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We consider consensus problems of first-order multiagent systems with sampled information and noisy measurements. A
distributed stochastic approximation type algorithm is employed to attenuate the measurement noises. We provide conditions
under which almost sure strong consensus is guaranteed for fixed and switching directed network topologies. Simulation results
are provided to illustrate the theoretical results.

1. Introduction

In recent years, distributed coordination control of multia-
gent systems has received compelling attention from the con-
trol community. As a critical issue for coordination control,
consensusmeans that the group of agents reach an agreement
on a common value via local communication. Consensus
problems are closely related to many different problems
that involve interconnection of dynamic systems in various
fields of science and engineering, such as synchronization of
coupled oscillators, flocking theory, fast consensus in small
worlds, rendezvous in space, distributed sensor fusion in
sensor networks, and distributed formation control (see [1]).

Vicsek et al. [2] provided a variety of simulation results
which demonstrate that simple distributed algorithms allow
all nodes to eventually reach an agreement. The work in [3]
provided a theoretical explanation for the observed behavior
of the Vicsek model. Up to now, a variety of consensus pro-
tocols have been developed to deal with dynamic topologies
[4–6], time delays [7–9], finite-time convergence [10–12], and
random network topologies [13, 14], just to name a few.

In many applications envisioned, due to the application
of digital sensors and controllers, the information exchange
among the group of agents may only occur at sampling
instants. Thus, it is more practical to consider the consensus

problems with sampled-data information. Moreover, with
sampled-data control, many benefits can be achieved such
as flexibility, robustness, and low cost. Some results about
consensus problems for multi-agent systems via sampled-
data control have been reported [15–18]. On the other hand,
it was assumed that in most existing works each agent can
obtain the accurate information from its neighbors. Obvi-
ously, this assumption is impractical for real communication
channels since the information exchange is often corrupted
by various noises. Consensus seeking with noisy measure-
ments has attracted the attention of some researchers. Huang
and Manton [19] studied the consensus problem of discrete-
time multi-agent systems with fixed and undirected topol-
ogy under noisy measurements and proposed stochastic
approximation-type protocols with a decreasing step size.
Subsequently, they extended the results of [19] to the directed
topology case. Li and Zhang [20] investigated the average-
consensus problem of discrete-timemulti-agent systems with
time-varying topologies and noisy measurements. Different
from discrete-time systems in which the sampling period is
often assumed to be 1, the impact of the sampling period
has to be considered for sampled-data control systems. In
most existing results concerning consensus problems based
on sampled-data control, it is shown that the sampling period
must satisfy a certain condition to guarantee convergence. To
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the best of our knowledge, there are a few works considering
the consensus problems with sampled information and noisy
measurements. Li and Zhang [21] considered mean square
average-consensus problems ofmulti-agent systems based on
sampled-data control with noisy measurements and time-
invariant topology.Under the assumption that the interaction
topology is undirected and connected, it was shown that the
agents reach mean square average consensus if the sampling
period is sufficiently small.

In this paper, we are interested in the consensus problems
with sampled information and noisy measurements. That is,
we assume that each agent can only obtain the noisymeasure-
ments of its neighbors’ states at sampling instants. This paper
is partly motivated by [21]. This paper makes the following
contributions. First, for the case of fixed topology, only the
existence of a spanning tree is required in this paper, which
is much weaker than connected. Second, the case of time-
varying topology is investigated, and we prove that the agents
reach almost sure strong consensus provided each interaction
topology is balanced and contains a spanning tree. Third,
we prove that the convergence condition is independent of
the sampling period due to the introduction of the step size.
Nevertheless, it should be pointed out that both the step size
and the sampling period have an impact on the convergence
speed. Comparing with [20, 22], we study continuous-time
multi-agent systems with sampled information instead of
discrete-time systems. In addition, the method used in the
convergence analysis in this paper is different from it in the
aforementioned references.

The following notations will be used throughout this
paper. Let 𝐼 be an identitymatrixwith appropriate dimension,
and 1 be a column vector of all ones with appropriate
dimension. For a given matrix 𝐴, 𝐴𝑇 denotes its transpose;
‖𝐴‖ denotes its 2-norm; let 𝜆max(𝐴) and 𝜆min(𝐴) denote its
maximum and minimum eigenvalues, respectively. A matrix
𝐴 is said to be positive stable if all of its eigenvalues have
positive real parts. For a given random variable 𝜉, 𝐸[𝜉]

denotes its mathematical expectation.

2. Problem Formulation

2.1. Graph Theory. Consider a multi-agent system consisting
of 𝑛 agents labeled 1 through 𝑛. The interaction topology
among the 𝑛 agents can be described by a digraph G =

(V,E), where V = {1, . . . , 𝑛} is the set of nodes and E ⊆

V × V is the set of edges of the graph. An edge of G is
denoted by (𝑖, 𝑗), representing that agent 𝑗 can directly receive
information from agent 𝑖. The set of neighbors of node 𝑖 is
denoted by N

𝑖
= {𝑗 ∈ V | (𝑗, 𝑖) ∈ E}. A path in G is a

sequence 𝑖
0
, 𝑖
1
, . . . , 𝑖

𝑚
of distinct nodes such that (𝑖

𝑗−1
, 𝑖
𝑗
) ∈ E

for 𝑗 = 1, . . . , 𝑚. A directed graph G is strongly connected
if there is a path between any two distinct nodes. A graph
contains a spanning tree if there exists at least one node
having a directed path to all other nodes.

The weighted adjacency matrix of the digraph G is
denoted by 𝐴 = [𝑎

𝑖𝑗
] ∈ R𝑛×𝑛, where 𝑎

𝑖𝑗
> 0 if (𝑗, 𝑖) ∈ E and

𝑎
𝑖𝑗

= 0 otherwise. The in-degree of node 𝑖 is defined as
degin(𝑖) = ∑

𝑛

𝑗=1
𝑎
𝑖𝑗
and the out-degree is defined as degout(𝑖) =

∑
𝑛

𝑗=1
𝑎
𝑗𝑖
. Its degree matrix 𝐷 = diag{𝑑

1
, . . . , 𝑑

𝑛
} is a diagonal

matrix, whose diagonal elements 𝑑
𝑖
= degin(𝑖). G is called a

balanced digraph, if degin(𝑖) = degout(𝑖), 𝑖 = 1, 2, . . . , 𝑛. The
Laplacian matrix associated with the digraphG is defined as

𝐿G = 𝐷 − 𝐴. (1)

Below is an important property of Laplacian 𝐿G.

Lemma 1 (see [6]). Zero is an eigenvalue of 𝐿G, and 1 is
the associated right eigenvector. In addition, zero is a simple
eigenvalue of 𝐿G and all the other eigenvalues have positive real
parts if and only if the digraphG contains a spanning tree.

2.2. Consensus Protocols. Consider the following first-order
integrator system of 𝑛 agents:

𝑥̇
𝑖 (𝑡) = 𝑢

𝑖 (𝑡) , 𝑖 = 1, . . . , 𝑛, (2)

where 𝑥
𝑖
∈ R and 𝑢

𝑖
∈ R are the state and control input of

agent 𝑖, respectively.
In this paper, we assume that each agent can only obtain

noisy measurements of the states of its neighbors at sampling
instants. Denote the resulting measurement by agent 𝑖 of
𝑥
𝑗
(𝑘ℎ) by

𝑦
𝑖𝑗 (𝑘ℎ) = 𝑥

𝑗 (𝑘ℎ) + 𝑤
𝑖𝑗 (𝑘ℎ) , 𝑗 ∈ N

𝑖
,

𝑘 ∈ Z
+
= {0, 1, 2, . . .} ,

(3)

where ℎ is the sampling period and 𝑤
𝑖𝑗
(𝑘ℎ) is the addi-

tive noise. The underlying probability space is denoted by
(Ω,F, 𝑃).

Definition 2 (see [19]). The agents are said to reach almost
sure strong consensus if there exists a random variable 𝑥

∗

such that lim
𝑡→∞

𝑥
𝑖
(𝑡) = 𝑥

∗ almost surely (a.s.), for all 𝑖 ∈ V.

Remark 3. When there is no noisy measurements,
Definition 2 is equivalent to the definition of consensus
for deterministic systems.That is, the agents are said to reach
consensus if lim

𝑡→∞
(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)) = 0 for any 𝑖 ̸= 𝑗.

Our objective is to design a distributed protocol so that
the 𝑛 agents can reach almost sure strong consensus. For this
end, we study the following distributed protocol [21]:

𝑢
𝑖 (𝑡) = 𝑎 (𝑘) ∑

𝑗∈N𝑖(𝑘ℎ)

𝑎
𝑖𝑗
(𝑦
𝑖𝑗 (𝑘ℎ) − 𝑥

𝑖 (𝑘ℎ)) ,

∀𝑡 ∈ [𝑘ℎ, (𝑘 + 1) ℎ) , 𝑘 ∈ Z
+
, 𝑖 = 1, . . . , 𝑛,

(4)

where 𝑎(𝑘) > 0 is the step size. Here, the introduction of
the step size is to attenuate the noises, which is often used in
classical stochastic approximation theory [23]. We introduce
the following assumptions on the step size sequence:

(A1) ∑
∞

𝑘=0
𝑎(𝑘) = ∞, ∑

∞

𝑘=0
𝑎
2
(𝑘) < ∞,

(A1
󸀠
) ∑
∞

𝑘=0
𝑎(𝑘) = ∞, lim

𝑘→∞
𝑎(𝑘) = 0.

Remark 4. Assumption (A1󸀠) is weaker than assump-
tion (A1).The above assumptions imply that the impact of the
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noise can be attenuated as time goes on since 𝑎(𝑘) → 0 as
𝑘 → ∞. ∑∞

𝑘=0
𝑎(𝑘) = ∞ implies that 𝑎(𝑘) cannot decrease

too fast since, otherwise, the agents may prematurely con-
verge to different individual limits.

Write 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇. The discrete-time model with

zero-order hold of (2) is

𝑥
𝑖 ((𝑘 + 1) ℎ) = 𝑥

𝑖 (𝑘ℎ) + ℎ𝑢
𝑖 (𝑘ℎ) , 𝑘 ∈ Z

+
. (5)

With the protocol (4), (5) can be written in matrix form as

𝑥 ((𝑘 + 1) ℎ) = (𝐼 − 𝑎 (𝑘) ℎ𝐿G(𝑘ℎ)) 𝑥 (𝑘ℎ) + 𝑎 (𝑘) ℎ𝑤 (𝑘ℎ) ,

(6)

where 𝑤(𝑘ℎ) = (𝑤
1
(𝑘ℎ), . . . , 𝑤

𝑛
(𝑘ℎ))
𝑇 with 𝑤

𝑖
(𝑘ℎ) =

∑
𝑛

𝑗=1
𝑎
𝑖𝑗
𝑤
𝑖𝑗
(𝑘ℎ). Denote 𝑤(𝑘ℎ) = (𝑤

𝑇

1
(𝑘ℎ), . . . , 𝑤

𝑇

𝑛
(𝑘ℎ))
𝑇

∈

R𝑛
2

with 𝑤
𝑖
(𝑘ℎ) = (𝑤

𝑖1
(𝑘ℎ), . . . , 𝑤

𝑖𝑛
(𝑘ℎ))
𝑇

∈ R𝑛. We intro-
duce the following assumptions on the measurement noises.

(A2) {𝑤(𝑘ℎ) ∈ R𝑛
2

,F𝑤(𝑘ℎ)} is a martingale difference
sequence, sup

𝑘≥0
𝐸‖𝑤(𝑘ℎ)‖

2
< ∞, where and whereafter

F𝑤(𝑘ℎ) denotes the 𝜎-algebras 𝜎{𝑤(0), . . . , 𝑤(𝑘ℎ)} for 𝑘 ≥ 0.
Note that (A2) contains that {𝑤

𝑖𝑗
(𝑘ℎ), 𝑘 ∈ Z+, 𝑖, 𝑗 =

1, 2, . . . , 𝑛, (𝑗, 𝑖) ∈ E} are independent sequences with zero
mean and uniformly bounded second-order moments as a
special case.

3. Main Results

3.1. Fixed Topology. In this subsection, we consider the case
of fixed topology. We begin by studying the noise-free case;
that is, 𝑤

𝑖𝑗
= 0, 𝑖, 𝑗 = 1, . . . , 𝑛. Then protocol (4) becomes

𝑢
𝑖 (𝑡) = 𝑎 (𝑘)

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥
𝑗 (𝑘ℎ) − 𝑥

𝑖 (𝑘ℎ)) ,

∀𝑡 ∈ [𝑘ℎ, (𝑘 + 1) ℎ) , 𝑖 = 1, . . . , 𝑛,

(7)

and system (6) becomes

𝑥 ((𝑘 + 1) ℎ) = (𝐼 − 𝑎 (𝑘) ℎ𝐿) 𝑥 (𝑘ℎ) . (8)

Wemake the following assumption on the network topol-
ogy.

(A3) G has a spanning tree.

It is not easy to analyze the convergence of system (8)
directly since 𝐿 is not positive stable. To deal with this
problem, we need the following lemma.

Lemma 5 (see [22]). Assuming (A3), denote C(𝐿) = {𝜙 ∈

𝑅
𝑛×(𝑛−1)

| span{𝜙} = span{𝐿}}. For any given 𝑄
1
∈ C(𝐿), the

matrix 𝑄 = (1, 𝑄
1
) is nonsingular and

𝑄
−1
𝐿𝑄 = (

0

𝐻
) , (9)

where𝐻 ∈ R(𝑛−1)×(𝑛−1) is positive stable. In addition, let𝑄−1 =
(
𝑞
𝑇

𝑄2
), where 𝑞 ∈ R𝑛; then 𝑞

𝑇
𝐿 = 0 and 𝑞

𝑇1 = 1.

Following the notation in Lemma 5, let 𝛿(𝑘ℎ) =

(𝛿
1
(𝑘ℎ), . . . , 𝛿

𝑛
(𝑘ℎ))
𝑇

= 𝑄
−1
𝑥(𝑘ℎ). Then we can obtain the

following system associated with system (8):

𝛿 ((𝑘 + 1) ℎ) = (𝐼 − 𝑎 (𝑘) ℎ𝐻) 𝛿 (𝑘ℎ) , (10)

where 𝛿(𝑘ℎ) = (𝛿
2
(𝑘ℎ), . . . , 𝛿

𝑛
(𝑘ℎ))
𝑇. Furthermore, we have

the following relationship:

𝑥 (𝑘ℎ) = 𝛿
1 (𝑘ℎ) 1 + 𝑄

1
𝛿 (𝑘ℎ) , (11)

𝛿
1 ((𝑘 + 1) ℎ) = 𝛿

1 (𝑘ℎ) + 𝑎 (𝑘) ℎ𝑞
𝑇
𝑤 (𝑘ℎ) . (12)

Noticing that𝐻 is positive stable, by Lyapunov theorem [24],
there exists a positive definite matrix 𝑃 such that

𝑃𝐻 + 𝐻
𝑇
𝑃 = 𝐼. (13)

Before moving on, we need the following lemma.

Lemma 6 (see [25]). Let {𝑢(𝑘), 𝑘 = 0, 1, . . .}, {𝛼(𝑘), 𝑘 =

0, 1, . . .}, and {𝑞(𝑘), 𝑘 = 0, 1, . . .} be real sequence, satisfying
0 < 𝑞(𝑘) ≤ 1, 𝛼(𝑘) ≥ 0, 𝑘 = 0, 1, . . . , ∑

∞

𝑘=0
𝑞(𝑘) = ∞,

𝛼(𝑘)/𝑞(𝑘) → 0, 𝑘 → ∞, and

𝑢 (𝑘 + 1) ≤ (1 − 𝑞 (𝑘)) 𝑢 (𝑘) + 𝛼 (𝑘) . (14)

Then lim sup
𝑘→∞

𝑢(𝑘) ≤ 0. In particular, if 𝑢(𝑘) ≥ 0, 𝑘 =

0, 1, . . ., then 𝑢(𝑘) → 0 as 𝑘 → ∞.

Theorem 7. Apply protocol (7) to system (2). Assume that
(A1󸀠) and (A2) hold; then the 𝑛 agents reach consensus.

Proof. Take a Lyapunov function

𝑉 (𝑘) = 𝛿
𝑇
(𝑘ℎ) 𝑃𝛿 (𝑘ℎ) , (15)

where 𝑃 is defined in (13). Then,

𝑉 (𝑘 + 1) = 𝑉 (𝑘) − 𝑎 (𝑘) ℎ𝛿
𝑇
(𝑘ℎ) 𝛿 (𝑘ℎ)

+ 𝑎
2
(𝑘) ℎ
2
𝛿
𝑇
(𝑘ℎ)𝐻

𝑇
𝐻𝛿 (𝑘ℎ) .

(16)

Using the fact that

𝜆min (𝑃) 𝛿
𝑇
(𝑘ℎ) 𝛿 (𝑘ℎ) ≤ 𝛿

𝑇
(𝑘ℎ) 𝑃𝛿 (𝑘ℎ)

≤ 𝜆max (𝑃) 𝛿
𝑇
(𝑘ℎ) 𝛿 (𝑘ℎ) ,

(17)

it follows that

𝑉 (𝑘 + 1)

≤ [1 − 𝑎 (𝑘) ℎ
1

𝜆max (𝑃)
+ 𝑎
2
(𝑘) ℎ
2
𝜆max (𝐻

𝑇
𝐻)

𝜆min (𝑃)
]𝑉 (𝑘) .

(18)

By (A1󸀠), there exists a 𝑘
0

> 0 such that 𝑎(𝑘) ≤

𝜆min(𝑃)/2ℎ𝜆max(𝐻
𝑇
𝐻)𝜆max(𝑃) and 𝑎(𝑘) ≤ 𝜆min(𝑃)/ℎ for all

𝑘 ≥ 𝑘
0
. Thus,

𝑉 (𝑘 + 1) ≤ [1 −
1

2
𝑎 (𝑘) ℎ

1

𝜆max (𝑃)
]𝑉 (𝑘) , 𝑘 ≥ 𝑘

0
. (19)
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In light of Lemma 6, we have lim
𝑘→∞

𝑉(𝑘) = 0 by noting that
∑
∞

𝑘=0
𝑎(𝑘) = ∞. This implies lim

𝑘→∞
𝛿(𝑘ℎ) = 0. Therefore,

the conclusion readily follows from (11).

Now we investigate the case of having noisy measure-
ments. We can obtain the following system associated with
system (6):

𝛿 ((𝑘 + 1) ℎ) = (𝐼 − 𝑎 (𝑘) ℎ𝐻) 𝛿 (𝑘ℎ) + 𝑎 (𝑘) ℎ𝑄2𝑤 (𝑘ℎ) ,

(20)

where𝐻 and 𝑄
2
are defined in Lemma 5.

Theorem 8. Consider system (20). Assume that (A1)–(A3)
hold; then

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝛿 (𝑘ℎ)

󵄩󵄩󵄩󵄩󵄩

2

= 0 𝑎.𝑠. (21)

Proof. Choose a Lyapunov function

𝑉 (𝑘) = 𝛿
𝑇
(𝑘ℎ) 𝑃𝛿 (𝑘ℎ) , (22)

where 𝑃 is defined in (13). By a similar argument to that in
the proof of (18), we can obtain

𝑉 (𝑘 + 1)

≤ [1 − 𝑎 (𝑘) ℎ
1

𝜆max (𝑃)
+ 𝑎
2
(𝑘) ℎ
2
𝜆max (𝐻

𝑇
𝐻)

𝜆min (𝑃)
]𝑉 (𝑘)

+ 2𝑎 (𝑘) ℎ𝛿
𝑇
(𝑘ℎ) × (𝐼 − 𝑎 (𝑘) ℎ𝐻

𝑇
) 𝑃𝑄
2
𝑤 (𝑘ℎ)

+ 𝑎
2
(𝑘) ℎ
2
𝑤
𝑇
(𝑘ℎ)𝑄

𝑇

2
𝑄
2
𝑤 (𝑘ℎ) .

(23)

Taking the expectation of the above, given {𝑉(𝑠) : 𝑠 ≤ 𝑘},
yields

𝐸 {𝑉 (𝑘 + 1) | 𝑉 (𝑠) : 𝑠 ≤ 𝑘}

≤ [1 − 𝑎 (𝑘) ℎ
1

𝜆max (𝑃)
+ 𝑎
2
(𝑘) ℎ
2
𝜆max (𝐻

𝑇
𝐻)

𝜆min (𝑃)
]𝑉 (𝑘)

+ 𝐶
1
𝑎
2
(𝑘) ,

(24)

for some constant 𝐶
1
> 0, where we have used the fact that

𝐸[𝛿
𝑇
(𝑘ℎ)(𝐼−𝑎(𝑘)ℎ𝐻

𝑇
)𝑃𝑄
2
𝑤(𝑘ℎ)] = 0 by noting that 𝛿(𝑘ℎ) ∈

F𝑤((𝑘 − 1)ℎ).
By a similar argument to that in the proof of (19), there

exists a 𝑘
0
> 0 such that

𝐸 {𝑉 (𝑘 + 1) | 𝑉 (𝑠) : 𝑠 ≤ 𝑘} ≤ [1 −
1

2
𝑎 (𝑘) ℎ

1

𝜆max (𝑃)
]

× 𝑉 (𝑘) + 𝐶
1
𝑎
2
(𝑘) , ∀𝑘 ≥ 𝑘

0
.

(25)

We will make use of the following lemma to finish up our
proof.

Lemma 9 (see [25]). Consider a sequence of nonnegative ran-
dom variables {𝑉(𝑘)}

𝑘≥0
with 𝐸{𝑉(0)} < ∞. Let

𝐸 {𝑉 (𝑘 + 1) | 𝑉 (𝑘) , . . . , 𝑉 (1) , 𝑉 (0)}

≤ (1 − 𝑐
1 (𝑘)) 𝑉 (𝑘) + 𝑐

2 (𝑘) ,

(26)

where

0 ≤ 𝑐
1 (𝑘) ≤ 1, 𝑐

2 (𝑘) ≥ 0, ∀𝑘,

∞

∑

𝑘=0

𝑐
2 (𝑘) < ∞,

∞

∑

𝑘=0

𝑐
1 (𝑘) = ∞,

lim
𝑘→∞

𝑐
1 (𝑘)

𝑐
2 (𝑘)

= 0.

(27)

Then, 𝑉(𝑘) a.s. converges to zero; that is,

lim
𝑘→∞

𝑉 (𝑘) = 0 𝑎.𝑠. (28)

It is not hard to show that conditions (26) and (27) are
satisfied. Therefore, lim

𝑘→∞
𝑉(𝑘) = 0, a.s., which implies the

conclusion.

Let 𝐽 = (1/𝑛)11𝑇. The following lemma will be used to
obtain the main result of this subsection.

Lemma 10 (see [26]). Let 𝑉(𝑘) = ‖𝑥(𝑘ℎ) − 𝐽𝑥(𝑘ℎ)‖
2. Then

lim
𝑘→∞

𝑉 (𝑘) = 0 𝑎.𝑠. (29)

if and only if

lim
𝑘→∞

𝑥 (𝑘ℎ) = 𝑐1 𝑎.𝑠., (30)

for some 𝑐 ∈ R.

Theorem 11. Apply protocol (4) to system (2). Assume that
(A1)–(A3) hold; then the 𝑛 agents reach almost sure strong
consensus.

Proof. From (11), we have

‖(𝐼 − 𝐽) 𝑥 (𝑘ℎ)‖
2
=
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝐽)𝑄1𝛿 (𝑘ℎ)

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑇

1
(𝐼 − 𝐽)𝑄1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝛿 (𝑘ℎ)

󵄩󵄩󵄩󵄩󵄩

2

,

(31)

by noting that (𝐼−𝐽)1 = 0 and (𝐼−𝐽)
2
= 𝐼−𝐽. ByTheorem 8,

we have

lim
𝑘→∞

‖𝑥 (𝑘ℎ) − 𝐽𝑥 (𝑘ℎ)‖
2
= 0 a.s. (32)

Invoking Lemma 10, we have

lim
𝑘→∞

𝑥 (𝑘ℎ) = 𝑐1 a.s., (33)

for some constant 𝑐.
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Figure 1: Interaction topologyG
1
.

At the same time, since ∑
∞

𝑘=0
𝑎
2
(𝑘)𝐸‖𝑤(𝑘ℎ)‖

2
< ∞ by

(A2), it follows that
∞

∑

𝑘=0

𝑎
2
(𝑘) 𝐸‖𝑤(𝑘ℎ)‖

2
< ∞. (34)

By the martingale convergence theorem [27], it follows that
∑
∞

𝑘=0
𝑎(𝑘)𝑤(𝑘ℎ) converge a.s., as 𝑘 → ∞. Then, we have

lim
𝑘→∞

𝑎 (𝑘)𝑤 (𝑘ℎ) = 0 a.s. (35)

Notice that
𝑥 (𝑡) = [𝐼 − 𝑎 (𝑘) (𝑡 − 𝑘ℎ) 𝐿] 𝑥 (𝑘ℎ) + 𝑎 (𝑘) ℎ𝑤 (𝑘ℎ) ,

∀𝑡 ∈ [𝑘ℎ, (𝑘 + 1) ℎ) .

(36)

This together with (33) and (35) leads to

lim
𝑡→∞

𝑥 (𝑡) = 𝑐1 a.s., (37)

for some constant 𝑐, which completes the proof.

Remark 12. In most existing works concerning consensus
problems based on sampled-data control, there is a require-
ment on the sampling period ℎ to guarantee convergence
since there is no step size or step size 𝑎(𝑘) ≡ 1. For instance,
when 𝑎(𝑘) ≡ 1 we can easily show that the sampling period
must satisfy ℎ ≤ 1/𝜆max(𝐿) to guarantee the convergence of
system (8). However, by Theorems 7 and 11, we find that the
convergence condition is independent of the sampling period
ℎ for both noise-free and noisy measurements cases. This is
due to the introduction of the step size. In other words, the
introduction of the step size is necessary for enhancing the
robustness of the sampled-data consensus protocol against
sampling period.

3.2. Time-Varying Topology. In this subsection, we consider
the case when the network topology changes dynamically.
In order to describe the time-varying topology, we define
a switching signal 𝜎(𝑘) : Z+ → P = {1, 2, . . . , 𝑁},
where𝑁 is the total number of all possible graphs describing
the interaction topologies. At each sampling time 𝑘ℎ, the
underlying graph is denoted by G

𝜎(𝑘)
. Then, we rewrite

system (6) as

𝑥 ((𝑘 + 1) ℎ) = (𝐼 − 𝑎 (𝑘) ℎ𝐿𝜎(𝑘)) 𝑥 (𝑘ℎ) + 𝑎 (𝑘) ℎ𝑤 (𝑘ℎ) ,

(38)

where 𝐿
𝜎(𝑘)

denotes the Laplacian matrix associated with the
diagraphG

𝜎(𝑘)
.

We introduce the following assumption on the network
topology.

(A4) G
𝜎(𝑘)

is balanced for any 𝑘 ∈ Z+.

Under (A4), there exists an orthogonal matrix 𝑈 =

((1/√𝑛)1, 𝑈
1
) ∈ R𝑛×𝑛 such that

𝑈
𝑇
𝐿
𝜎(𝑘)

𝑈 = (
0

𝐻
𝜎(𝑘)

) , ∀𝑘 ∈ Z
+
, (39)

where𝐻
𝜎(𝑘)

∈ R(𝑛−1)×(𝑛−1).
Let 𝛿(𝑘ℎ) = (𝛿

1
(𝑘ℎ), . . . , 𝛿

𝑛
(𝑘ℎ))
𝑇

= 𝑈
𝑇
𝑥(𝑘ℎ). We can

obtain the following system associated with system (38):

𝛿 ((𝑘 + 1) ℎ) = (𝐼 − 𝑎 (𝑘) ℎ𝐻𝜎(𝑘)) 𝛿 (𝑘ℎ) + 𝑎 (𝑘) ℎ𝑈
𝑇

1
𝑤 (𝑘ℎ) ,

(40)

where 𝛿(𝑘ℎ) = (𝛿
2
(𝑘ℎ), . . . , 𝛿

𝑛
(𝑘ℎ))
𝑇. In addition, we have

𝑥 (𝑘ℎ) =
1

√𝑛
𝛿
1 (𝑘ℎ) 1 + 𝑈

1
𝛿 (𝑘ℎ) . (41)

Theorem 13. Consider system (40). Suppose that (A1)–(A4)
hold; then

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝛿 (𝑘ℎ)

󵄩󵄩󵄩󵄩󵄩

2

= 0 𝑎.𝑠. (42)

Proof. Choose a Lyapunov function

𝑉 (𝑘) = 𝛿
𝑇
(𝑘ℎ) 𝛿 (𝑘ℎ) . (43)

It is not hard to show that both 𝐻
𝜎(𝑘)

+ 𝐻
𝑇

𝜎(𝑘)
and 𝐻

𝑇

𝜎(𝑘)
𝐻
𝜎(𝑘)

are positive definite for any 𝑘 ∈ Z+ since G
𝜎(𝑘)

is balanced
and contains a spanning tree. It follows from (40) that

𝑉 (𝑘 + 1) ≤ [1 − 𝑎 (𝑘) ℎ𝜆min (𝐻
𝑇

𝜎(𝑘)
+ 𝐻
𝜎(𝑘)

)

+𝑎
2
(𝑘) ℎ
2
𝜆max (𝐻

𝑇

𝜎(𝑘)
𝐻
𝜎(𝑘)

)]𝑉 (𝑘)

+ 2𝑎 (𝑘) ℎ𝛿
𝑇
(𝑘ℎ) (𝐼 − 𝑎 (𝑘) ℎ𝐻

𝑇

𝜎(𝑘)
)𝑈
𝑇

1
𝑤 (𝑘ℎ)

+ 𝑎
2
(𝑘) ℎ
2
𝑤
𝑇
(𝑘ℎ)𝑈1𝑈

𝑇

1
𝑤 (𝑘ℎ) .

(44)

Denote 𝜆
∗

= min
𝑘≥0

{𝜆min(𝐻
𝑇

𝜎(𝑘)
+ 𝐻
𝜎(𝑘)

)} and 𝜆
∗∗

=

max
𝑘≥0

{𝜆max(𝐻
𝑇

𝜎(𝑘)
𝐻
𝜎(𝑘)

)}, which are well defined sinceP is
a finite set. Thus,

𝑉 (𝑘 + 1) ≤ [1 − 𝑎 (𝑘) ℎ𝜆
∗
+ 𝑎
2
(𝑘) ℎ
2
𝜆
∗∗

]𝑉 (𝑘)

+ 2𝑎 (𝑘) ℎ𝛿
𝑇
(𝑘ℎ) (𝐼 − 𝑎 (𝑘) ℎ𝐻

𝑇

𝜎(𝑘)
)

× 𝑈
𝑇

1
𝑤 (𝑘ℎ)

+ 𝑎
2
(𝑘) ℎ
2
𝑤
𝑇
(𝑘ℎ)𝑈1𝑈

𝑇

1
𝑤 (𝑘ℎ) .

(45)

The rest of the proof is similar to that inTheorem 8 and hence
omitted.
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Figure 2: State trajectories under different sampling periods in the case of noise-free and fixed topologies.

Theorem 14. Apply protocol (4) to system (2). Assume that
(A1)–(A4) hold; then the 𝑛 agents reach almost sure consensus.

Proof. Note that

‖𝑥 (𝑘ℎ) − 𝐽𝑥 (𝑘ℎ)‖
2
=

󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝐽)𝑈1𝛿 (𝑘ℎ)

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑇

1
(𝐼 − 𝐽)𝑈1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝛿 (𝑘ℎ)

󵄩󵄩󵄩󵄩󵄩

2

,

(46)

by (41).
The remaining of the proof is similar to that ofTheorem 11

and hence omitted here.

Remark 15. Note that the condition inTheorem 14 thatG
𝜎(𝑘)

is balanced is a sufficient condition. To weaken the condition
on the network topology, it may require a new method. We
leave this for further investigation.

4. Simulations

In this section, two examples are provided to illustrate
the theoretical results. In the following two examples, the
variance of the i.i.d zero mean Gaussian measurement noises
is 𝜎2 = 0.01, and the step size 𝑎(𝑘) = 1/(𝑘 + 1), 𝑘 ≥ 0. It is
clear that Assumptions (A1) and (A2) hold.

Example 16. Consider a multi-agent system consisting of five
agents with the interaction topology shown in Figure 1. Note
thatG

1
has a spanning tree. For simplicity, we assume thatG

1

has 0-1weights. Let the initial value of𝑥(0) be taken randomly
as [5, 2, −3, −1, 4]𝑇. Figures 2(a)–2(c) show that the five agents
reach consensus under different sampling periods in the case
of noise-free. Figures 3(a)–3(c) show that the states of the
five agents converge to the same constant under different
sampling periods with measurement noises.
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Figure 3: State trajectories under different sampling periods with fixed topology and noisy measurements.
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Figure 4: Interaction topologiesG
2
andG

3
.

Example 17. Consider a multi-agent system consisting of five
agents. The interaction topology is time varying of switching
period ℎ between two graphs G

𝑖
(𝑖 = 2, 3) described as in

Figure 4. For simplicity, we assume that 𝑎
34

= 𝑎
45

= 2 in G
3

and the weights of all the other edges inG
2
andG

3
are 1. Note

that both G
2
and G

3
are balanced and have a spanning tree.

So, (A3) and (A4) are satisfied. It can be seen from Figures
5(a)–5(c) that the states of the five agents converge to the same
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Figure 5: State trajectories under different sampling periods with noisy measurements and time-varying topology.

constant under different sampling periods withmeasurement
noises.

5. Conclusion

In this paper, a consensus problem for a multi-agent sys-
tem with sampled information and noisy measurements is
investigated. Both the case of fixed topology and time-varying
topologies are taken into consideration. For the case of
fixed topology, we prove that the agents reach almost sure
strong consensus as long as the network topology contains a
spanning tree. For the case of time-varying topologies, under
the assumption that each interaction topology is balanced
and contains a spanning tree, we show that the agents
reach almost sure strong consensus. Different from the most
existing results concerning sampled-data control of multi-
agent systems, it is shown that the convergence conditions
are independent of the sampling period, which is due to the
introduction of the step size.
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