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A dengue disease epidemic model with nonlinear incidence is formulated and analyzed. The equilibria and threshold of the model
are found. The stability of the system is analyzed through a geometric approach to stability. The proposed model also exhibits
backward bifurcation under suitable conditions on parameters.Our results imply that a nonlinear incidence produces rich dynamics
and they should be studied carefully in order to analyze the spread of disease more accurately. Finally, numerical simulations are
presented to illustrate the analytical findings.

1. Introduction

Dengue disease is transmitted in humans by mosquitoes,
called vectors, who carry the disease without getting it
themselves. Every year many people die from dengue disease.
It has become a global health problem due to its rapid spread.
In order to predict the development extent of such epidemics,
it is useful to find the suitable mathematical models, which
can provide insight into the dynamics of a disease and can
help us to make right decisions on public health policies.

However in the region of high infective prevalence such
as Africa, some tropical countries, and so forth, there are lots
of people infected with dengue, and so forth. and hence there
are lots of infected mosquitoes. So in these endemic regions
residents are frequently bitten by infected mosquitoes, thus
making individuals exposed with multiple bites of mosquito
which causes individuals to move to infected class with
increased rate compared to people who are exposed with
single effective bite ofmosquito. So it is reasonable to consider
nonlinear saturation incidence in place of bilinear incidence
or standard incidence in the model as it also incorporates the
effects of increased exposure to mosquito bites.

In fact the incidence rate is very important in the trans-
mission dynamics of the disease and the qualitative behaviour
of the disease changes with the change in the incidence rate.

In a recent paper by Xiao and Tang [1], interaction of the
nonlinear incidence and the partial immunity for a simple
SIV epidemic model is investigated and it is shown that due
to the nonlinear incidence, vaccination may contribute to
disease spread rather than to its elimination. A vector-host
epidemic model with nonlinear incidence is also analyzed
by Cai and Li [2]. Here they considered nonlinear saturating
type incidence and they studied the effect of this type of
incidence rate on the basic reproduction number and the
equilibrium level of the infective population. Hu et al. [3]
analyzed an SIR epidemic model with nonlinear incidence
rate and treatment. Here it is shown that reducing the basic
reproduction number below one is not enough to eliminate
the disease as backward bifurcation occurs for this model.
Also when the basic reproduction number is greater than
unity, there are multiple endemic equilibria. The conditions
for the stability of endemic equilibrium and the existence
of limit cycle are discussed in this paper. A discrete-time
epidemic model with nonlinear incidence rates is studied
by Li et al. [4], where a very complex dynamical behaviors
are demonstrated. It is shown that there are possibilities of
the transcritical bifurcation, flip bifurcation,Hopf bifurcation
and chaos. A vector-borne model with nonlinear incidence
is analyzed by Ozair et al. [5]. Here they considered the
conditions for the stability of endemic equilibrium.
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In recent years, dengue has become a major public
health problem and is endemic in several countries. It is
affecting almost one-third of the world’s population. Dengue
is an infection caused by a virus known as flavivirus and is
spread by their vector Aedes aegypti. There are four different
serotypes of flavivirus but infection with one serotype gives
life-long immunity to that serotype but not to other three
serotypes. So one can formulate dengue disease model as
SIS or SIR model depending upon serotypes of flavivirus.
In this paper we have formulated an SIR epidemic model
with nonlinear incidence assuming the infection of dengue
is caused by the flavivirus which is giving life-long immunity.
In dengue-endemic area a person can be infected with more
than one serotype of flavivirus in his/her lifetime. But in the
current study we have ignored this fact as it will complicate
the model and its analysis.

The paper is organized as follows. In Section 2 the model
and some preliminary properties are presented. In Section 3
equilibria and bifurcation are studied. Section 4 is devoted to
the global stability analysis of the endemic equilibrium, when
it is unique. Numerical simulations are given in Section 5, we
end the paper with conclusions in Section 6.

2. Model Formulation

The vector-host epidemic model with nonlinear incidence
can be described by the following system of differential
equations:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑏

1
− 𝜆

1
𝑆 (𝑡) 𝑉 (𝑡) [1 + 𝛼𝑉 (𝑡)] − 𝜇

1
𝑆 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝜆

1
𝑆 (𝑡) 𝑉 (𝑡) [1 + 𝛼𝑉 (𝑡)] − 𝛾𝐼 (𝑡) − 𝜇1𝐼 (𝑡) ,

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝛾𝐼 (𝑡) − 𝜇

1
𝑅 (𝑡) ,

𝑑𝑀 (𝑡)

𝑑𝑡
= 𝑏

2
− 𝜆

2
𝑀(𝑡) 𝐼 (𝑡) − 𝜇

2
𝑀(𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝜆

2
𝑀(𝑡) 𝐼 (𝑡) − 𝜇

2
𝑉 (𝑡) .

(1)

The total host population size at time 𝑡, given by 𝑁
1
(𝑡), is

partitioned into subclasses of individuals who are susceptible,
infectious and recovered, with sizes denoted by 𝑆(𝑡), 𝐼(𝑡) and
𝑅(𝑡), respectively. Furthermore, the host population dies at
a natural death rate 𝜇

1
. In addition, the host population is

recruited at a rate 𝑏
1
. We assume that vertical transmission in

the host does not occur so that all newly recruited individuals
are susceptible. The per capita recovery rate of the hosts
is given by 𝛾. The recovered individuals are assumed to
acquire permanent immunity and there is no transfer from
the 𝑅 class back to the 𝑆 class. The nonlinear incidence
rate is 𝜆

1
𝑆(𝑡)𝑉(𝑡)[1 + 𝛼𝑉(𝑡)], where 𝜆

1
and 𝛼 are positive

constants, 𝑉(𝑡) is the number of vectors at time 𝑡 who carry
the pathogen. It corresponds to an increased rate of infection
due to two exposures over a short time period. The single
contacts lead to infection at the rate 𝜆

1
𝑆(𝑡)𝑉(𝑡), whereas the

new infective individuals arise from double exposures at a
rate 𝛼𝜆

1
𝑆(𝑡)𝑉

2
(𝑡).

The second component of the vector population is the
number of pathogen-free (susceptible) vectors at time 𝑡, given
by𝑀(𝑡).The total size of the vector population at time 𝑡, given
by 𝑁

2
(𝑡) and is subdivided into these two vector-population

classes, the susceptible vectors and infectious vectors. The
vector population dies at a natural death rate 𝜇

2
. In addition,

the vector population is recruited at a birth rate 𝑏
2
. Although

there are evidences that the pathogen of several vector-
borne diseases (e.g., West Nile fever, yellow fever and Lyme
disease) can be transmitted from (female) parent to offspring
in the vector population, we will assume that all newborn
vectors are susceptible and vertical transmission is neglected.
Susceptible vectors start carrying the pathogen after getting
into contact (biting) an infective host at a rate 𝜆

2
so that the

incidence of newly infected vectors is given by a mass-action
term 𝜆

2
𝑀(𝑡)𝐼(𝑡). In contrast to the host population, once the

vectors become carriers of the microparasite, they carry it for
life.

We make some reasonable technical assumptions on the
parameters of themodel, namely that 𝛾 > 0, 𝜇

𝑗
> 0 and 𝑏

𝑗
> 0

for 𝑗 = 1, 2. The above systems for the host population and
the vector are also equippedwith initial conditions as follows:
𝑆(0) = 𝑆

0
, 𝐼(0) = 𝐼

0
, 𝑅(0) = 𝑅

0
,𝑀(0) = 𝑀

0
and 𝑉(0) = 𝑉

0
.

The total population size 𝑁
1
(𝑡) can be determined by

𝑁
1
(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) or from the differential equation

𝑑𝑁
1
(𝑡)

𝑑𝑡
= 𝑏

1
− 𝜇

1
𝑁
1
(𝑡) , (2)

which is derived by adding the first three equations in (1).The
total number of vectors𝑁

2
(𝑡) can be determined by𝑁

2
(𝑡) =

𝑀(𝑡) + 𝑉(𝑡) or from the differential equation

𝑑𝑁
2
(𝑡)

𝑑𝑡
= 𝑏

2
− 𝜇

2
𝑁
2
, (3)

which is derived by adding the last two equations in (1).
It is easily seen that both for the host population and

for the vector population the corresponding total population
sizes are asymptotically constant:

lim
𝑡→∞

𝑁
1
(𝑡) =

𝑏
1

𝜇
1

, lim
𝑡→∞

𝑁
2
(𝑡) =

𝑏
2

𝜇
2

. (4)

So we can assume without loss of generality that 𝑁
1
(𝑡) =

𝑏
1
/𝜇
1
, 𝑁

2
(𝑡) = 𝑏

2
/𝜇
2
for all 𝑡 ≥ 0.

Then the dynamics of system (1) is qualitatively equivalent
to the dynamics of system given by

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑏

1
− 𝜆

1
𝑆 (𝑡) 𝑉 (𝑡) [1 + 𝛼𝑉 (𝑡)] − 𝜇

1
𝑆 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝜆

1
𝑆 (𝑡) 𝑉 (𝑡) [1 + 𝛼𝑉 (𝑡)] − 𝛾𝐼 (𝑡) − 𝜇1𝐼 (𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝜆

2
[
𝑏
2

𝜇
2

− 𝑉 (𝑡)] 𝐼 (𝑡) − 𝜇
2
𝑉 (𝑡) .

(5)

The values of 𝑅 and 𝑀 can be determined correspondingly
from 𝑅 = 𝑏

1
/𝜇
1
− 𝑆 − 𝐼, and𝑀 = 𝑏

2
/𝜇
2
− 𝑉 respectively.
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For biological reasons we need the solutions nonnegative.
Mathematical properties of the solutions lead us to study the
system (5) in the closed set

Γ = {(𝑆, 𝐼, 𝑉)∈R3
+
| 0 ≤ 𝑆 + 𝐼≤

𝑏
1

𝜇
1

, 0 ≤ 𝑉≤
𝑏
2

𝜇
2

, 𝑆 ≥ 0, 𝐼≥0} ,

(6)

where R3
+
denotes the non-negative cone of R3 including its

lower dimensional faces. It can be verified that Γ is positively
invariant with respect to (5). We denote by 𝜕Γ and Γ0 the
boundary and the interior of Γ in R3, respectively.

3. Equilibria and Bifurcation Analysis

The disease-free equilibrium of system (5) is 𝐸
0
= (𝑏

1
/

𝜇
1
, 0, 0). The endemic equilibria 𝐸

1
= (𝑆

∗
, 𝐼
∗
, 𝑉

∗
) of system

(5) can be deduced by the system,

𝑏
1
− 𝜆

1
𝑆
∗
𝑉
∗
[1 + 𝛼𝑉

∗
] − 𝜇

1
𝑆
∗
= 0,

𝜆
1
𝑆
∗
𝑉
∗
[1 + 𝛼𝑉

∗
] − 𝛾𝐼

∗
− 𝜇

1
𝐼
∗
= 0,

𝜆
2
[
𝑏
2

𝜇
2

− 𝑉
∗
] 𝐼

∗
− 𝜇

2
𝑉
∗
= 0,

(7)

which gives,

𝑆
∗
=

𝑏
1

𝜆
1
𝑉∗ (1 + 𝛼𝑉∗) + 𝜇

1

, 𝐼
∗
=

𝜇
2
𝑉
∗

𝜆
2
(𝑏
2
/𝜇
2
− 𝑉∗)

,

(8)

and 𝑉∗ is the positive solution of the following equation,

𝑎
1
𝑉
∗2
+ 𝑎

2
𝑉
∗
+ 𝑎

3
= 0, (9)

where
𝑎
1
= 𝜆

1
𝜆
2
𝑏
1
𝛼 + 𝜇

2
𝜆
1
𝛼 (𝛾 + 𝜇

1
) ,

𝑎
2
= 𝜆

1
𝜆
2
𝑏
1
+ 𝜇

2
𝜆
1
(𝛾 + 𝜇

1
) −
𝜆
1
𝜆
2
𝑏
1
𝑏
2
𝛼

𝜇
2

= 𝛼𝜇
1
𝜇
2
(𝛾 + 𝜇

1
) (𝑅

∗

1
− 𝑅

0
) ,

𝑎
3
= 𝜇

1
𝜇
2
(𝛾 + 𝜇

1
) −
𝜆
1
𝜆
2
𝑏
1
𝑏
2

𝜇
2

= 𝜇
1
𝜇
2
(𝛾 + 𝜇

1
) (1 − 𝑅

0
) ,

𝑅
∗

1
=
𝜆
1
𝜆
2
𝑏
1
+ 𝜇

2
𝜆
1
(𝛾 + 𝜇

1
)

𝛼𝜇
1
𝜇
2
(𝛾 + 𝜇

1
)

,

𝑅
0
=
𝜆
1
𝜆
2
𝑏
1
𝑏
2

𝜇
1
𝜇2
2
(𝛾 + 𝜇

1
)
.

(10)

Thus, we observe that
𝑎
1
> 0; 𝑎

2
< 0 ⇐⇒ 𝑅

∗

1
< 𝑅

0
; 𝑎

3
> 0 ⇐⇒ 𝑅

0
< 1.

(11)

By the Descartes’ rule of signs, it follows that there is a unique
endemic equilibrium whenever 𝑎

3
< 0 and there are two en-

demic equilibria whenever 𝑎
3
> 0, 𝑎

2
< 0 and 𝑎2

2
− 4𝑎

1
𝑎
3
> 0.

Furthermore, we observe that there is a bifurcation point
when 𝑎

3
> 0, 𝑎

2
< 0 and 𝑎2

2
− 4𝑎

1
𝑎
3
= 0. In fact the quantity

𝑎
2

2
− 4𝑎

1
𝑎
3
can be expressed in terms of new threshold 𝑅∗

0
,

where

𝑅
∗

0
=
𝑀
0

𝑁
0

,

𝑀
0
=
2𝜆

2

1
𝜆
2

2
𝑏
2

1
𝑏
2
𝛼

𝜇
1
𝜇
2
(𝛾 + 𝜇

1
)
+
2𝜆

2

1
𝜆
2
𝑏
1
𝑏
2
𝛼

𝜇
1

+ 𝑃
0
,

𝑁
0
=
𝜆
1
𝜆
2
𝑏
1
𝜇
2

2
+ 2𝜆

1
𝜇
3

2
(𝛾 + 𝜇

1
)

𝑏
2

+
𝜆
1
𝜇
4

2
(𝛾 + 𝜇

1
)
2

𝜆
2
𝑏
1
𝑏
2

+ 𝜆
1
𝜆
2
𝑏
1
𝑏
2
𝛼
2
+ 𝑃

0
,

𝑃
0
= 4𝜆

1
𝜆
2
𝑏
1
𝛼𝜇

2
+ 4𝜆

1
𝛼𝜇

2

2
(𝛾 + 𝜇

1
) .

(12)

By a little algebraic calculation, we have 𝑎2
2
−4𝑎

1
𝑎
3
> 0when-

ever 𝑅
0
> 𝑅

∗

0
. Taking into account the above consideration,

we have the following theorem.

Theorem 1. System (7) admits a unique endemic equilibrium
𝐸 when 𝑅

0
≥ 1; there are no endemic equilibria for 𝑅

0
< 𝑅

∗

0
;

there are two endemic equilibria, 𝐸
1
and 𝐸

2
, for 𝑅 < 𝑅

0
< 1

and 𝑅 = max{𝑅∗
0
, 𝑅

∗

1
}.

Next we analyze the stability of the disease-free equilib-
rium 𝐸

0
= (𝑏

1
/𝜇
1
, 0, 0). The Jacobian matrix corresponding

to (7) is

𝐽 (𝑆, 𝐼, 𝑉)

=(

−𝜆
1
𝑉 (1 + 𝛼𝑉)−𝜇

1
0 −𝜆

1
𝑆 (1+2𝛼𝑉)

𝜆
1
𝑉 (1+𝛼𝑉) −𝛾−𝜇

1
𝜆
1
𝑆 (1+2𝛼𝑉)

0 𝜆
2
(
𝑏
2

𝜇
2

−𝑉) −𝜆
2
𝐼−𝜇

2

).

(13)

First, we observe that

𝐽 (
𝑏
1

𝜇
1

, 0, 0) =
(
(

(

−𝜇
1

0 −𝜆
1

𝑏
1

𝜇
1

0 −𝛾 − 𝜇
1
𝜆
1

𝑏
1

𝜇
1

0 𝜆
2

𝑏
2

𝜇
2

−𝜇
2

)
)

)

, (14)

so that the eigenvalues 𝜉 are given by the roots of the following
qubic equation

(𝜇
1
+ 𝜉) [𝜉

2
+ (𝛾 + 𝜇

1
+ 𝜇

2
) 𝜉 + 𝜇

2
(𝛾 + 𝜇

1
) (1 − 𝑅

0
)] = 0.

(15)

Hence if 𝑅
0
< 1, then the eigenvalues are all negatives

and 𝐸
0
is locally asymptotically stable. If 𝑅

0
> 1, then two
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eigenvalues are negative and one is positive, so that 𝐸
0
is

unstable.
Since there are no explicit expressions for equilibria 𝐸

1

and 𝐸
2
and the existence conditions for the two equilibria

are very complex, it is very difficult to prove their stability by
using the existing analytic methods.

Theorem 1 establishes that 𝑅
0
= 1 is a bifurcation value.

In fact, across 𝑅
0
= 1 the disease free equilibrium changes

its stability properties. Now, we investigate what kind of
bifurcation occurs at𝑅

0
= 1. In order to do that, we will make

use of the result summarized below, which has been obtained
in [6] and is based on the use of the center manifold theory
[7].

Let us consider a general system of ODEs with a parame-
ter 𝜙:

𝑥̇ = 𝑓 (𝑥, 𝜙) ; 𝑓 : 𝑅
𝑛
× 𝑅 󳨀→ 𝑅

𝑛
, 𝑓 ∈ 𝐶

2
(𝑅
𝑛
× 𝑅) .

(16)

Without loss of generality, we assume that 𝑥 = 0 is an
equilibrium for (16).

Theorem 2 (see (Castillo-Chavez and Song [6])). Assume:

(A1) 𝐴 = 𝐷
𝑥
𝑓(0, 0) is the linearization matrix of system

(16) around the equilibrium 𝑥 = 0 with 𝜙 evaluated
at 0. Zero is a simple eigenvalue of 𝐴 and all other
eigenvalues of 𝐴 have negative real parts.

(A2) Matrix 𝐴 has a right eigenvector 𝜔 and a left eigenvec-
tor 𝜃 corresponding to the zero eigenvalue.

Let 𝑓
𝑘
denotes the 𝑘th component of 𝑓 and,

𝑎 =

𝑛

∑

𝑘,𝑖,𝑗

𝜃
𝑘
𝜔
𝑖
𝜔
𝑗

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝑥

𝑗

(0, 0) , 𝑏 =

𝑛

∑

𝑘,𝑖,𝑗

𝜃
𝑘
𝜔
𝑖

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝜙
(0, 0) .

(17)

Then the local dynamics of system (16) around 𝑥 = 0 are totally
determined by 𝑎 and 𝑏

(i) 𝑎 > 0, 𝑏 > 0. When 𝜙 < 0, with |𝜙| ≪ 1, 𝑥 =
0 is locally asymptotically stable and there exists a
positive unstable equilibrium; when 0 < |𝜙| ≪ 1,
𝑥 = 0 is unstable and there exists a negative and locally
asymptotically stable equilibrium;

(ii) 𝑎 < 0, 𝑏 < 0. When 𝜙 < 0, with |𝜙| ≪ 1, 𝑥 =
0 is unstable; when 0 < |𝜙| ≪ 1, 𝑥 = 0 is
locally asymptotically stable and there exists a positive
unstable equilibrium;

(iii) 𝑎 > 0, 𝑏 < 0. When 𝜙 < 0, with |𝜙| ≪ 1, 𝑥 = 0 is
unstable and there exists a locally asymptotically stable
negative equilibrium; when 0 < |𝜙| ≪ 1, 𝑥 = 0 is stable
and a positive unstable equilibrium appears;

(iv) 𝑎 < 0, 𝑏 > 0. When 𝜙 changes from negative to positive,
𝑥 = 0 changes its stability from stable to unstable. Cor-
respondingly, a negative unstable equilibrium becomes
positive and locally asymptotically stable.

It clearly appears that, at 𝜙 = 0 a transcritical bifurcation
takes place: more precisely, when 𝑎 < 0 and 𝑏 > 0, such a
bifurcation is forward; when 𝑎 > 0 and 𝑏 > 0 the bifurcation
at 𝜙 = 0 is backward. We will apply Theorem 2 to show that
system (7) may exhibit a backward bifurcation when 𝑅

0
= 1.

We consider the disease-free equilibrium 𝐸
0
= (𝑏

1
/𝜇
1
, 0, 0)

and observe that the condition 𝑅
0
= 1 can be seen, in terms

of the parameter 𝜆
1
, as 𝜆

1
= 𝜆

∗
= 𝜇

1
𝜇
2

2
(𝛾 + 𝜇

1
)/𝜆

2
𝑏
1
𝑏
2
. The

eigenvalues of the matrix

𝐽 (𝐸
0
, 𝜆
∗
) =
(
(

(

−𝜇
1

0 −𝜆
∗
𝑏
1

𝜇
1

0 −𝛾 − 𝜇
1
𝜆
∗
𝑏
1

𝜇
1

0 𝜆
2

𝑏
2

𝜇
2

−𝜇
2

)
)

)

, (18)

are given by

𝜉
1
= −𝜇

1
, 𝜉

2
= −𝛾 − 𝜇

1
− 𝜇

2
, 𝜉

3
= 0. (19)

Thus 𝜉
3
= 0 is a simple zero eigenvalue of the matrix

𝐽(𝐸
0
, 𝜆
∗
) and the other eigenvalues are real and negative.

Hence, when 𝜆
1
= 𝜆

∗ (or equivalently when 𝑅
0
= 1), the

disease-free equilibrium 𝐸
0
is a nonhyperbolic equilibrium:

the assumption (A1) of Theorem 2 is then verified.
Now we denote by 𝜔 = (𝜔

1
, 𝜔
2
, 𝜔
3
)
𝑇, a right eigenvector

associated with the zero eigenvalue 𝜉
3
= 0. It follows:

−𝜇
1
𝜔
1
−
𝜇
2

2
(𝛾 + 𝜇

1
)

𝜆
2
𝑏
2

𝜔
3
= 0,

− (𝛾 + 𝜇
1
) 𝜔

2
+
𝜇
2

2
(𝛾 + 𝜇

1
)

𝜆
2
𝑏
2

𝜔
3
= 0,

𝜆
2
𝑏
2

𝜇
2

𝜔
2
− 𝜇

2
𝜔
3
= 0,

(20)

so that

𝜔 = (−
𝛾 + 𝜇

1

𝜇
1

, 1,
𝜆
2
𝑏
2

𝜇2
2

)

𝑇

. (21)

Furthermore, the left eigenvector 𝜃 = (𝜃
1
, 𝜃
2
, 𝜃
3
) satisfying

𝜔 ⋅ 𝜃 = 1 is given by:

−𝜇
1
𝜃
1
= 0,

− (𝛾 + 𝜇
1
) 𝜃

2
+
𝜆
2
𝑏
2

𝜇
2

𝜃
3
= 0,

𝜇
2

2
(𝛾 + 𝜇

1
)

𝜆
2
𝑏
2

(𝜃
2
− 𝜃

1
) − 𝜇

2
𝜃
3
= 0,

𝜃
3
(

𝜆
2
𝑏
2

𝜇
2
(𝛾 + 𝜇

1
)
+
𝜆
2
𝑏
2

𝜇2
2

) = 1.

(22)

Then, the left eigenvector 𝜃 turns out to be:

𝜃 = (0,
𝜇
2

𝛾 + 𝜇
1
+ 𝜇

2

,
𝜇
2

2
(𝛾 + 𝜇

1
)

𝜆
2
𝑏
2
(𝛾 + 𝜇

1
+ 𝜇

2
)
) . (23)
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We can thus compute the coefficient 𝑎 and 𝑏 defined in
Theorem 2, that is,

𝑎 =

3

∑

𝑘,𝑖,𝑗=1

𝜃
𝑘
𝜔
𝑖
𝜔
𝑗

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝑥

𝑗

(𝐸
0
, 𝜆
∗
) ,

𝑏 =

3

∑

𝑘,𝑖=1

𝜃
𝑘
𝜔
𝑖

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝜆

1

(𝐸
0
, 𝜆
∗
) .

(24)

Taking into account of system (5) and considering in 𝑎
and 𝑏 only the nonzero derivatives for the terms (𝜕2𝑓

𝑘
/

𝜕𝑥
𝑖
𝜕𝑥

𝑗
)(𝐸

0
, 𝜆
∗
) and (𝜕2𝑓

𝑘
/𝜕𝑥

𝑖
𝜕𝜆

1
)(𝐸

0
, 𝜆
∗
), it follows that:

𝑎 = 2𝜃
1
𝜔
1
𝜔
3

𝜕
2
𝑓
1

𝜕𝑆𝜕𝑉
(𝐸
0
, 𝜆
∗
) + 𝜃

1
𝜔
2

3

𝜕
2
𝑓
1

𝜕𝑉2
(𝐸
0
, 𝜆
∗
)

+ 2𝜃
2
𝜔
1
𝜔
3

𝜕
2
𝑓
2

𝜕𝑆𝜕𝑉
(𝐸
0
, 𝜆
∗
) + 𝜃

2
𝜔
2

3

𝜕
2
𝑓
2

𝜕𝑉2
(𝐸
0
, 𝜆
∗
)

+ 2𝜃
3
𝜔
2
𝜔
3

𝜕
2
𝑓
3

𝜕𝑉𝜕𝐼
(𝐸
0
, 𝜆
∗
) ,

𝑏 = 𝜃
1
𝜔
1

𝜕
2
𝑓
1

𝜕𝑆𝜕𝜆
1

(𝐸
0
, 𝜆
∗
) + 𝜃

1
𝜔
3

𝜕
2
𝑓
1

𝜕𝑉𝜕𝜆
1

(𝐸
0
, 𝜆
∗
)

+ 𝜃
2
𝜔
1

𝜕
2
𝑓
2

𝜕𝑆𝜕𝜆
1

(𝐸
0
, 𝜆
∗
) + 𝜃

2
𝜔
3

𝜕
2
𝑓
2

𝜕𝑉𝜕𝜆
1

(𝐸
0
, 𝜆
∗
) .

(25)

In view of (21) and (23), we get

𝑎 =
2𝜆

2

𝜇
1
𝜇3
2
(𝛾 + 𝜇

1
+ 𝜇

2
)
[𝜆
1
𝜆
2
𝑏
1
𝑏
2

2
𝛼

−𝜇
2

2
(𝛾 + 𝜇

1
) (𝜆

1
𝑏
2
+ 𝜇

1
𝜇
2
)] ,

𝑏 =
𝜆
2
𝑏
1
𝑏
2

𝜇
1
𝜇
2
(𝛾 + 𝜇

1
+ 𝜇

2
)
.

(26)

Observe that the coefficient 𝑏 is always positive so that, ac-
cording to Theorem 2, it is the sign of the coefficient 𝑎
which decides the local dynamics around the disease-free
equilibrium for 𝜆

1
= 𝜆

∗.
Let us introduce

𝛿 =
𝜆
1
𝜆
2
𝑏
1
𝑏
2

2
𝛼

𝜇2
2
(𝛾 + 𝜇

1
) (𝜆

1
𝑏
2
+ 𝜇

1
𝜇
2
)
. (27)

The coefficient 𝑎 is positive if and only if 𝛿 > 1. In this case,
the direction of the bifurcation of system (5) at 𝑅

0
= 1 is

backward. Sowe summarize the above results in the following
theorem.

Theorem 3. If 𝛿 > 1, system (5) exhibits a backward bifurca-
tion when 𝑅

0
= 1. If 𝛿 < 1, system (5) exhibits a forward

bifurcation when 𝑅
0
= 1.

The local dynamics in the neighborhood of the bifurca-
tion value 𝑅

0
= 1 is described in the former case by the (i)

of Theorem 2 and in the later case by the (iv) of the same
theorem.

4. Global Stability Analysis

In Section 3 it has been shown that 𝑅
0
≥ 1 implies the

existence and uniqueness of the endemic equilibrium 𝐸. The
stability analysis of𝐸will be here performed through the geo-
metric approach to global stability due to Li and Muldowney
[8]. The method has been summarized in the Appendix.

System (5), under the assumption 𝑅
0
> 1, satisfies

conditions (H1) and (H2) in Appendix. In fact, when 𝑅
0
>

1, then 𝐸
0
is unstable. The instability of 𝐸

0
, together with

𝐸
0
∈ 𝜕Γ, implies the uniform persistence, that is, there exists

a constant 𝑐 > 0 such that:

lim
𝑡→+∞

inf 𝑆 (𝑡) > 𝑐, lim
𝑡→+∞

inf 𝐼 (𝑡) > 𝑐,

lim
𝑡→+∞

inf 𝑉 (𝑡) > 𝑐.
(28)

The uniform persistence is equivalent to the existence of a
compact set in the interior of Γ which is absorbing for (5).
Thus, (H1) is verified. Moreover, as previously shown, 𝐸 is
the only equilibrium in the interior of Γ, so that (H2) is
verified, too. Now it remains to find conditions for which the
Bendixson criterion given byTheorem A.4 is verified. Taking
into account of the Jacobianmatrix (13), we obtain the second
additive compound matrix 𝐽[2](𝑆, 𝐼, 𝑉),

𝐽
[2]
=(

𝐽
[2]

11
𝜆
1
𝑆 (1 + 2𝛼𝑉) 𝜆

1
𝑆 (1 + 2𝛼𝑉)

𝜆
2
(
𝑏
2

𝜇
2

− 𝑉) 𝐽
[2]

22
0

0 𝜆
1
𝑉 (1 + 𝛼𝑉) 𝐽

[2]

33

),

(29)

where

𝐽
[2]

11
= −𝜆

1
𝑉 (1 + 𝛼𝑉) − 𝛾 − 2𝜇

1
,

𝐽
[2]

22
= −𝜆

1
𝑉 (1 + 𝛼𝑉) − 𝜇

1
− 𝜆

2
𝐼 − 𝜇

2
,

𝐽
[2]

33
= −𝛾 − 𝜇

1
− 𝜆

2
𝐼 − 𝜇

2
.

(30)

We consider the following function

𝑃 = 𝑃 (𝑆, 𝐼, 𝑉) = diag { 𝐼
𝑉
,
𝐼

𝑉
,
𝐼

𝑉
} . (31)

So that

𝑃
𝑓
= diag{𝐼

󸀠
𝑉 − 𝑉

󸀠
𝐼

𝑉2
,
𝐼
󸀠
𝑉 − 𝑉

󸀠
𝐼

𝑉2
,
𝐼
󸀠
𝑉 − 𝑉

󸀠
𝐼

𝑉2
} ,

𝑃
𝑓
𝑃
−1
= diag{𝐼

󸀠

𝐼
−
𝑉
󸀠

𝑉
,
𝐼
󸀠

𝐼
−
𝑉
󸀠

𝑉
,
𝐼
󸀠

𝐼
−
𝑉
󸀠

𝑉
} .

(32)

Therefore

𝐵 = 𝑃
𝑓
𝑃
−1
+ 𝑃𝐽

[2]
𝑃
−1
= (
𝐵
11
𝐵
12

𝐵
21
𝐵
22

) , (33)
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where

𝐵11 =
𝐼
󸀠

𝐼
−
𝑉
󸀠

𝑉
− 𝜆1𝑉(1 + 𝛼𝑉) − 2𝜇1 − 𝛾,

𝐵12 = [𝜆1𝑆 (1 + 2𝛼𝑉) , 𝜆1𝑆 (1 + 2𝛼𝑉)] ,

𝐵21 = [𝜆2 (
𝑏2

𝜇2

− 𝑉) , 0]

𝑇

,

𝐵22

=

[
[
[

[

𝐼
󸀠

𝐼
−
𝑉
󸀠

𝑉
−𝜆1𝑉(1+𝛼𝑉)−𝜇1−𝜆2𝐼−𝜇2 0

𝜆1𝑉(1 + 𝛼𝑉)
𝐼
󸀠

𝐼
−
𝑉
󸀠

𝑉
−𝛾−𝜇1−𝜆2𝐼−𝜇2

]
]
]

]

.

(34)

Consider now the norm in 𝑅3 as

󵄨󵄨󵄨󵄨𝑢1, 𝑢2, 𝑢3
󵄨󵄨󵄨󵄨 = max {󵄨󵄨󵄨󵄨𝑢1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢3
󵄨󵄨󵄨󵄨} , (35)

where (𝑢
1
, 𝑢
2
, 𝑢
3
) denotes the vector in 𝑅3 and denote by 𝜇

the Lozinski ̆i measure with respect to this norm. It follows

𝜇 (𝐵) ≤ sup {𝑔
1
, 𝑔
2
} = sup {𝜇

1
(𝐵
11
)+
󵄨󵄨󵄨󵄨𝐵12
󵄨󵄨󵄨󵄨 , 𝜇1 (𝐵22)+

󵄨󵄨󵄨󵄨𝐵21
󵄨󵄨󵄨󵄨} ,

(36)

where |𝐵
12
|, |𝐵

21
| are matrix norms with respect to the 𝑙

1

vector norm, and 𝜇
1
denotes the Lozinski ̆i measure with

respect to the 𝑙
1
norm. More specifically,

𝜇
1
(𝐵
11
) =
𝐼
󸀠

𝐼
−
𝑉
󸀠

𝑉
− 𝜆

1
𝑉 (1 + 𝛼𝑉) − 𝛾 − 2𝜇

1
,

󵄨󵄨󵄨󵄨𝐵12
󵄨󵄨󵄨󵄨 = 𝜆1𝑆 (1 + 2𝛼𝑉) ,

󵄨󵄨󵄨󵄨𝐵21
󵄨󵄨󵄨󵄨 = 𝜆2 (

𝑏
2

𝜇
2

− 𝑉) ,

𝜇
1
(𝐵
22
) =
𝐼
󸀠

𝐼
−
𝑉
󸀠

𝑉
− 𝜇

1
− 𝜆

2
𝐼 − 𝜇

2
.

(37)

Therefore,

𝑔
1
=
𝐼
󸀠

𝐼
−
𝑉
󸀠

𝑉
− 𝜆

1
𝑉 (1 + 𝛼𝑉) − 2𝜇

1
− 𝛾 + 𝜆

1
𝑆 (1 + 2𝛼𝑉) ,

(38)

𝑔
2
=
𝐼
󸀠

𝐼
−
𝑉
󸀠

𝑉
− 𝜇

1
− 𝜆

2
𝐼 − 𝜇

2
+ 𝜆

2
(
𝑏
2

𝜇
2

− 𝑉) . (39)

Observe that system (5) provides the following equalities

𝑉
󸀠

𝑉
=
𝜆
2
𝑏
2
𝐼

𝜇
2
𝑉
− 𝜆

2
𝐼 − 𝜇

2
. (40)

Substituting (40) into (38) and (40) into (39), respectively, we
have

𝑔
1
=
𝐼
󸀠

𝐼
−
𝜆
2
𝑏
2
𝐼

𝜇
2
𝑉
+ 𝜆

2
𝐼 + 𝜇

2
− 𝜆

1
𝑉 (1 + 𝛼𝑉)

− 2𝜇
1
− 𝛾 + 𝜆

1
𝑆 (1 + 2𝛼𝑉)

≤
𝐼
󸀠

𝐼
+ 𝜆

2
𝐼 + 𝜇

2
− 𝜆

1
𝑉 (1+𝛼𝑉) − 2𝜇

1
− 𝛾 + 𝜆

1
𝑆 (1+2𝛼𝑉) ,

𝑔
2
=
𝐼
󸀠

𝐼
−
𝜆
2
𝑏
2
𝐼

𝜇
2
𝑉
− 𝜇

1
+ 𝜆

2
(
𝑏
2

𝜇
2

− 𝑉)

≤
𝐼
󸀠

𝐼
− 𝜇

1
+ 𝜆

2
(
𝑏
2

𝜇
2

− 𝑉) .

(41)
Thus, (36) implies

𝜇 (𝐵) ≤
𝐼
󸀠

𝐼
− 𝜇

1
+ Λ, (42)

where

Λ = max{𝜆
2
𝐼 + 𝜇

2
− 𝜆

1
𝑉 (1 + 𝛼𝑉) − 𝜇

1
− 𝛾

+ 𝜆
1
𝑆 (1 + 2𝛼𝑉) , 𝜆

2
(
𝑏
2

𝜇
2

− 𝑉)} .

(43)

In view of 𝑐 ≤ 𝑆, 𝐼 ≤ 𝑏
1
/𝜇
1
and 𝑐 ≤ 𝑉 ≤ 𝑏

2
/𝜇
2
, we can deduce

that if

𝜆
2
(
𝑏
2

𝜇
2

− 𝑐) < 𝜇
1
,

𝜆
2

𝑏
1

𝜇
1

+ 𝜇
2
+ 𝜆

1

𝑏
1

𝜇
1

(1 + 2𝛼
𝑏
2

𝜇
2

) < 𝜆
1
𝑐 (1 + 𝛼𝑐) + 𝜇

1
+ 𝛾,

(44)
then

𝜇 (𝐵) ≤
𝐼
󸀠

𝐼
+ Π, (45)

where

Π = max{𝜆
2

𝑏
1

𝜇
1

+ 𝜇
2
+ 𝜆

1

𝑏
1

𝜇
1

(1 + 2𝛼
𝑏
2

𝜇
2

) − 𝜆
1
𝑐 (1 + 𝛼𝑐)

− 𝜇
1
− 𝛾, 𝜆

2
(
𝑏
2

𝜇
2

− 𝑐) − 𝜇
1
} < 0.

(46)
Hence

1

𝑡
∫

𝑡

0

𝜇 (𝐵) 𝑑𝑠 ≤
1

𝑡
log 𝐼 (𝑡)
𝐼 (0)

+ Π, (47)

and the Bendixson criterion given by Theorem A.4 is thus
verified. The discussions above may be summarized as fol-
lows.

Theorem 4. If 𝑅
0
≥ 1, then system (5) admits a unique

endemic equilibrium 𝐸. It is globally asymptotically stable with
respect to solutions of (5) initiating in the interior of Γ, provided
that inequality (44) holds true.



Discrete Dynamics in Nature and Society 7

𝑆

𝐼

2000

1500

1000

500

0
2000150010005000

Figure 1: Phase plot of 𝐼 verses 𝑆 showing bistability when 𝑅 < 𝑅
0
<

1 and 𝛿 > 1 for the parameter values 𝑏
1
= 240, 𝜆

1
= 0.00012, 𝛼 =

0.08, 𝜇
1
= 0.16, 𝛾 = 0.015, 𝜆

2
= 0.0001, 𝑏

2
= 550, 𝜇

2
= 0.5.

𝑆

𝐼

3000

2500

2000

1500

1000

500

0
0 500 1000 1500 2000

Figure 2: Phase plot of 𝐼 verses 𝑆 showing stability of unique
endemic equilibriumpoint when𝑅

0
> 1 and 𝛿 > 1 for the parameter

values 𝑏
1
= 80, 𝜆

1
= 0.0004, 𝛼 = 0.04, 𝜇

1
= 0.06, 𝛾 = 0.015, 𝜆

2
=

0.0002, 𝑏
2
= 200, 𝜇

2
= 0.5.

5. Simulation

The system (5) is simulated for various sets of parameters
using the package XPP [9]. In Figures 1–4, (𝑆, 𝐼) phase planes
are drawn which confer the existence and the stability of
different equilibria of the system (5). Here Figure 1 corre-
sponds to the situation stated in Theorem 1, where 𝑅 < 𝑅

0
<

1 and we get two endemic equilibria 𝐸
1
and 𝐸

2
and one

disease free equilibria 𝐸
0
(1500, 0, 0). And for 𝛿 > 1, it is

found that disease free equilibrium 𝐸
0
(1500, 0, 0) and the

endemic equilibrium point with largest infective population
𝐸
2
(557.678, 861.551, 161.682) are stable and the equilibrium

point 𝐸
1
(1170.057, 301.662, 62.589) is unstable.

Figure 2 corresponds to the situation when 𝑅
0
> 1 and

also 𝛿 > 1 and in this case we get unique stable endemic
equilibriumpoint and unstable disease free equilibriumpoint
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Figure 3: Phase plot of 𝐼 verses 𝑆 showing stability of unique feasible
disease free equilibrium point when 𝑅

0
< 𝑅

∗

0
< 1 for the parameter

values 𝑏
1
= 80, 𝜆

1
= 0.00001, 𝛼 = 0.04, 𝜇

1
= 0.06, 𝛾 = 0.015, 𝜆

2
=

0.0002, 𝑏
2
= 200, 𝜇

2
= 0.5.
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Figure 4: Phase plot of 𝐼 verses 𝑆 showing stability of unique feasible
endemic equilibrium point and instablity of disease free equilibrium
point when 𝛿 < 1, 𝑅

0
> 1 for the parameter values 𝑏

1
= 10, 𝜆

1
=
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=

0.5.

𝐸
0
. Figure 3 shows the stability of unique feasible disease free

equilibrium 𝐸
0
(1333.3, 0, 0) for 𝑅

0
< 𝑅

∗

0
< 1. For 𝛿 < 1, and

𝑅
0
≥ 1 we get two feasible equilibria: the unstable disease

free equilibria and a unique endemic equilibrium which is
shown in Figure 4.This fact ismore clear from the bifurcation
Figure 5, which is obtained by considering 𝜆

1
as the critical

parameter.Thehorizontal axis is labelledwith the appropriate
value of the reproduction number 𝑅

0
corresponding to this

bifurcation parameter 𝜆
1
. For 0 < 𝑅

0
< 1 we get stable

infection free equilibrium point 𝐸
0
and at 𝑅

0
= 1 we get

forward bifurcation, that is, for𝑅
0
> 1we get unstable disease

free equilibrium and unique stable endemic equilibrium
point. Figure 6 is showing the backward bifurcation for the
parameter values satisfying 𝛿 > 1. This diagram too is
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Figure 5: Forward bifurcation diagram for 𝛿 < 1 for the parameter
values 𝑏
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Figure 6: Backward bifurcation diagram for 𝛿 > 1 for the parameter
values 𝑏
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obtained by considering 𝜆
1
as the critical parameter and

horizontal axis is labelled with the appropriate value of the
reproduction number 𝑅

0
corresponding to this bifurcation

parameter 𝜆
1
. It is observed that when the reproduction

number 𝑅
0
is between 0 to 0.190526, the infection free

equilibrium alone is stable, for 0.1905261 < 𝑅
0
< 1 we have

bistability where either the infection free equilibrium is stable
or the equilibrium 𝐸

2
is stable. Again by increasing 𝜆

1
we get

𝑅
0
> 1 and we have unique stable endemic equilibrium point

and unstable disease free equilibrium 𝐸
0
. The equilibrium 𝐸

1

when it exists is always saddle. As backward bifurcation is
quite significant in this figure, so it seems that it can arise for
biologically reasonable parameter values too.

6. Conclusions

In this paper, a dengue disease epidemic model with non-
linear incidence has been analyzed. If 𝑅

0
< 1, the disease-

free equilibrium 𝐸
0
is locally asymptotically stable, that is,

the disease dies out. We find the condition under which the
system exhibits backward bifurcation at 𝑅

0
= 1. The stability

of two endemic equilibria in the case of backward bifurcation
for 𝑅

0
< 1 is not discussed analytically but we have shown

these by numerical simulations. It is found that the endemic
equilibrium with the largest infective population is stable,
while the endemic equilibrium with less infective population
is unstable. In the case of a unique endemic equilibrium, the
global stability analysis has been performed. A generalization
of the Poincaré-Bendixson criterion has been used.The suffi-
cient conditions thatwe found are not completely satisfactory,
as they involve the constant of uniform persistence 𝑐. How
to implement the geometric approach to give better stability
conditions for epidemic models with convex incidence rate
appears to be an open and stimulating challenge.

Appendix

Let 𝑥 󳨃→ 𝑓(𝑥) ∈ 𝑅
𝑛 be a 𝐶1 function for 𝑥 in an open set

𝐷 ⊂ 𝑅
𝑛. Consider the differential equation

𝑥
󸀠
= 𝑓 (𝑥) . (A.1)

Denote by 𝑥(𝑡, 𝑥
0
) the solution of (A.1) such that 𝑥(0, 𝑥

0
) =

𝑥
0
. We take the following two assumptions.

(H1) There exits a compact absorbing set𝐾 ⊂ 𝐷.
(H2) Equation (A.1) has a unique equilibrium 𝑥 in𝐷.

The equilibrium 𝑥 is said to be globally stable in 𝐷 if it
is locally stable and all trajectories in 𝐷 converge to 𝑥. The
following global-stability problem is formulated in [8].

Theorem A.1. Under the assumptions (H1) and (H2), the
global stability of 𝑥 with respect to 𝐷 is implied by its local
stability.

Assumptions (H1) and (H2) are satisfied if 𝑥 is global
stability in 𝐷. For 𝑛 ≥ 2, a Bendixson criterion is a condition
satisfied by 𝑓 which precludes the existence of nonconstant
periodic solution of (A.1). A Bendixson criterion is said to
be robust under 𝐶1 local perturbations of 𝑓 at 𝑥

1
∈ 𝐷 if,

for sufficiently small 𝜖 ≥ 0 and neighborhood 𝑈 of 𝑥
1
, it is

also satisfied by 𝑔 ∈ 𝐶1(𝐷 → 𝑅
𝑛
) such that the support

supp(𝑓 − 𝑔) ⊂ 𝑈 and |𝑓 − 𝑔|
𝐶
1 < 𝜖, where

󵄨󵄨󵄨󵄨𝑓 − 𝑔
󵄨󵄨󵄨󵄨𝐶1 = sup{

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑔 (𝑥)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑓

𝜕𝑥
(𝑥)−

𝜕𝑔

𝜕𝑥
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
: 𝑥∈𝐷} .

(A.2)

Such 𝑔 will be called local 𝜖-perturbations of 𝑓 at 𝑥
1
. It is

easy to see that the classic Bendixson’s condition div𝑓(𝑥) < 0
for 𝑛 = 2 is robust under𝐶1 local perturbations of at each𝑥

1
∈

𝑅
2. Bendixson’s condition for higher dimensional system that

are 𝐶1 robust are discussed in [8, 10, 11].
A point 𝑥

0
∈ 𝐷 is wandering for (A.1) if there exists a

neighborhood 𝑈 of 𝑥
0
and 𝑇 > 0 such that 𝑈 ∩ 𝑥(𝑡, 𝑈) is

empty for all 𝑡 > 𝑇. Thus, for example, all equilibria and limit
points are nonwandering. The following is a version of the
local 𝐶1 Closing lemma of Pugh (see [12, 13]).
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Lemma A.2. Let 𝑓 ∈ 𝐶1(𝐷 → 𝑅
𝑛
). Assume that all positive

semitrajectories of (A.1) are bounded. Suppose that 𝑥
0
is a

nonwandering point of (A.1) and that𝑓(𝑥
0
) ̸= 0.Then, for each

neighborhood 𝑈 of 𝑥
0
and 𝜖 > 0, there exists a 𝐶1 local-𝜖

perturbation 𝑔 of 𝑓 at 𝑥
0
such that

(a) supp(𝑓 − 𝑔) ⊂ 𝑈 and

(b) the perturbed system 𝑥󸀠 = 𝑔(𝑥) has a nonconstant
periodic solution whose trajectory passes through 𝑥

0
.

The following general global-stability principle is estab-
lished in [8].

Theorem A.3. Suppose that assumptions (H1) and (H2) hold.
Assume that (A.1) satisfies a Bendixson criterion that is robust
under 𝐶1 local perturbations of 𝑓 at all nonequilibrium
nonwandering points for (A.1). Then 𝑥 is globally stable in 𝐷
provided it is stable.

The main idea of the proof in [8] for Theorem A.3 is
as follows: suppose that system (A.1) satisfies a Bendixson
criterion. Then it does not have any nonconstant periodic
solutions. Moreover, the robustness of the Bendixson cri-
terion implies that all nearby differential equations have
nonconstant periodic solutions. Thus by Lemma A.2, all
of nonwandering points of (A.1) in 𝐷 must be equilibria.
In particular, each omega limit point in 𝐷 must be an
equilibrium. Therefore 𝜔(𝑥

0
) = {𝑥} for all 𝑥

0
∈ 𝐷 since 𝑥

is the only equilibrium in𝐷.
A method of deriving a Bendixson criterion in 𝑅𝑛 is

developed in [14]. The idea is to show that second compound
equation

𝑧
󸀠
(𝑡) =

𝜕𝑓
[2]

𝜕𝑥
(𝑥 (𝑡, 𝑥

0
)) 𝑧 (𝑡) , (A.3)

with respect to a solution 𝑥(𝑡, 𝑥
0
) ⊂ 𝐷 to (A.1), is uniformly

asymptotically stable, and the exponential decay rate of all
solutions to (A.3) is uniform for 𝑥

0
in each compact subset

of 𝐷. Here 𝜕𝑓[2]/𝜕𝑥 is second additive compound matrix of
the Jacobian matrix 𝜕𝑓/𝜕𝑥. Generally speaking, for an 𝑛 × 𝑛
matrix 𝐽 = (𝐽

𝑖𝑗
), 𝐽[2] is a ( 𝑛2 ) × ( 𝑛2 ) matrix and in the special

case 𝑛 = 3, one has

𝐽
[2]
= (

𝐽
11
+ 𝐽

22
𝑎
23

−𝐽
13

𝐽
32

𝐽
11
+ 𝐽

33
𝐽
12

−𝐽
31

𝐽
21

𝐽
22
+ 𝐽

33

) . (A.4)

𝜕𝑓
[2]
/𝜕𝑥 is a ( 𝑛2 ) × ( 𝑛2 ) matrix, and thus (A.3) is a linear

system of dimension ( 𝑛2 ). If𝐷 is simply connected, the above
mentioned stability property of (A.3) implies the exponential
decay of the surface area of any compact 2𝑑 surface in 𝐷,
which in turn precludes the existence of any invariant simply
closed rectifiable curve in 𝐷, including periodic orbits. The
required uniform asymptotic stability of system (A.3) can be
proved by constructing a suitable Lyapunov function.

Let 𝑥 󳨃→ 𝑃(𝑥) ( 𝑛2 ) × ( 𝑛2 ) matrix-valued function that is
𝐶
1 for 𝑥 ∈ 𝐷. Assume that𝑃−1(𝑥) exists and is continuous for
𝑥 ∈ 𝐾, the compact absorbing set. A quantity 𝑞

2
is defined as

𝑞
2
= lim sup

𝑡→∞

sup
𝑥
0
∈𝐾

1

𝑡
∫

𝑡

0

𝜇 (𝐵 (𝑥 (𝑠, 𝑥
0
))) 𝑑𝑠, (A.5)

where

𝐵 = 𝑃
𝑓
𝑃
−1
+ 𝑃
𝜕𝑓

[2]

𝜕𝑥
𝑃
−1
, (A.6)

and the matrix 𝑃
𝑓
is obtained by replacing each entry 𝑝

𝑖𝑗
of 𝑃

by its derivative in the direction of 𝑓, 𝑝
𝑖𝑗𝑓
. The quantity 𝜇(𝐵)

is the Lozinski ̆i measure of 𝐵 with respect to a vector norm
| ⋅ | in 𝑅𝑁,𝑁 = ( 𝑛2 ), defined by

𝜇 (𝐵) = lim
ℎ→0

+

|𝐼 + ℎ𝐵| − 1

ℎ
, (A.7)

see [14, p. 41]. It is shown in [8] that, if𝐷 is simply connected,
the condition 𝑞

2
< 0 rules out the presence of any orbit

that gives rise to a simple closed rectifiable curve that is
invariant for (A.1), such as periodic orbits, homoclinic orbits,
and heteroclinic cycles. Moreover, it is robust under 𝐶1 local
perturbations of 𝑓 near any nonequilibrium point that is
nonwandering. In particular, the following global stability
result is proved inTheorem 3.5 of [8].

Theorem A.4. Assume that 𝐷 is simply connected and that
assumptions (H1), (H2) hold. Then the unique equilibrium 𝑥
of (A.1) is globally stable in𝐷 if 𝑞

2
< 0.
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