éz , (14)
-2nz fy., (2) -N&z
L -nz  fy(2)d
by (2) =z (& — &) Py, 4. Steady-State Availability
v mt1 In this section, we discuss the steady-state availabilities
bi(2)= ) (& -8)i-m)P,,z G,(1) (i=0,1,2,...,N).
=0 Letting z = 1 in (10) we obtain
+ Z (& -&)+1-m Py, ,2"" Gy (1) = §,G; (1) = (§, = &) Py o,
m=0
i-1 cnG;_ (1) - iEzGi (1) - [C’7Gi H-G+1) £2Gi+1 (1)]
+(z-1) Y uli-m)P,,z", 0<i<N,
m=0 i i+l
N -&) Z MP;;_ — (&1 - &) Z MP; 1 iv1-m
m=1 m=1
by (2) = Z —&) (N =m) Py,2""
- 0<i<N-g
N-1
+(z=1) Y (N -m)Py,z", [N = (i - )] 4G,y (1) - i&,G; (1)
m=0
by (2) G, (2) —[(N=)nG; (1) = (i + 1) &Gy, (1)]
b(z) = by :(Z) , g(z) = Glz(z) ; i+l
by (2) Gy (2) =(§-&,) ZmPi,i—m -(-%) ZmPiJrl,Hl—m’
(15) m=1 m=1
Using the above notations, (10) is rewritten as follows: N-c<i<N,
_ - N
A@GE)=b(). (16) NGy (1) = NEGy (1) = (£ &) Y mPy
m=1
Using Cramer’s rule we obtain (18)
A (2)| G, (=) = i=0,1,2,...,N, 17) The (N +1) equations of (18) are simplified to N independent

where | A(z)| denotes the determinant of A(z), and A;(z) isa
matrix obtained by replacing the (i+1)th column of A(z) with
b(z). In (17), the functions of z are continuous and bounded
in the interval [0, 1], so the equations in (17) are valid in the
interval [0, 1] no matter |A(z)| = 0 or not.

equations, joined with (9), we have

canG; (1) — i+ 1) &G, (1)

i+1
= -&) Zmpi+1,i+1—m’ 0<i<N-g

m=1
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(N -i)nG; (1) - (i + 1) §,G;; (1)
i+1

= (&, -&) Y MPiyjiom N-c<i<N-1,
m=1

N
YG()=1

i=0
(19)
Using (2), P;; (0 < j < i-1,1 < i < N) are reduced to

P,y (1 < i < N) which will be solved in Section 5. Given
P,y (1 < i < N), we obtain G;(1) (i = 0,1,2,...,N) by

5. Steady-State Probabilities of the System States
and Mean Queuing Length

5.1. The Roots of |A(z)| in the Interval (0,1). In order to get

the steady-state probabilities P;, (1 < i < N), we need all N

independent linear equations. Further, for getting the linear

equations of P;, (1 < i < N) we need the roots of |A(z)| in

the interval (0, 1), so we discuss the roots of | A(z)| as follows.
We define the following notations:

solving (19), then the steady-state availability of the system Qy(2) =1, Q,(2) = fy(2), 1)
is as follows:
A=1-Gy(1). (20)
_ fna (@ -N&,z
(2) = - fu .(z) ,
f1 (2) —2fzz
—cnz f,(z) 38z
Qu (2) = —chz Fneen (@) —(N-c+2)&,2
: (C_ 1)1’]Z fN—c+2 (Z) _(N—C+3)fzz 4
—2nz fN71 (2) —NEZZ
—hz fN (2)
Qni1 () =|A(2)], (0<z<00), (23)  Proof. Suppose that (b) is not true and z, (> 0) is a common

where Q;(z) (i = 1,2, ..., N) is formed by the last i rows and
last i columns of |A(z)|. According to (14) we have

Q1 (2) = far @) Qi (2) = (N =k + 1) Ekn2° Qi (2),

1<k<c-1,

Q1 (2) = far @ Qe (2) = (N =k + 1) &,en2°Qiy (2),

c<k<N.
(24)

The properties of Q;(z) (i = 1,2,...,N) and the necessary
proofs are as follows.

(a) Qy(2) has no roots.

(b) Qi(z) and Q,,(z) have no common roots in the
interval (0,00) (k= 1,2,...,N).

roots of Qu(z) and Qy,,(z), then Q,_,(z,) = 0 due to (24).
Similarly, Q;_,(z,) = 0, so we get Qy(z,) = 0 which con-
tradicts the statement (a). O

(c) If z, is a positive root of Qi (z) (k = 1,2,...,N),
then Q,_,(z,) and Q. (z,) are opposite in sign. This
property readily follows from (24).

(d) Qu(1)>0,k=0,1,2,...,N.

Proof. Substituting z = 1 into Q.(z), we get Qi (1) = (N —
k+1)(N-k+2)--(N-1)N& >0,k =1,2,...,N, and
Qy(1) = 1. O

(e) Quy1(1) =[A(M)] = 0, and Qp,,(0) = [A(0)] = 0.

Proof. The first row of |A(z)| has a common factor z, so
Qn41(0) = |A(0)| = 0. The sum of every column of |A(z)|
has a common factor (z — 1). Replacing every element of the
last row of | A(z)| with the sum of the corresponding column
and extracting the common factor (z — 1), | A(z)| is written as
follows:
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Aten—-2Az =&, 0 0 0
—-cnz filz) 28z - 0 0
A(2)| =z (z-1) x 0 o fa@ 0 0 (25)
0 0 0 - faa®@ -N§yz
-Az “Az+yp —Az+2u -+ -Az+(N-1)pu -Az+ Ny
If we define
Ad+en—Az =&, 0 0 0
—-cnz fil® 28z - 0 0
p=| ° T L 0 o (26)
0 0 0 - fy,@ -N&,z
-Az “Az+u —Az+2pu -+ -Az+(N-1)pu —-Az+ Ny
then Since |A(1)] = 0 and D(1) = (JA(z)]),., > 0, it has a real
number & (>0) satisfies 1 + & < zy; 5y, and [A(1 +¢)| > 0. On
|A(z)|=2z(z-1)D(2). (27)  the other hand, from (c) and (d) we get
O

(f) Sign[Q.(0)] = (-1 (k=0,1,2,...,N).

Proof. From the definitions of f,(z) (i = 0,1,2,...,N), we
got f,(0) = 0and f,(0) < 0(k = 1,2,...,N), so we get this
property from (24). O

(g) Sign[Qy(+00)] = (-1)* (k=0,1,2,...,N +1).

Proof. It is since the highest power term of Qu(z) is
(-1 (k = 0,1,2,...,N + 1) and the sign of Q;(+00) is
determined by its highest power term. O

Theorem 1. If D(1) > 0, the polynomial |A(z)| has exactly
(N - 1) distinct roots in the interval (0, 1).

Proof. Since Q,(z) = fy(2) = [N(u+ &) + Az - A2 -
Nu, Q,(z) is a 2-power polynomial of z. Further, we find that
Q;(1) =&, > 0and Q,(0) = —u < 0,50 Q, (z) has two distinct
roots which are denoted by z, ; (0 <z, <1)andz,, (>1).

With the fact that z; ; and z,, are roots of Q,(z), and
Qy(z) =1 > 0, according to the property (c) or (24), we get
Q,(z1,1) < 0and Q,(z;,) < 0.

Q,(z) is a 4-power polynomial of z. From the properties
(c), (d), (f), and (g), we find that Q,(z) has one and only
one root in each interval of (0,z, ), (2, 1), (1,2;,), and
(2,5, +00).

So on, we find that Qy/(z) is a 2N-power polynomial of
z, it has N distinct roots in the interval (0, 1) and N distinct
roots in the interval (1, o). We denote the 2N roots of Qx(z)
byzy,; (i=1,2,...,2N) orderly.

From the properties (c), (d), (e), and (f), we find
that |A(z)| has one and only one root in each interval
(zni2znis) (= L,2,...,N=1LN+1,...,2N - 1), all of
them are 2(N — 1) distinct roots of | A(z)|.

i=N+1,N+2,...,2N,
(28)

Sign [Qn (2n,)] = N,

then Sign[Qu.; (Znne)] = DN or [Alzy )l =

Qni1(znni1) < 0, 50 |A(z)| has at least one root in the
interval (1, zy N4 1)-

From (28), we get Sign[|A(zy,n)ll =
Sign[Quy(znon)] = DYV = ()N = (DN
From the property (g), we get Sign[|A(+0c0)] =
Sign[Qy, (+00)] = (-DN*'. So we know that |A(z)]
has at least one root in the interval (zy; 55, 00).

From the properties (e) and (f), we know that 0 and 1 are
roots of |A(z)|.

In conclusion, |A(z)| is a 2(N + 1)-power polynomial of
z,it has 2(IN + 1) distinct roots at most. Now we make certain
all roots of |A(z)| and find that it has N — 1 distinct roots in
the interval (0, 1). O

From the proof, we find that the (N — 1) distinct roots in
the interval (0, 1) of | A(z)| are also the roots of D(z).

5.2. Steady-State Probabilities. Assuming that the system
parameters meet D(1) > 0. Letting z; (k = 1,2,...,N - 1)
denote the roots of | A(z)| in the interval (0, 1). Substituting z,
in (17), we obtain a set of linear equations about the steady-
state probabilities of P; (i = 1,2, ..., N), but these equations
are similar to each other. However, the equations belong to
different z; (k = 1,2,...,N — 1) are independent mutually,
so we obtain (N — 1) independent equations by the (N — 1)
different roots of z;, respectively.

In the following, we discuss about the Nth-independent
linear equation of P;, (i = 1,2,...,N). Similar to (27),
|A;(2)] is written as follows:

|4 (2)| = z(z - 1) D; (2),

i=0,1,2,...,N, (29)



Discrete Dynamics in Nature and Society

where
D; (z)
c+A(l-z) =& - (§1-&) Pig 0
—cnz frilz - b(2) 0
0 -z bz(z) 0
= 0 0 . by (2) -N¢&,z
-z -Az + u o Z Z mﬂpzt m? - Az N‘u
= Wét-o-ll)th column
(30)

Substituting (27) and (29) into (17), we obtain

D(z)G;(z)=D;(z), i=0,1,2,...,N. (31)

Substituting z = 1 in (31), we obtain

D(1)G;(1)=D;(1), i=0,12,...,N. (32)
From (19), we know that G;(1) (i = 0,1,2,...,N) can be
expressedby P;, (i = 1,2, ..., N),so0(32) arelinear equations
of P,y (i = 1,2,...,N), but they are similar to each other.
However, every equation of (32) is independent with the
(N — 1) linear equations obtained by the roots of |A;(z)| in
the interval (0, 1). Then all independent linear equations of

P;y (i=1,2,...,N) are as follows:
|Ag (z¢)| =0, k=1,2,...,N-1,
(33)
D(1)Gy (1) = Dy (1).
Further, from (29), (33) is equivalent to the follows:
Dy(z¢) =0, k=12,...,N-1,
(34)
D(1)Gy (1) = Dy (1).

The steady-state probabilities of P;, (i = 0,1,2,...,N)
are obtained by solving (34). Using P;, (i = 0,1,2,...,N)
and (2), we obtain the other steady-state probabilities of
P (i=0,1,2...,N,j=12,..).

5.3. Mean Queuing Length. After getting the probabilities
P, (0 < j<i-11 < i £ N)in (19) we obtain
G;(1) i = 0,1,2,...,N) by solving (19) and obtain the
steady-state availability (A) of the model by (20).

From (31), we obtain

G;(2) = , D(z)#0, |z|<1,i=0,1,2,...,N.

(35)

The PGF of G(z) is obtained by (7). Using the property of
PGF [13] we obtain the steady-state mean queuing length is
as follows:

dG(z)

L= .
dz z=1

(36)

6. Case Analysis

We analyze the case of N = 2 and ¢ = 1 in this section.
According to the above discussion, the determinant | A(z)| (or
D(z)) of this case has only one root z; in the interval (0, 1).
The notations of this case are as follows:

fo(z)z(/\+11)z—)tz2,
fl(z):(y+£2+/\+;1)z—)tzz—y,

fr(2) = (2u+2¢, +)L)z—/\z2 - 24,

by (2) = (&1 = &) P1ozs
by(2) = (p+& - &) Pz
2
+Zm -&) p22m —le,o
-1
=uP1y(z = 1) +2 (8§ - &) (Py1z +2P, — Pyy),
2
Zm ut+& &) Pz "
m=1
2
= Y muPyy 2",
m=1
foe) =&z 0
AlR)=| —nz fi(2) 25,2z,
0 -nz  f,(2)
|A (2)]
=z(z-1)
A+n—-Az =&, 0
x| -z (u+&E+A+n)z-AL-p 28z |,
-Az -Az +u -Az +2u
D(z)
A+y—Az =&, 0
=| -z (ur&HAen)z-AZ-pu -2,z
-Az -Az + -Az +2u

=—(n+A-zA)(zA-2u) [-p+z(n+A—zA+p)]
+2z&, [zA (-2 - 31 + 3z)A)

+2 (= 2z +20) u - 22A%,],
(37)
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then
n o & 0 (A+n+&+u) Py,
D) =|-n n+& =25 = AP o+ 1Py + P, + (§,+ &) Py, i=1, j=1,
A Adp A+ 2u (38) 10+ 1Poy + Py + (8 +85) Py J
(A+7l+£2+#)pl,j
=2u(&n+n7) = A (283 + 26m +177), o
= APy + NP+ uPy o + 252P2,j, i=1,j>1,
and D(1) > 0 is equivalent to . .
) X , (A+28,) Pyg=4Pyg+ Py, i=2, j=0,
2u(Eon+m”) = A (28, +28m+1") > 0 (39)
( ) ( ) (A+& +8+u) Py = APy + 4Py +2uPy 5,
o i=2,j=1,
A 25n+2f 2 +
Z< 262’7 1 - = 1/ G 1) 5. (40) (A+2u+28,) Py j = APy g + 1Py j+2uP, j,,
Hoo285+285n+n 1+ (&/ (& +1))
i=2, j>2.
The left of (40) is the mean service quantities that all (42)
customers need per unit time. The right of (40) is the mean
service guantltles that the two se.rvers provde per unit time. Using (42), we obtain
So (40) is the necessary and sufficient condition of recurrence
of the system. 28, +A) Py —nP
Equations (19) in this case are as follows: 21 = (28, +4) Mz,o 1 Lo (43)
NGo (1) = £.G1 (1) = (8 = &) Pro, Using (41) and (43), G, (1), G,(1), and G, (1) are expressed in
an algebraic expressions of P ; and P, .
nG, (1) - 28,G, (1) = Z m (& = &) Pyyms 1) If (40) is satisfied, we obtain z; by solving
41
, D(z)=0 (44)
%Gi 1) =1 Equations (34) in this case are as follows:
i=
Equations (2) in this case are as follows: Dy (z1) = 0, (45)
. . D(1)G,(1) = D, (1).
(A+n)Pog=§ Py i=0, j=0, ’ 0
_ - . Solving (45), we obtain P, , and P
A+n)Py:=APy. i +&P, ., i=0, j>0, 8 1,0 2,0°
(A+7) 0. 0.1 & L ! J Using (42), we obtain P; ; (z =0,1,2,j=12,...).
(A+5+&) P =nPyy+ Py + 28 Py, B Using (20) and (41), we obtam the steady-state avallablhty
i=1,j=0, For the mean queuing lengths, we have
(&1 -8&) Pio =& 0
Dy (z) = b,(z) (u+&E+A+n)z-A22—u  =2&, |,
p(Py 2z + 2P0+ P ) “Az+p Az +2u
A+n-2Az (& -&) Py 0
D, (2) = -nz b,(z) =2&, |, (46)
-Az p(Py iz +2P, 0+ Py) Az +2u
A+n-Az =&, (&1 -&) Py
D, (z) = -nz (y+§2+)t+;1)z—)»z2—y b, (z) ,
-Az -Az+u p(Py 2z + 2P, 5+ Ppy)
G(z) = Dy (2) + D, (2) + D, (Z)_ (47)  Using (36), we obtain the mean queuing lengths L is as

D(z)

follows:
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TABLE 1: The availability A and mean queuing length L (N =2,c=1,and A = 1).
u £ =0,¢=05andy=12 £ =03, ¢ =05andn=1 & =05,¢ =05and n=1
L A L A L A
1.1 3.0797 0.8951 4.6956 0.8209 4.8505 0.8
1.2 2.3810 0.9058 3.5018 0.8266 3.6549 0.8
1.3 1.9425 0.9147 2.8136 0.8315 2.9650 0.8
1.4 1.6411 0.9224 2.3641 0.8354 2.5138 0.8
1.5 1.4207 0.9290 2.0464 0.8383 2.1947 0.8
1.6 1.2524 0.9348 1.8095 0.8429 1.9563 0.8
1.7 1.1195 0.9399 1.6256 0.8458 1.7710 0.8
1.8 1.0119 0.9443 1.4784 0.8484 1.6225 0.8
u £ =05,¢ =05 andy=0.8 £ =05 ¢ =1Landy=15 & =1,¢§=08and n=15
L A L A L A
1.1 9.4410 0.7423 9.9094 0.7412 5.0503 0.7734
1.2 6.1455 0.7423 5.7928 0.7509 3.7017 0.7700
1.3 4.6345 0.7423 4.1374 0.7608 2.9584 0.7671
1.4 3.7636 0.7423 3.2405 0.7687 2.4853 0.7646
1.5 3.1952 0.7423 2.6761 0.7756 2.1565 0.7623
1.6 2.7937 0.7423 2.2873 0.7817 1.9140 0.7603
1.7 2.4944 0.7423 2.0025 0.7872 1.7273 0.7585
1.8 2.2389 0.7423 1.7846 0.7920 1.5788 0.7569
L= dG(z) The roots of D(z) = 0 are as follows:
dZ z=1
I z; = 0.349123, z, = 1.84513,
= 2 z; = 446896,  z, = 8.33679, (50)
[M? = 2p? + 28, (nA = np + 28] ’ !
s {=[n(=2nA + 227 + 2nu — 5Apu + 24°
{ [}7 ( 1 Ca st ) and only z; in the interval (0, 1).
1E, (—417)L 1307 4+ 20— A — 4/\52)] Solving (45), we obtain
P,,=0.151375, P,, =02 4.
<[ (7 + 26m + 26,8) P, 1o = 0.151375 20 = 0.29797 (51)
2 Using (42) we obtain
+#(’7 +18, +1é, +251fz) (2P2,0+Pz,1)] g(42)
Py, =0.037844, P,, =0.146599. (52)
+ [~ A+ 20’ = 28, (nA - nu + AE,)] 00 2!
Solving (41), we obtain
2 b
X [ (17 —2nA + 2np - 208, + 281
G, (1) = 0.280333, G, (1) = 0.35602,
—AEy +2u8) +28,5,) Py ’ 1 (53)

+ (’72 +n&y +né + 25152)})2,1
+ (112 —2nA + nu +né, - 2AE, + 5k,

-AE) +28,8) (2P2,0 + P2,1) ]}
(48)

Numerical Example. Letting N = 2,¢ = 1, A = 1,& = 0.5,
&, =1,n=1,and y = 2, we have

Lot G o

2 L+ (&/ (8 + ’I))z.

= >

G, (1) = 0.363647.

Finally, the availability and mean queuing lengths of this
example are as follows:

A=0719667, L =6.04039. (54)

The other numerical results are shown in Table 1. All the
system parameters in Table 1 satisfy (40).

We find that the mean queuing length (L) decreases with
the increasing of the parameter y in Table 1, it is because
of the greater service rate the less customers in the system.
Furthermore, we find that the availability (A) increases with
the increasing of the parameter p, where &, < &, (the cases:
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E = 0,& =05 & = 03,6 = 05 & = 05% = 1); on
the contrary, the availability decreases with the increasing of
the parameter p, where &, > &, (the case: &, = 1,&, = 0.8);
otherwise, the availability is constant, where &, = &, (the case:
£, =058 =0.5).

7. Conclusions

In Section 5.1, the inequality D(1) > 0 of Theorem 1
is the necessary and sufficient condition for the system to
be positive recurrent, and a probability explanation of this
condition is given by (40).

We find that the idle time breakdown rate &; does not
appear in (40). This is because the busy time breakdown rate
&, is at work when the number of the customers is greater
than or equal to the number of the available servers, and
the criteria of positive recurrence depends on the busy time
breakdown rate.

A case analysis is given to illustrate the analysis of this
paper, and the numerical results indicate that the variation
of breakdown rates has a significant effect on the steady-state
availability and steady-state queue length of the system.
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