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By applying Mawhin’s continuation theorem of coincidence degree theory and some skills of inequalities, we establish the existence
of four positive solutions for two species parasitical system with impulsive effects and harvesting terms. Finally, an example is given

to illustrate the effectiveness of our results.

1. Introduction

In recent years, the existence of periodic solutions in biolog-
ical models has been widely studied. Models with harvesting
terms are often considered. Generally, the model with har-
vesting terms is described as follows:

Xy = x,f (x1,%,) = h, Xy = %9 (xpx) k(D)

where x,; and x, are functions of two species, respectively;
h and k are harvesting terms standing for the harvests (see
[1, 2]). Because of the effect of changing environment such
as the weather, season, and food, the number of species
population periodically varies with the time. The rate of
change usually is not a constant. Motivated by this, we
consider the periodic nonautonomous population models.
For example, two species parasitical system with harvesting
terms is as follows [3]:

k= x () (ay () = by (1) x (1) = hy (1),

y=y®) () =b, () y () +c®)x (1) = hy (1),

where x(t) and y(t) denote the densities of the host and the
parasites, respectively; a;(t), b(t), c(t), and h;(t) (i = 1,2)
are all positive continuous functions and denote the intrinsic
growth rate, death rate, obtaining nutriment rate from the
host, and harvesting rate, respectively. In the model (2), the
parasitical influence on its host is negligible. As we know,
in population dynamics, many evolutionary processes expe-
rience short-time rapid chance after undergoing relatively

long sooth variation. Examples include stocking of species
and annual immigration. Incorporating these phenomena
gives us impulsive differential equations. For the theory of
impulsive differential equations, we refer the reader to [4, 5].

However, to the best of our knowledge, there are few
results on the existence of multiple periodic solutions for the
delay parasitical with impulsive effects in the literatures. This
motivates us to consider the existence of multiple periodic
solutions for following parasitical with impulsive effects and
harvesting terms nonautonomous model:

) =x0)(a () -b ) x; (t—1, 1))

—h (D), t#t
Xy (1) = x5 (1) (ay () = by (£) %, (t — 155 (1)) (3)
te()x, (t—1y (1) - hy (£), t+ t;,
Ax; (ty) = x; (t]) = x; () = gaexi (), £ =t
where g; € (-1L,+00)(i = 1,23 k € N = {1,2}).

{ti}ren 1s a strictly increasing sequence with t; > 0 and
lim, , t;, = 0o. x;(t) (i = 1,2) is the ith species population
density. a;(t) > 0(i = 1,2) denotes the intrinsic growth
rate; b(t) > 0 and h;(t) > 0(i = 1,2) stand for death rate,
obtaining nutriment rate from the host, and harvesting rate,
respectively. ¢(t) > 0 represents obtaining nutriment rate
from the host; 7,; (£) > 0 stands for the time-lag in the process
of transformation from the 1th species to the 2th species.



7,;(t) = 0(i = 1,2) represents the time-lag in the process of
intraspecific competition.

In addition, the effects of a periodically varying environ-
ment are important for evolutionary theory as the selective
forces on systems in a fluctuating environment differ from
those in a stable environment. Therefore, the assumptions
of periodicity of the parameters are a way of incorporating
the periodicity of the environment (e.g, seasonal effects of
weather, food supplies, mating habits, etc.), which leads us
to assume that g;(t), b(t), c(t), 7;(t), 7,,(t), and h;(t) (i =
1,2) are all continuous w-periodic functions. For impulsive
effects, we further assume that there exists a g € N such that
gi(k+q) = ik (l =1, 2) and tk+q = tk + .

Since a very basic and important problem in the study of a
population growth model with a periodic environment is the
global existence and stability of a positive periodic solution,
which plays a similar role as a globally stable equilibrium does
in an autonomous model, also, on the existence of positive
periodic solutions to system (3), few results are found in the
literatures. This motivates us to investigate the existence of
a positive periodic or multiple positive periodic solutions
for system (3). In fact, it is more likely for some biological
species to take on multiple periodic change regulations and
have multiple local stable periodic phenomena. Therefore,
it is essential for us to investigate the existence of multiple
positive periodic solutions for population models. Our main
aim of this paper is by using Mawhin’s continuation theorem
of coincidence degree theory to establish the existence of
four positive periodic solutions for system (3). For the work
concerning the multiple existence of periodic solutions of
periodic population models which was done using coinci-
dence degree theory, we refer the reader to [6-8].

This paper is organized as follows. In Section 2, by using
the continuation theorem of coincidence degree theory and
the skills of inequalities, we establish the existence of at least
four positive periodic solutions of system (3). An example is
presented in the last section to illustrate the effectiveness of
our results.

2. Existence of at Least Four Positive
Periodic Solutions

We first summarize a few concepts from the book by Gaines
and Mawhin [9].

Let X and Z be real normed vector spaces. Let L
DomL ¢ X — Zbealinear mappingand N : X x [0, 1] —
Z a continuous mapping. The mapping L will be called a
Fredholm mapping of index zero if dim Ker L = codimIm L <
00, and Im L is closed in Z. If L is a Fredholm mapping of
index zero, then there exist continuous projectors P : X —
Xand Q : Z — ZsuchthatImP = KerL and KerQ =
ImL=Im(I-Q),and X =KerL® KerP, Z=ImL® ImQ.
It follows that Ll ragerp @ (I — P)X — Im L is invertible,
and its inverse is denoted by K. If  is a bounded open subset
of X, the mapping N is called L-compact on Q x [0, 1], and
if QN(Q x [0, 1]) is bounded, Kp(I - Q)N : Q@ x [0,1] — X
is compact. Because Im Q is isomorphic to Ker L, there exists
an isomorphism J : ImQ — Ker L.
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Lemmal (see [9]). Let L be a Fredholm mapping of index zero,
and let N be L-compact on Q x [0, 1]. Assume

(a) for each A € (0, 1), every solution x of Lx = AN(x, A)
is such that x ¢ 02 N Dom L;

(b) QN(x,0)x # 0 for each x € 0Q N Ker L;
(c) deg(JQN(x,0), 2N Ker L,0)#0.

Then Lx = N(x, 1) has at least one solution in O N Dom L.

Let T be a given positive constant, and a finite number
of points of the sequence {r;} lies in the interval [0,T]. Let
PC([0,T],R™) be the set of functions x : [0,T] — R”
which are piecewise continuous in [0, T] and have points of
discontinuous 7, € [0, T], where they are continuous from
the left. In the set PC([0, T], R") introduce the norm | x| =
sup [x(¢)| : t € [0,T] with which PC([0,T], R") becomes a
Banach space with the uniform convergence topology.

Definition 2. The set & < PC([0,T],R") is said to be
quasiequicontinuous in [0, T], if for any € > 0, there exists
6 > Osuchthatifx € #F; k € Z; t,t, € (1,_1, ] N[0, T] and
[t, —t,] < 6, then |x(t;) — x(t,)| < e.

The following result called compactness criterion gives a
necessary and sufficient condition for relative compactness in
PC([0,T],R").

Lemma 3 (see [4]). The set ¥ ¢ PC([0,T], R") is relatively
compact if and only if

(a) & is bounded, namely, x| < ¢, for each x € & and
somec > 0;

(b) F is quasiequicontinuous in [0, T1].

For the sake of convenience, we denote 7 = (1/w)
j:) f(t)dt; here f(t) is a continuous w-periodic function. Let
PC,, denote the space of w-periodic functions y : R — R
which are continuous for t # t;, are continuous from the left
for t € R, and have possible discontinuities of the first kind
at points t = t;; that is, the limit from the right of ¢, exists
but may be different from the value at t,. We also denote
PC. = {y € PC, : ¥ € PC,}. Obviously, y is continuous
ify € PC..

For simplicity, we need to introduce some notations as
follows:

1 q
9i = EZln(l + gik) s
k=1

ki 0 (1 + g0 + In (1 + )]

1
Gi:_
2

a;,w+G;

pi=e >

+ (@, +2g,/w) p + \/[(51 +2g;/w) Pl]2 - 451E1P1
1 —_ — bl
2b,
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+ _ 2
I = <<c1;+a2+%>p2
—7+ 29, T 7\t
+ [(cll+a2+7>p2] - 4b,h,p, (sz) ,

At = (@ +2g,/w) + \/(ai +2g/w)’ - 4bhp,
a 2b ’

(4)

wherei = 1,2.
Throughout this paper, we need the following assump-
tions:

(T) @; +2g;/w)p;"* > 2[bh; (i = 1,2);
(Ty) pp> 13 =1,2).
The following results will play an important role in the

proof of our main result.

Lemma 4 (see [5]). Suppose y € PC}U, then
0< sup w(s)— inf y(s)
se[0,w]

se[0,w]
1 w , q (5)
<3 [L |1// (S)'d5+;;1 |A1p(tk)|] :

Lemma5. Letx >0, y >0, z > 0, and x > 2+/yz; for the
functions f(x,y,z) = (x + \[x* —4yz)/2z and g(x, y,z) =

(x — \/x? — 4yz)/2z, the following assertions hold.

(1) f(x,y,2) and g(x, y,z) are monotonically increasing
and monotonically decreasing on the variable x €
(0, 00), respectively.

(2) f(x,y,2) and g(x, y, z) are monotonically decreasing
and monotonically increasing on the variable y ¢
(0, 00), respectively.

(3) f(x,y,z) and g(x, y, z) are monotonically decreasing
and monotonically increasing on the variable z €
(0, 00), respectively.

Proof. In fact, forallx > 0, y > 0, and z > 0, we have

x+x%—4yz
AR A SN
0X  pz\|x*—dyz

9 X2 —4yz —x

<0,
PN
% = _—1 < 0
ay x? - 4yz

og 1

G- sy,
W\ -ayz

2
of —<x+ \/x? —4yz) o
0z 4z%4x? —4yz ’
2
3 (x— \/x2—4yz) .
0z 4z24|x? —4yz

(6)

By the relationship of the derivative and the monotonicity,
the above assertions obviously hold. The proof of Lemma 5
is complete. O

Lemma 6. Assume that (T,) and (T,) hold, then one has the
following inequalities:

1) lnli+ > lnA:.r >InA; >Inl; >InH; (i =1,2);
(2) Inlf >InBf >InB; >Inl; >InH,; (i = 1,2);
(3) min{ln A7, In B/} > max{ln A;,InB;} (i = 1,2).
Proof. Since
<51+@>p1 >51+@
w w

a, +2g,/w
! 91/

B > 2 I;lﬁl >0,
P1

- 29 — .29 ?)
I +2a, + —2> >a,+ 2=
(C eI L R

2g,/w+a
S 2plwta,

> 2\/b,h, > 0,
VP

b; >0, h; >0, i =1,2.

Applying Lemma 5, we have

L _ 2 - -
0<H, = P_ll <l :9<<a1+%>/’1xl’1>h1p1>
20, — —
< g(51 + i>b1>hl."1) =4,
w
20, — —
<A+1—:f<al+i’bl’h1pl)
w
_ 2 - =
<f(<al + %)Ppbphlﬁ) =17,

I, 2 _
0<H,=- VLF <L = g(<zz; ‘G, + %)pz,bz,h2p2>
2



2 _ - = _
< 9(% +“2’bz>thz) =A,
<at= (2% 1 a,6,0

2 w 292, P)

.2 o
< f((df 13, + %)pz,bz,h2p2> -
(8)

Thus, we have InH; < Inl; <InA; <InA} <Inl, i=
1,2. The proof of (1) of Lemma 6 is complete. For (2) of
Lemma 6, we similarly have

I i _ 2 - -
0<H = /711 <l = 9((‘11 + %)Pl’bhhlpl)

29, — —
< 9<51 + i>bl>h1,’31) =B,
w
_ 29 7 =~
<Bj =f<a1 + %’bphml)

— 2 77 +
< f((al + %)Ppbl)hlﬁ) =1,

L 29 - - ©)
0<H,=2 <[ = ((‘ —2) by h )
< H, P2<2 g\\a, + o P2, 02,50,

2 = h .
<g(<% +52)P2’b2)p_2) =B, <B,
2

29, —) -
= - :b > T
f(( w [%2)P2? >,

= 2 = =
<f<<d;r+a2+ %)Pz’bz’hz/b) =1,

which imply that InH; < Inl; <InB; <In B; <In l;r (i=
1,2); that is, the inequality (2) of Lemma 6 holds. Let us now
prove the inequality (3) of Lemma 6. In fact, since

max {ln A;,In B; }

_InA7+InB; +|InA; —InB|

2 (l = 1’ 2) b
(10)
min{In A}, In B/}
lnA:.r+lnBi++|lnA;r—lnB:r| .
- (i=1,2),
2
we have
min {ln A:f,lnB;r} — max {ln A;,lnB;}
=(InA} +InBf -InA; —InB; (1)
-|InA; -InB;|-|lnA] -InB;|) )"
IfAlf > Bi*, then A} < B}, and
min{ln A},In B/} - max{ln A;,In B; }
(12)

=InB; -InB; > 0.
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If Al < B, then A] > B;, and

min {ln A;r,lnB:'} — max {ln A, ln Bl_}
(13)
= lnA:.r -lnA; >0.

Hence, we drive minf{ln A7, In B/} > max{ln A}, In B; }. From
the above, we have completed the proof of Lemma 6. O

Theorem 7. Assume that (Ty) and (T,) hold. Then system (3)
has at least four positive w-periodic solutions.

Proof. By making the substitution

x; () =4, i=1,2 (14)

system (3) can be reformulated as

al (t) = al (t) - bl (t) eul(t*Tll(t))
~h e,
i, () = a, (t) — b, (1) 2720
(15)
+cC (t) eul(t—fn(t)) _ h2 (f) e—uz(t)) t+ tk,
w; (tg) —u; (t)

In(1+gy),

Au; (t;)

i:1,2, t:tk.

Let

X = {u = (ul,uz)T cu; € PCL, i= 1,2}, Z=XxR™",
(16)

and define
2

luly =) sup |w; (1), ueX,

i=1t€[0,w]

. (17)
lzlly = lullo + Y |&], 2= (816,....8,) € Z.
i
Then both (X, || - [l,) and (Z, || - ||,) are Banach spaces. Let

DomL={ueX:x€ X},L:DomL — Z,

L (u = (uy, uZ)T)

(GGEDE) w

N: X — Z,

N =((3E0)(ni ZQZD}Z)
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where

Fl (t, /\) =q (t) _ bl (t) em(t—‘m(t)) _ hl (t) e_ul(t))
F, (t,A) = a, () — b, () e

+ Ac (t) et (t-1 () _ h2 (t) e_uz(t))

P:X =X Q:Z-2Z
T — —\T
P(u = (uy,u,) ) =(u,u,), uek, 19)
o () A,
1 Mok /) k=1
_ 1y
(BERIT)
B 1 1\0)f,,
Uy + — ) my
Obviously,
T
KerL = {u=(u,u,) €X:
() (0),u, (1) () = (c1,,) € R, teR},
ImL
q
q wﬁl + Zmlk = O
()G ez &
u m
2 2k k=1 wﬁz n Zm2k -0
k=1
(20)

Since Im L is closed in Z, ImP = Ker L, KerQ = Im L, and
dim Ker L = 2 = codim Im L; we know that L is a Fredholm
mapping of index zero. Furthermore, the generalized inverse

(toL) Kp : ImL — Ker P()Dom L is given by

o (== () 1Ge)EL)

t 1 q 1 (@ t
L u, (s)ds + Z mlk—;;mlk—gj J u, (s)dsdt

<t <t 0 Jo
= t ’ 1 4 1 (et
d - — - = dsdt
L u, (s)ds + o%«mz’( wkglmzk w L L u, (s)ds
(21
Then
w 2
lj Fl(s,/\)ds+i 0\11
V(@A) =| | T 29 {(o>} ’
—J E, (s,A)ds + =22 k=1
w Jo w

5
Kp(I-QN 1)
t
J Fi(sM)ds+ ) In(1+gy)
_ 0 0<tp<t
= t
J F, (s,A)ds + z In(1+gy)
0 0<ty <t
<1 t) JO F, (s,A)ds +2g,
+{=-— o
2 w J E, (s,A)ds + 2g,
0
w rt
X J JFl(s,A)dsdt+2g1
- OOU Ot >
@ J JFZ(S,}t)dsdt+2g2
o Jo
(22)

where F;(s, A) (i = 1,2) are very similar to that of F;(¢,A) (i =
1,2). By the Lebesgue convergence theorem, QN and Kp(I —
Q)N are continuous. Moreover, because of periodicity, it
follows from Lemma 3 that QN(Q), Kp(I — Q)N(Q) are
relatively compact for any open bounded set QO < X. Thus,
N is L-compact on Q for any open bounded set Q ¢ X.

In order to use Lemma 1, we have to find at least four
appropriate open bounded subsets of X. Considering the
operator equation Lu = AN(u, 1), A € (0, 1), we have

ity (8) = A(a, (8) = by (1)) 1O _py (1)),
’;‘2 () = A (a/z (t) - b2 (t) eul(’_'rzz(t))

(23)
+Ae () e —py (1) e ),

Auj(t) =An(1+gy), j=1,2

Assume that u € X is a w-periodic solution of system (23) for
some A € (0, 1). Integrating (23) from 0 to w, we have

-2g, = Jo {“1 ) -b (1) e tm®) _ hy () e_”l(t)} dt,
-2g, = J {az (1) - b2 (t) euz(t—fzz(t))
0

+Ac () e —py (1) e dt
(24)

Then

w

L b, ) 4O 4y (1O} dt = 7,0 + 24,

w

J {bz (t) e”z(t—‘fzz(t)) - (d) eu1(f—‘fz1(t)) + h2 ) e—uz(f)} dt
0

=a,w +2g,.
(25)

Furthermore, note that u = (u;,1,)" € X. There exists £, 7; €

[0,w], i = 1,2, such that u;(§;) = sup,c(o., (1), w(n;) =

infte[o’w] ui(t).



On the one hand, according to the first equation of (23)
and (25), we have

L |ty ()| dt < 2a,0 + 2g,. (26)

In the light of the first equation of (25) and (26) and
Lemma 4, we get

wzleul(fl)_(ﬁl"-’*Gl) + wﬁle_ul(ﬁ)
< b E- 1D a1y o6
< wEle”I(m) + wﬁle_“l(fl)
w
< L by @O L py (1) O dr
=a,w+2g,,
(27)

namely,

by ) _ (ﬁl N %) 10 E) | Ty F9GL
w

(28)
which implies that
Inl; <u (&) <Inl}. (29)
Applying Lemma (23), we drive
InH, =Inl; - (@0 +G;) <u; (1) <uy (&) <Inl].
(30)
According to (23) and (25), we get
J i, (1)| dt < 2G,w + 2g,. (31)
0
By (25) and (31), we have
wgzeuz(fz)*(az“HGz) _ leIr + wzze*"lz(‘fz)
< wh, &)1/ [ iy (9)lds+ 32, 18w, (1))
— wel{ + wh,ye &)
< whye ™ — et + whye ) (32)

< Jw {b2 () et ()
0

~Ac (t) e“l(t*"'m(t)) + h2 (t) e*“z(t)} dt
=a,w +2g,,
that is,

_ 2 _ o
bzezuz(gz) - (El;r +a, + ﬁ) 2G| hzeaz“’J’G2 <0,
w

(33)
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which implies that
Inl; <u, (&) <Inl;. (34)
Applying Lemma 4, we drive

InH, =Inl, - (@,w+G,) <u,(n) <u, (&) <Inl;.
(35)

On the other hand, in the light of the first equation of (25)
and (26), we have

a,w+2g,
- L {b, (#) D) 4y (1) e O dr

< Elweul(sl) + Elweﬂ“(”l)

uy (&) ~uy G/l (9)lds+ ZL 1Auy (5)1]

< bywe + hywe

1 (§1)

—u(§)+a 0+ G,
b

< bywe + hywe

(36)

namely,
_ 2 T oa
bleZul(El) _ <51 + i) eul(gl) + hleﬂlw+G1 > 0, (37)
w

which implies that

InAY <u; (&) or u(§)<nAj,

a,w+2g;
- J by ®) e O 4 (1) e O} d
0

<w (Eleul(gl) + zle_ul('“))

cw (51 e )+ i (st EL 18y (1) B e—ulwn)

< I;lweul(m)ﬁ‘mc‘ + Elwe_”‘(”‘)
(38)

that is,

Elezul(”h) _ (al + %) e*(EN‘HGl)e“l(’h) + Ele*(alf‘HGl) >0,
w

(39)
which implies that

InB} <u, () or u (n)<InB. (40)
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By (25) and (31), we have
29, < a,w +2g,
w
_ J [y (1) €=
0

“Ae () e oy (1) e} dt

u, (&) ~u,(17,)

< bywe + hywe

(&) )AL Ny (lds+ X 18uy (8]

< bywe + hywe

(&)

—1,(§,)+a,w+G,
bl

< bywe + hywe

(41)

namely,
7, p22(&5) = zgz (&) | 7 GwtG,
b,e —la,+—)e + h,e >0, (42)
w

which implies that

A <u, (&) or u,(§)<InAy,

2g, < a,w+2g,

w

— J {bz (t) e”z(t—Tzz(l‘))

0

“Ac(t) et | h, () e—uz(t)} dt

< Ezweu2(£2) + Ezweﬁ“(’h)
< Ezweuz(nm(l/z)[fow lip (st T 1w El] )
< EzweMZ(”2)+52“’+Gz + ﬁzwe—uz(nz)’
(43)

that is,

b et _ (@ N a2> ¢ B ) | Ty @wiG)
w

(44)

which implies that
InB; <u,(,) or u,(n,)<InB,. (45)

In view of (30)-(45) and Lemma 6, we have
min{ln A}, InB]} < u; (n,) < u; (&) < Inl], o)
min {ln A}, In By} < u, (11,) < u, (§,) < Inl;
or

InH, <uy (1) <uy (&) <max{lnA},InB}, )

InH, <u, (1,) <u, (§,) <max{lnA3,InB.},

7
which imply that, for all t € R,
min {ln A}, InB]} < u; (t) < Inl] or
InH; <u, (f) <max{lnA},InB},
(48)

min {In A},In By} < u, (t) < Inl; or
InH, <u,(t) <max{lnA,,InB,}.

Clearly, Inl}, Inl;, InA7, InA3, InBj, and InB; are
independent of A. Now let

Q, = {u = (upu,) € X:
min{ln A},In B/} < u, (t) < Inl],
min {lnA;,lnB;} <u,(t) < lnl;},
Q, = {u = (u,u,) €X:
min {ln A}, In B]} < u, (t)
InH, < u, (t) < max {ln A},In B, }},
Q, = {u = (upu,) € X: )
InH; <u (t) < max{lnA},InB|},
min {ln A},In By} < u, (t) < lnl;} ,
Q, = {u = (upu,) € X:
InH, <u (t) < max{lnA},InB},
InH, < u, (t) < max{lnA,,In B, } }

Obviously, the number of the above sets is four. We denote
these sets as (0, k = 1,2,3, and 4.  are bounded open
subsets of X, ;N Qj =¢, i#j. ThusQ; (k=1,2,3,and 4)
satisfies the requirement (a) in Lemma 1.

Now we show that (b) of Lemma 1 holds; that is, we prove
when u € 90, N Ker L = 90, N R*, QN(u,0) #(0,0,)", k =
1,2,3, and 4. If it is not true, then when u € 0Q; N Ker L =
00, NR%, i = 1,2,3,and 4, constant vector u = (14, u,)" with
u € 0y (k = 1,2, 3, and 4) satisfies

—2g, = JO {a, )= b, ("™ (1) e O

~2g, = J {a, () = by (1) €247 ®)
0

+ Ac(t) ey (e} dt,

(50)
that is,
2 _ _
zl =a, -be" —he™,
(51)
29



Similar to the process of (25)-(48), we obtain

InH; < u; < max {ln A, ln Bl_}
<min{lnA},InB} (52)

<u! <Inlf (1<i<2).

Then u belongs to one of O, N R, k = 1,2,3, and 4. This
contradicts the fact that u € 9Q;, NR?*, k = 1,2,3, and 4. This
proves that (b) in Lemma 1 holds.

Finally, in order to show that (c) in Lemmal holds,
we only prove that for u € 0Q, N KerL = 0Q, N
R%, k =1,2,3,and 4, then it holds that deg{JQN(u,0), Q. N
Ker L,(0,0)"} #0. To this end, we define the mapping ¢ :
DomL x [0,1] — X by

¢ (u,p) = pQN (1,0) + (1 - 1) G (), (53)
here p € [0, 1] is a parameter, and G(u) is defined by
G (u)
J (al (s) = b, (s) el hy (s) e_“l(s)) ds + 29

1
w Jo w
(@ - 2g, |’
- -b (s _ gy () g5 + 292

° J (a2 (s)-by(s)e ,(s)e ) s+ °

0

(54)

We show that for u € 0Q; NKer L = 0Q);, NR?, k=1,2,3,and
4, p € [0,1], then it holds that ¢(u, 1) # (0,0, )T. Otherwise,
parameter y and constant vector u = (u,,u,)" € R? satisfy
d(u, 1) = (0,0)", that is,

! _ 2
OZML <a1(s)_bl(5)eul—h1(5)eu1+ il>ds
+(1-u) Jw (ﬂ (s)=b (s)e" —hy(s)e ™ + zgl)ds
o \1 1 1 © ,
= : - o _ U 2g2
0=u . <612(s) b, (s)e" —h, (s)e ™ + > )ds

H1-w) [ (@@ - -h e+ e

w
(55)
that is,
— — 2
a, —be" —hje ™ = =9
w
5 (56)
a, - bye —h,e ™ = -9
w
Following the argument of (25)-(48), we obtain
InH; < u; <max{lnA;,InB;}
<min{lnA},InB} (57)

< u;r <lnli+ 1=12).
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Equation (57) gives that u belongs to one of O, N R?, k =
1,2, 3, and 4. This contradicts the fact that u € 9Q); NR?, k=
1,2, 3, and 4. This proves ¢(u, ) # (0, O)T holds. Note that the
system of algebraic equations,

— — 2
a, —be" —he =~ 9
w
5 (58)
a, - b, —hye” = Y
w
has four distinct solutions since () and (T,) hold:
(x> y1) = (Inx",Iny"),
(x3,55) = (Inx",Iny"),
* * — + (59)
(x3,y3) =(Inx",Iny"),
(x5 54) = (Inx",Iny"),
where
. a; +2gjwt \/(51 + 2g1/w)2 — 4b,h,
x = = ,
2b,
(60)

. Gy t2g/wx \/(52 +2g,/w)’ — 4b,h,
y* = — :
2,

Similar to the proof of Lemma 6, it is easy to verify that
InH, <Inx" <max{lnB],In A}

<min{ln A}, InB} <Inx" <Inl],

(61)
InH, <Iny < max {lnB;,lnA;}
<min{ln A}, InB} <Iny* <Inl;.
Therefore
() e (x5,05) €y
(62)

(x3.55) € Qs (x5> 1) €

uniquely belongs to the corresponding Q). Since KerL =
ImQ, we can take ] = I. A direct computation gives, for
k=1,2,3,and 4,

deg {JQN (1,0), N Ker L, (0,0)"}
~b,x* + h—i 0
= sign x z (63)

—_

= sign [(—Elx*z +h )(—Ezy*z +E2)] .

Since (a, +2g,/w) —b,x* —h,[x* =0, (@, +2g,/w) —byy* -
hy/y* =0.
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Hence,
deg {JQN (11,0), 0, NKer L, (0,0)"}
= sign {(_El(xf)z + El) (_Ez(ynz + Ez)} =1,
deg {JQN (u,0),Q, NKer L, (0,0)"}
= sign {(_El(x;)z + ﬁ1) (_Ez()’;)z + Ez)} =-1
deg {JQN (u,0),Q, NKer L, (0,0)"}
= sign {<_I;1(x;)2 + El) (_I;z()’;)z + Ez)} =1
deg {IQN (u,0),Q,NKerL, (0, O)T}
= sign {(—El(x;‘)z + ﬁl) (—Ez(yi)z + Ez)} =-1.
So far, we have proved that O, (k = 1,2, 3, and 4) satisfies
all the assumptions in Lemma 1. Hence, system (15) has at
least four different w-periodic solutions. Thus by Lemma 1,

system (3) has at least four different positive w-periodic
solutions. This completes the proof of Theorem 7. O

(64)

3. An Example

Example 8. Consider the following time-delay parasitical
system with impulsive effectiveness and harvesting terms:

X (1)
(t)<3+sint 2 +sint (t  |si t|)> 4+ cost
=x - x; (t — |sin -,
! 2 10e2% 1 20e2"
%, (£) = x, (t)
2 t 5 t
« < +tcost 5+ cos x, (t — |sin 2¢])
25 10e™
2 + sin 2t 2+ t
+—Sln x; (t —|cos 2t|)) _crcost R
8 25e™
T o 3n .
Axl(—>=e -1, Ax1<—>=e -1,
2 2
z 3
sz(z):e 2 -1, Ax2<—”) 2
2 2
(65)

In this case, a,(t) = (3 +sint)/2, b(t) = (2 + sin t)/10e7,

h,(t) = (4+cos £)/20€’r, 711 (t) = | sint|, ay(t) = (2+cost)/
25, by(t) = (5 + cost)/10, hy(t) = (2 + cost)/25€", c(t) =
(2+sin2t)/8, 1,,(t) = |cos2t|, and 7,,(t) = | sin 2¢|. It is not
difficult to calculate p; > e*” > 1, p, = e > 1. Since

+ (@, +2g,/w) p + \/[(51 +2g;/w) pl]2 - 4E1E1P1
L= —
2b,

(156" + 3v225¢57 — 16)

4, 6727‘[

9
L= < (€l +a, +2g,/w) p,
= 2 o7 7\
i\/[(dl +a, +2g,/w) py]” - 4bzh2P2) (2b,)
15" + V225¢% — 64
- 20e" ‘
(66)
Then
= 2 —
4t 2o/ T Zpom_y byhy,
v 25 s
(67)
2 a p—
20/0 + 3, = 26_7I > %e_" =21/b,h,
N 25 5

Therefore, all conditions of Theorem 7 are satisfied. By
Theorem 7, system (65) has at least four positive 27-periodic
solutions.
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