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Using functions from some function classes and a generalized Riccati technique, we establish Kamenev-type oscillation criteria for
second-order nonlinear dynamic equations on time scales of the form (p(f)y(x(¢))k o X)) + f(t,x(a(t))) = 0. Two examples
are included to show the significance of the results.

1. Introduction

In this paper, we study the second-order nonlinear dynamic

equation

(2) T = N, we have

o(t)=t+1, p(t)=t-1,

A =f+)- £,

(pOypxeke ) + ftx@@®) =0 O )
b b-1
on a time scale T. J f6)at= Zf k), as<b
Throughout this paper, we will assume that ¢ k=a
(3) T =hN,, h € R, \ {0}, we have
(CD) p € Cra(T, 0, 00)), o(t)=t+h (t)=t—h
(C2) v € C(R, (0,1]), where # is a fixed positive constant, - ’ pI= ’
(C3) k € C(R,R), and there exist y; > y, > 0 such that fA ) = f(t+h) - f(t)
0 < y,yk(y) < k*(y) < y,yk(y) for all y # 0, h ’ (4)
(C4) f e C(TxR,R). b (b/h)-1
Preliminaries about time scale calculus can be found L f)at= Z fhk)h, a<b;
in [1-3], and hence we omit them here. Note that for k=afh
some typical time scales, we have the following properties, (4) T = {2, n € N,}, we have
respectively: e - 1)
“ro t t) -
(1) T =R, := [0, 00), we have o (t) = 2t, p(t) = - fA ) = f t X
s =p®)=t. [ 0)=f®, )
b b (2) be(t) Af = logzzbt_lf (zk)zk a<b
| roae=] o, : ot i}



Without loss of generality, we assume throughout that
supT = oo since we are interested in extending oscillation
criteria for the typical time scales above.

Definition 1. A solution x of (1) is said to have a generalized
zero at t* € T if x(t")x(o(t*)) < 0, and it is said to
be nonoscillatory on T if there exists t, € T such that
x(t)x(o(t)) > 0forall t > t,. Otherwise, it is oscillatory.
Equation (1) is said to be oscillatory if all solutions of (1) are
oscillatory.

The theory of time scales, which has recently received
a lot of attention, was introduced by Stefan Hilger in his
Ph.D. thesis [4] in 1988 in order to unify continuous and
discrete analysis; see also [5]. In recent years, there has
been much research activity concerning the oscillation and
nonoscillation of solutions of dynamic equations on time
scales; for example, see [1-28] and the references therein. In
Dosly and Hilger [10], the authors considered the second-
order dynamic equation

(pOx*®) +q@®) x@®) =0, (6)

and gave necessary and sufficient conditions for the oscilla-
tion of all solutions on unbounded time scales. In Del Medico
and Kong [8, 9], the authors employed the following Riccati
transformation

A
WIGER0 o)
x (t)

and gave sufficient conditions for Kamenev-type oscillation
criteria of (6) on a measure chain.

In Wang [25], the author considered second-order non-
linear damped differential equation

(c@y k(' ®)) +perk(x )
+q (1) f(x (1) =0,
used the following generalized Riccati transformations

y () k(x' (1)
fx (@)

y (xO) k(' (1))
x (t)

u(t)

(8)

t >t

v(t)=¢(t)a(t)[ +R(t)], t >t

+R@) |, t=t,

€

where ¢ € C'([ty,00),R,),R € C([ty 00),R), and gave
a new oscillation criteria of (8). In Huang and Wang [16],
the authors considered second-order nonlinear dynamic
equation on time scales

(p)x* )"+ fEx @ ®) =0, (10)

By using a similar generalized Riccati transformation which
is more general than (7)

At p(t)x" (1)
x (t)

v(f)=¢(t)a(t)[

u(t) = +B(1), (11)
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where A € CH(T,R, \ {0}), B € C}4(T,R), the authors
extended the results in Del Medico and Kong [8, 9] and
established some new Kamenev-type oscillation criteria.

In this paper, we will use functions in some function
classes and a similar generalized Riccati transformation as (11)
and was used in [25, 26] for nonlinear differential equations,
and establish Kamenev-type oscillation criteria for (1) in
Section 2. Finally, in Section 3, two examples are included to
show the significance of the results.

For simplicity, throughout this paper, we denote (a,b) N
T = (a,b)y, where a,b € R, and [a, b, [a,b), (a,b] are
denoted similarly.

2. Kamenev-Type Criteria

In this section we establish Kamenev-type criteria for oscil-
lation of (1). Our approach to oscillation problems of (1) is
based largely on the application of the Riccati transformation.
Now, we give the first lemma.

Lemma 2. Assume that (C1)-(C4) hold and that there exists
a function q € C,4(T,R) such that uf(t,u) > q(t)uz. Also,
suppose that x(t) is a solution of (1) satisfies x(t) > 0 fort €
[ty, 00) with t, € T. Fort € [t,, 00), define

POy (x () kox™(t)

u(t) = At <O

+B(), (12)

where A € Cid(']I‘, R, \{0}), B € Cid(T,R), and yA - (y, -
12)A% > 0 fort € [t,, 00)p. Then, u(t) satisfies

pBu)—pu@)B@E)+ynA@E) p(t) >0, (13)
u () + @, (1)

[MA®) - (y1— 1) AT ()] (£)
NA®) (pOu@)—u@)B@E)+ A1) p @)

@y (1) () + 1, A7 (1) B (1)

<0,
P YAOGOu® -pgOBOAD D)
(14)

where ®o(t) = (2y, — Y)A(t) + pA@)B(t) + yinAS(t)
A)p(t), @,(1) = A°(1)(q(t) - (B(H)/A1)™), A°(t) = A(o(t)).

Proof. By (C3), we see that x® and k o x* are both positive,
both negative, or both zero. When x* > 0, which implies that
ko x™ > 0, it follows that

pu — pB + y Apy (x)

Apy () (ko x*)°

xk ° xA + yZpr (x)

15
Apy (x) x"k o x* )

xk o x4

=2

(o

+ 1, Apy (x) = 1, Apy (x) % > 0.
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When x* < 0, which implies that k o x* < 0, it follows that

Apy (x) (ko x*)’

xk o x4

pu — uB +y Apy (x) = + 9, Apy (x)

Apy (x) x"k o x*

>
xk o x4

= /1

+y, Apy (x)
= y,Apy (x) x; > y,Apy (x) x; > 0.
(16)

When x* = 0, which implies that k o x* = 0 and x = x7, it
follows that

pu — uB + y Apy (x) = n Apy (x) = y,Apy (x)
0 (17)
= nApy (x) > 0.

Hence, we always have

pu — uB + yinAp 2 pu — uB + y, Apy (x) > 0,

X Ay (X vAPY (%) 18)

x% " pu—pB+y Apy (x) ~ pu— uB+ynAp’

that is, (13) holds. Then, differentiating (12) and using (1), it
follows that

A A A
quAA<pw(x)k x )+Aa(pw(x)k x ) L gt
X

X
A
=L w-p
k° AA _ kD A_A
+Aa(p1//(x) x)xapy/(x) x"x LB
xx
A® A* f(6x7)

Zu+Br-TB-AT 2
A A x°

- Apy (x) PR

o B A o o (koxA)Z X
(Z) SAT - ATy () 5

1

IN
|
<
+
=

IN
<

|
o

|

I
=

Q
]
<
®

L _W=B’  pApy()
A?p*y? (x) pu — uB + ynAp

A o _n\2
A " A pu—uB+ynAp
—[nA-(y —1)A] u’+ Dyu - YzAGBZ

= — @1)
N A (uu — uB + yinAp)

(19)
that is, (14) holds. Lemma 2 is proved. O

Remark 3. In Lemma 2, the condition y; A — (y; — y,)A% > 0
ensures that the coefficient of u* in (14) is always negative.
The condition is obvious and easy to be fulfilled. For example,
when A*(t) < 0 forallt € [t,, 00)y, we have A” = A + pA® <
A, by (C3), we see thaty; A—(y;—y,) A’ > 0,and wheny, = y,,
the condition y; A — (y; — y,)A? > 0 is also fulfilled.

LetDy={seT:s>0}and D = {(t,s) eT?:t>s>0}
For any function f(t,s): T> — R, denote by f;* and f;' the
partial derivatives of f with respect to ¢ and s, respectively.
For E ¢ R, denote by L,,.(E) the space of functions which
are integrable on any compact subset of E. Define

(4, %) = {(A,B): A(s) € Cly (Do, R, \ {0}),
B(s) € CL; (Dy, R),y, A~ (y, — 1) A7 > 0,
NHA () p () £ 4 () B(s) > 0,5 € Dy,
" = {H(t,s) e C"(D,R,) : H(t,1) =0,
H (t,s) > 0, Hy (t,5) < 0,t > s 2 0},
.= {H(ts) eC (D,R,): H(t,1) =0,

H(t,s) > O,HlA (t,s) =0,t>s> 0}.
(20)

These function classes will be used throughout this paper.
Now, we are in a position to give our first theorem.

Theorem 4. Assume that (C1)-(C4) hold and that there exists
a function q € C,y(T,R) such that uf(t,u) > q(t)u’. Also,
suppose that there exist (A,B) € (o, RB) and H € ™ such
that M,(t,-) € L([0, p(t)]y) and for any t, € T,

) 1 t p(t)
htnlsolipm [ L) H(t,0(s)) D, (s) As — L} M, (t,s) As



+Hy (t.p () (nnA(p @) p(p (®)

-u(p®)B(p (1)) ] = 00, (21)
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where @, is defined as before, and

L AnH G AG) B(S) + 2y, — 1) H(t,0 () A° () B(s) + yinA(s) p (s) (H (t,5) A (s))As}2

M, (t,s) =

{4y1A () min {[yH (6, 5) A (5) — (31 — 12) H (£ 0 (5) A% ()] X [1y7A (5) p(5) — £ () B(5)] » } (22)

Y,H (t,0(5)) A% (s) [y11A (s) p (s) + . (s) B(s)]}

Then, (1) is oscillatory.

Proof. Assume that (1) is not oscillatory. Without loss of
generality, we may assume there exists ¢, € [0, 00) such that
x(t) > 0fort € [ty, 00)y. Let u(t) be defined by (12). Then, by
Lemma 2, (13) and (14) hold.

For simplicity in the following, we let H, =
H(t,0(s)), H = H(t,s), and H> = H)(t,s) and omit
the arguments in the integrals. For s € T,

H,-H=H.pu. (23)

Since Hy' < 0 on D, we see that H, < H. From y; A~ (y, —
1,)A? > 0 and (C3), we have

NHA = (y, - 1,) H,A” > pH,A -y H,A= 0. (24)

Multiplying (14), where ¢ is replaced by s, by H, and
integrating it with respect to s from t, to t with ¢t € T and
t > o(t,), we obtain

t t A _ _ Ao 2
J ng)lAS < - J' <HGuA + Ho [yl (Yl Yz) ] u
o y1A (uu = uB + y1Ap)

~®yu + y,A’ B ) A
S.
V1A (uu — B + yinAp)

(25)

Noting that H(t,t) = 0, by the integration by parts formula,
we have

t
J H,®,As
ty

< H (t,ty)u(ty)
+Jt: (HzAu

-H

o

[ A-(y, - 1,) A7) ’”‘z_q)oLH')’zAUB2 ) As
N A (pu—uB+y,nAp)

< H (t,ty) u(ty)

N J't (HZAM _H, [nA = (- 1,) A%]w* - Du ) As
fo V1A (uu = B + ynAp)

t
CH (6 1)ulty) + j H2us
p(t)

N Jp(t) (HzAu _H, [nA - (n —1) A7) - q)o“) As
t N A (uu — uB + ynAp)

(26)

Since H2A < 0 on D, from (13) we see that for t > o(t,),

|, Hiuds = H (1.0 @) u(p ) (p )
p(t

27
< —H (b p®) (A (p @) p(p ) &7

—u(p(®)B(p(®)).

Fort > a(t,), s € [ty, p(t))r> and u(s) < 0, from (24), we have

[VlA - (Yl - Yz) Aa] u’ - Oyu
VA (Hu — uB + ynAp)
[VlHA - (Yl - Yz) HaAG] u?
N A (uu — uB + ynAp)
. [\ HAB + (2y, - y,) H,A°B + y;nAp(HA)" | u
VA (uu — uB + ynAp)
_ _nHA- (11— 12) HoA° 2
NA (uu — uB + ynAp)
1HAB + (2y; - y1) H,A’B + yinAp(HA)®
+ u
nA (yinAp — uB)
nHAB + (2y, - y,) H,A° B+ y{nAp(HA)®
nA (yinAp — uB)

Hyu-H,

o

i’

X —_—
pu — uB + ynAp
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_ YHy A’ (yinAp + uB) 2
1A (yinAp — uB) (uu — B + yinAp)
, WHAB+ 2y, - ) HA’B + yinAp(HA)"
nA (yinAp - uB)
o _RHA (pnAp + pB)
~ pA(nnAp - uB)’
nHAB + (2y, - y1) H,A“B + y{nAp(HA)®
" nA (yinAp - uB) ¢
__1Ho A% (yinAp + uB)
nA(ynAp - uB)’
~ (nnAp-uB)
2y,H, A% (y1nAp + uB)

2
x (y\HAB + (2y, - 1) H,A”B + y{nAp(HA)") ]

2
(nHAB + (2y, - y1) H,A”B + yinAp(HA)")
4y,y,H, A7 A (ynAp + uB)

2
< (y HAB + (2y, - y,) H,A”B + yinAp(HA)")

+

X (4y1Amin {(YlHA -(n - Yz) HaAa)
x (ninAp — uB),y,H, A’
x (yinAp +uB)})™ = M,. (28)

Fort > o(ty), s € [ty p(t))> and u(s) > 0, from (24), we
have

HZAu “H [(nA -y 1) A7] &’ - D
A (uu = uB + y1nAp)

= (_ [1nHA = (y, - 7,) H,A%] ul

+ [\ HAB + (2y, — y,) H,A’B + y{nAp(HA)* | u)

x (1A (uu - uB +yynAp))
_ nHA-(y - y) H,A?
N A (uu — uB + ynAp)
Y HAB + (2y, - y,) H,A°B + ylnAp(HA)* |°
"

2(nHA = (y1 - 12) I_ZID'AU) AN2
(nHAB + (2y, - y,) H,A° B+ y{nAp(HA)*)

+ o
4y A (pHA = (y, - v,) HyA%) (uu — uB + y,nAp)

2
< (y HAB + (2y, - y,) H,A’B + y{nAp(HA)" )

X (4y, A min {(YlHA - (Vl -1,)H,A?)
x (yinAp - uB),y,H,A°

x (ynAp +uB)}) " = M. (29)

5
Therefore, for all t > o (t,), s € [t,, p(t))r, we have
A-(y,—-p) A% W -@
HzAu _H, (v (n-1)A%u ot <M,. (30)

N A (uu — uB + ynAp)

Then, from (26), (27), and (30), we obtain that for t € T and
t > o(ty),

t
J H,®,As < H (£, t,) u ()
t

0

(®)
+ JP M,As—Hj (t,p (1)) (3D
to

x(ynA(p®)p(p®)—u(p®)B(p®))).

Hence,

t p(t)
J H{(t,0(s)) Dy (s) As - J M, (t,s) As

to

—[
11 (t’ 0)

“ulp@)B(p) | <u(t) < o

which contradicts (21) and completes the proof.
O

Remark 5. 1f we change the condition y, A—(y; —y,)A? > 0in
the definition of (&, %) with a stronger one ARt <0, (24)
in the proof of Theorem 4 will be changed with

nHA - (y - y,) H, A?
(33)
>y H,A-(y, - v,) H,A = y,H,A > 0,

Then, the definition of M, can be simplified as



M, (t,s) £
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{ylH (t,s) A(s) B(s) + (2y, = y1) H (t, 0 (s)) A? (s) B(s) + yinA (s) p (s) (H (t,s) A (s))AS}2 (34)

In the sequel, we define
T, = {s € T : s is right-dense}, (35)
T, = {s € T :s is right-scattered} . (36)
When y, =y, = 1, by (C3), we see that k(y) = y and (1)

is simplified as

POy ®) +ftx@m)=0. ()

Now, we have the following theorem, but we should note
that this result does not apply to the case where all points in
T are right dense.

Theorem 6. Assume that (C1)-(C4) withy, = y, = 1 hold
and that there exists a function q € C,;(T,R) such that
uf(t,u) > q(t)uz. Let (A,B) € (A,%B),H € #,,M,(-t) €
L, ([o(t), 00)p), and T, T, be defined by (35) and (36). Then,
(37) is oscillatory provided there exists {t,,},>, € T,, t, — 0o,
such that for any t, € T, one of the following holds

(i) lim,, _, . N(t,,t,) = co and

li —_—
e N (tto)

t, t,
X [L H (0 (s),ty) @, (s) As — L(ro) M, (s, t,) As] = (Zo, |
38

M2 (S) t) =

{H (s,t) A(s)B(s) + H (o (s),t) A° (s) B(s) + A (s) p(s) (H (s, 1) A (s))A‘}2

4y,9,H (t,0 (s)) A (s) min {A (s) [y,nA (s) p(s) — u(s) B(s)], A7 (s) [y17A (s) p (s) + 1 (s) B(s)]}

(ii) limsup,, _,  N(t,,ty) = 00 and

. 1
lim ———
=N (t, 1)

t

tn n
X [Jto H (0 (s),ty) @, (s) As — j ( )M2 (s.ty) As] = 00,

al(ty
(39)
(iil) lim sup,,_, . N(t,.t,) < co and
ty
lim sup [J H (0 (s),ty) @, (s)As
n— 00 tO
(40)

_ jtﬂ )M2 (s.t) As] = 00,

a(to

where N(t,s) = H(t, s)(nA(t) p(t) — u(t)B(t)) [ u(t), O,
is defined as before, and

(41)

Proof. Assume that (37) is not oscillatory. Without loss of
generality, we may assume there exists ¢, € [0,00) such
that x(¢t) > 0 for t € [ty, 00)p. Let u(t) be defined by (12)
with k(y) = y. Then, by Lemma 2, (13) and (14) hold for
Y1 =¥, = L. So, we have

pt)u@®)-pu)BE) +nA®) p(t) >0, (13)’
u® (t) + @, (1)
s A’ (1)
A@) (u@)u(t)—put)B(E)+nA®) p(©))

T 4H (s,t) A(s)min {A (s) [#A (s) p(s) = (s) B(s)], A7 (s) [nA (s) p (s) + u(s) B(s)]}

[(ATO+AD)B@ +74° O AW® p )] u(®)
A (p@u@)—u@®)BE) +1nA @) p(t))
A% (t)B* (t)

+ <0,
AN (@O u®)-pu@®)BE) +7A @) p 1))
(14)'

where @, (t) and A’(¢) are defined as in Lemma 2.

For simplicity in the following, we let H, =
H(o(s),t)), H = H(s,ty), and H} = H(s,t;) and
omit the arguments in the integrals. Multiplying (14)’, where
t is replaced by s, by H., and integrating it with respect to s
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from ¢, to t and then using the integration by parts formula,

we have that

t
J H.®,As
t,

0

t
<- J (H;uA +H,
to

Aw? - [(A” + A) B+ nA"Ap|u+ A°B > A
X S

A (uu — uB + nAp)

=-H(t,t,)u(t)

t
+ J (HlAu - H,
to

Aw? - [(A” + A) B+ nA"Ap|u + A°B* )
X As

A (uu ~ uB +nAp)

< -H(t,ty)u(t)

" (EW ' r())

b Au? - [(A” + A) B+nA"Ap| u N
7 A(uu—uB+nAp) '

(42)

For s € [ty, t)T,

g

Hence,

Juag) A , Au” - [(A% + A)B+nA"Ap|u
Hiu-H, As
fy A (pu - uB + nAp)

Au? — [(A” + A) B+ A" Ap| u >

=u(t)| Hu-H

H -H'u=H' (43)

s=t,

[~AH"w + (H'AB+ HA7B + nAp(H'A)" Y u] g
A (pu — puB +nAp)

s=tg
(H,A7B+ nAp(H'A) ) up
A (pu - uB +nAp)

! p0
(v )

s=ty

N H (o (ty).t,) A% (t,) B (to)'

=np (to) H1A (o, t9) A (t) Aty

(44)

Furthermore, for t > t,, s € [o(t,), t), and u(s) < 0,

A , Au” = [(A% + A) B+nA"Ap|u
Hiu-H,
A(pu — B +nAp)
1A, 2 ’ I g0 AT
~H' A’ + [H'AB + HJAB + nAp(H'A)" | u
A (pu = pB + nAp)
H 2
-——u
uu — uB +nAp

A
H'AB+ H,A°B+nAp(H'A)

+

A(nAp - uB)
H'AB+HLAB+ nAp(H'A) 2
) A(nAp - uB) uts — uB + 1Ap
H, A (nAp + uB) 2

" " A(yAp — uB) (uu - uB+ nAp)
H'AB+ H! A°B + nAp(H'A)"
A(nAp - uB)
. HoA"(nAp+ MZB) 2
A(nAp — uB)
H'AB+ H.A°B+nAp(H'A)"
A(nAp - uB)
__H,A” (nAp + uB)
 A(yAp - uB)’

+

+

(nAp-uB) (H' AB+H, A”B+nAp(H'A)" ) ’

2H! A? (nAp+uB)

Xlu



! I ,0 ! A 2
(H'AB+ H,A7B + nAp(H'A)")
4H! A%A (nAp + uB)

2
(H'AB+ H,A"B + nAp(H'A)")
= 1H'Amin {A(nAp — uB), A? (nAp + uB)} o
(45)

Fort > t,,s € [a(ty), t), and u(s) > 0,

A , Au” - [(A% + A)B+nA"Ap|u
Hiu-H,
A (pu — uB +nAp)

H'Aw? + [H'AB + HLAB + nAp(H'A)" | u
A (pu - uB +nAp)

’ ' 1 O\A 12
H  H'AB+H,A’B+ nAp(H'A)
2H'A

“uu—pB+nAp |

(H'AB+HAB + nAp(H'A)A>2
4H' A? (puu — uB + nAp)

(H'AB+ HAB + nAp(H'A)A)Z
- 4H'A? (nAp - uB)

2
(H'AB+ H,A"B + nAp(H'A)")
= 4H Amin {A(nAp — uB), A? (nAp + uB)}

2+

(46)
Hence, for all t > ¢, s € [o(¢,), t), we have

Au? - [(A% + A)B+3nA”Ap|u
o H (47 + A) B+nA"Ap]

g (47)
A (puu — uB +nAp)

5
From (42), (44), and (47), we have

Jt H.® As<—H (t,t))u (t)+jt
t (

a(to

)M2 (s.ty) As

H (0 (t,).ty) A% () B(t,)

+[f1p (1) H (13 1) A7 (1) +

A(to)
(48)
Fort € T,, (13)" implies that
H (o) u)2H (1) TOLOROZO o).
(49)
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Hence,

r H (0 (s),ty) @, (s)As

0

t

sN(t,t0)+J(

a(ty

M, (s, ty) As
) (50)
e 1 ot 4° 0
+H (0 (ty).t9) A% (ty) B(t,) ]
A(ty) '

Assume that condition (i) holds. Let t = ¢, in (50). Then,
we obtain

tn

! “th(a(s),to)d)l(s)As—J(

— M, (s,t )As]
N(tn’ tO) 0 a(to) ’ °

[WP (to) H1A (to to) A (to)

+H(‘7 (to).to) A% (o) B(to) ] .

1
<14+ ——
N(tn’to)

A(t)
(51)
Taking the lim sup as#n — 00 on both sides, we have
1 fn
ligs;pm [Lo H (o (s),ty) @ (s) As
(52)

_Jtz )M2 (s.t) As] < 00,

which contradicts (38).

The conclusions with conditions (ii) and (iii) can be
proved similarly. We omit the details. The proof is com-
plete. O

When (A, B) = (1,0), Theorems 4 and 6 can be simplified
as the following corollaries, respectively.

Corollary 7. Assume that (C1)-(C4) hold and that there exists
a function q € C,4(T,R) such that uf(t,u) > q(t)uz. Also,
suppose that there exists H € * such that for any t, € T,

lim sup t H(t,0(s))q(s) As

i L

Vi (PO (H2A (t, S))2 (53)
), Haerons

S (6,0 (0) p (p 1) ] - o,

Then, (1) is oscillatory.

Corollary 8. Assume that (C1)-(C4) withy, = y, = 1 hold
and that there exists a function q € C,;(T,R) such that
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uf(t,u) > q(t)u®. Let H € #,, T, and T, be defined by
(35) and (36). Then, (37) is oscillatory provided that there exists
{t,}o2, € Ty t, — o0, such that for any t, € T, one of the
following holds

(i) lim,, _, o (H(t,,, ty) p(t,))/ u(t,) = co and

lim sup—‘u (t,)
n— 00 H(tn’tO)P (tn)

X

t,
L H (0 (s),t,)q(s) As (54)

n Ly (H (S tO)) 3
4 L(ro) H (s, t,) p(s)As| = co,

(ii) limsup,, _, . (H(t,. ty) p(t,))/u(t,) = co and

p(t,) f
”ILI%OI—I(t—)(tn) Jto H (O' (S) s tO) q (S) As
2
n (H1A (5) to)) _
S P OIS e
(55)
(i) lim sup,, _, o, (H(t,,, to) p(t,))/ u(t,) < co and
lim sup rn H (o (s),ty) q(s)As
(56)

n Ly (HlA (S,to)) 3
_ZL(tO) H (s, t,) PO As) =

Remark 9. When y(x) = 1 and k(y) = y, Theorems 4 and
6 reduce to [16, Theorems 2.1 and 2.2], respectively. When

y(ix) = 1, k(y) = » ft,u) = qt)u, and (A,B) =
(1,0), Theorems 4 and 6 reduce to [8, Theorems 2.1 and 2.2],
respectively.

3. Examples

In this section, we will show the application of our oscillation
criteria in two examples. We first give an example to demon-
strate Theorem 4 (or Corollary 7).

Example 10. Consider the equation

A

x® (0 (14 (x° (t))2>
2+ (x (1) (57)

t(2+sinx (1))

+2 (£ +1)x(0 (1) =

where p(t) = t, y(x(t)) = 2 + sin x(£), k o x*(£) = (x"()(1 +
()2 + (x2(t))*), and q(t) = t*, so we have y, = 1,
y, = 1/2,and 7 = 3. Let (A, B) = (1,0) and H(t, s) = (t - s)°,
we have

(1) T = R+)
li?lscgpm [ J H(t,0(s))q(s)As

2 A 2
BN G GACD)
4y, L, Heo@y PO
it (10 0) p(p(0) |

1 t 22 3 t
=limsup—2“ (t—s)s ds——J sds]zoo,
t—ty)" Lt 2 ),

t— 00 (

(58)

That is, (53) holds. By Corollary 7, we see that (57) is
oscillatory;
(2) T = N0>

t
lim supﬁ H H(t,0 () q (s) As
s bo to

t— 00

2
) @ Jp(t) (H2A (t, s)) o () As

4y, Ji, H(0(9))

+yH, (L p (1) p(p (1)) ]

= lim su
oo (11— 1)

n—1
X [Z(n —k-1)%*
k=1

B *(2n -2k - 1) k B
zkzl ko -3(n 1)]
ok 2 27k 3(n-1)
li - =00,
= lmsup [Z (n—1) kzlz(n—l)2 (1) ] «©

(59)

that is, (53) holds. By Corollary7, we see that (57) is
oscillatory;
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(3) T = hNy, h € R, \ {0},

1
lim supm [ J' H (t,0(s))q(s)As

t— 00

ﬁﬂf”“ﬁ“@Y

ap, )y HEow) POA

pH (6 () p (p () ]

1 n—1
=1 - -
msup [Z(hn hk — h)*(hk)*h

- g"i(zhn — 2hk — h)*hk - h
24 (hn-hk - h)?

—3h (hn - h) ]
n-2 2 n-2 _
> lim sup [h3z k 3 —Z 27k 5 - 3(n 12):| = 00,
n— oo k=1 (}’l—l) k:12(n—l) (n—l)

(60)
that is, (53) holds. By Corollary7, we see that (57) is
oscillatory;

(4) T = {2",n € Ny},
limsup— [ J H(t,0(s))q(s) As
t— 00 H( > o)
2
)}f;fl Jp(t) (H2A (t, S))
- — ————p(s)As
4y, )y, H(t,0(s))
+yHy (60 @) p(p (1) ]
= lim sup [J (t- 25)252As
t—oo (t- to)
t/2 202
[ ]
2 )y, (t-2s) 2 2
1 = kH1\2,2k Ak
zhmsup—zl)2 [Z((Z -2 ) 272 )

n— 00 (2” — k=1

n=23 .9k .ok . (2n+1 _3. 2k)2
2k+1)2

k=1 2(2n -

3‘22n
— 4 ]:OO,

(61)

that is, (53) holds. By Corollary7, we see that (57) is
oscillatory.

The second example illustrates Theorem 6.
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Example 11. Consider the equation

|:12+.X (t) A

o (t) (t)] +t(2+cost)x(o(t) =0, (62)

where p(t) = 1/t, y(x(t)) = Q+x*())/(1 + (1)), ko x*(t) =
x“(t), and q(t) = t,sowe havey, = y, = 1,1 = 2. Let
H(t,s) = (t — 5)2, we have

(1) T = N, let (A, B) = (s,1/s). When ¢, = [ is sufficiently
large, there exists t,, = n + [ such that

’7A (tn) P (tn) U (tn) B (tn)

lim H (¢t,,¢t
Jim H (¢, to) u(,)
. (tn B tO)z (Ztn B 1)
= lim = 00,
n— 00 t,
t
lim sup uit)

n—oo H(t:19) (nA(t,) p(£,) = p (£,) B(2,))

L,
J ( )Mz (s,t) As]

a(ty

x [Jth(a(s),to)GDI (s) As —
t

t
= lim sup L

ne (b, 1) (2, - 1)

t 3 2

" +1)"+2s+1
NG EA LD AN

ty s“(s+1)

- r" ((5_t0)2+(5—t0 + 1)2((8 +1) /S)+652+65+2)2
to+1

X (45 (2s-1)(s- to)z)ilAs]

t
> lim sup =

e (6~ 1)’ (26, - 1)

2
th §° ty (52 +25% + 657 + 52)
X J- —As —J As

to+1 42(s—t,)’

n n—lkz n—1 k2
> limsup——5——— Z——ZS Z 5 | =00,
n— oo (T’l—l) (27’[‘1) k=1 2 k=l+l(k_l)
(63)

that is, in Theorem 6, (i) and (38) hold. Then, (62) is
oscillatory;
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(2) T = hNy, h € R, \ {0}, let (A, B) = (s,1/h). When
t, = hl is sufficiently large, there exists t,, = h(n + I) such that

) ’7A (tn) p (tn) — Y (tn) B (tn)
u(t,)

lim supH (¢, ¢,
n— 00

2
— i (tn B tO) _
= lim supT = 00,

. p(tn)
n—oo Ff (t, tO) (WA (tn) p (tn) -y (tn) B (tn))

t

t, ,
X [Jto H (0 (s),ty) @, (s) As — J(

a(to

)M2 (s.t) As]

= lim ———
" - o)

t 3 2

" +hs”+1
x“ (s+h—t)) T2 T2 As
t s

0

SR
+(((s+h) (s +h=1t5)°) /1)

+65” + 6hs + 2h2)2(452(s - to)z)_lAs]

. h
> lim —
"t~ 1)

tn
X [J (s+h—t,)’s*As
o

As

. Jrn ((1h) + (25 1) + (s*/m))”
to+h 42(s - t,)°

h n-1 ) )
= lim —— hk —hl+ h)” (hk”" ) h

>

4 n-1 (hk)4
h 5, (b~ hIY?
(64)

that is, in Theorem 6, (ii) and (39) hold. Then, (62) is
oscillatory;

()T = {2",n € Ny}, let (A, B) = (1,1/s*). When t, = 2/
is sufficiently large, there exists , = 2™ such that

) ’7A (tn) p (tn) 4 (tn) B (tn)

li H(t,,t
linHSgOp (n 0 M(tn)
2
t,—t
= limsup% =1< o9,

n

1

lim sup [Jtu H (0 (s),ty) @y (s) As — Jtz ) M, (s, t,) As]
t

n— 00 a(ty
= lirrlrisolcl)p [ J: (2s - to)2 <s + —szij: ;)2 > As
- Lt: s (((s - to)z/sz) + ((25 - to)z/sz)

+(2/s) (3s - 2t,))°
x(4(s - to)z)_lAs]

£,
> lim sup [J (25— t,)’sAs
t

n— 00 0

o (1+4+6)
_j A+4+6)s )
2ty 4(S—t0)

—

= 2
=limsup | Y (2" - 2') 72" - 2
n—00 k:l

n—1 k k
25 .2
121 _] . (65)

4 G2k - 21)2

that is, in Theorem 6, (iii) and (40) hold. Then, (62) is
oscillatory.
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