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By constructing a suitable Lyapunov function and using the comparison theorem of difference equation, sufficient conditions which
ensure the permanence and global attractivity of the discrete predator-prey system with Hassell-Varley-Holling III type functional
response are obtained. An example together with its numerical simulation shows that the main results are verifiable.

1. Introduction

Recently, there were many works on predator-prey system
done by scholars [1-6]. In particular, since Hassell-Varley [7]
proposed a general predator-prey model with Hassell-Varley
type functional response in 1969, many excellent works have
been conducted for the Hassell-Varley type system [1, 7-13].

Liu and Huang [8] studied the following discrete pre-
dator-prey system with Hassell-Varley-Holling III type func-
tional response:
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where x(k), y(k) denote the density of prey and predator
species at the kth generation, respectively. a, b, A, r, d, B are
all periodic positive sequences with common period X. Here
a(k) represents the intrinsic growth rate of prey species at the
kth generation, and b(k) measures the intraspecific effects of

the kth generation of prey species on their own population;
d(k) is the death rate of the predator; A(k) is the capturing
rate; B(k) is the maximal growth rate of the predator. Liu
and Huang obtained the necessary and sufficient conditions
for the existences of positive periodic solutions by applying
a new estimation technique of solutions and the invariance
property of homotopy. As we know, the persistent property is
one of the most important topics in the study of population
dynamics. For more papers on permanence and extinction
of population dynamics, one could refer to [2-5, 14-17] and
the references cited therein. The purpose of this paper is to
investigate permanence and global attractivity of this system.

We argue that a general nonautonomous nonperiodic sys-
tem is more appropriate, and thus, we assume that the coeffi-
cients of system (1) satisfy the following:

(A) a, b, A, r, d, B are nonnegative sequences bounded
above and below by positive constants.

By the biological meaning, we consider (1) together with
the following initial conditions as

x(0) > 0, y(0) > 0. 2)
For the rest of the paper, we use the following notations:
for any bounded sequence {h(k)}, set b = sup.{h(k)} and

H = inf,  {h(K)}.



2. Permanence

Now, let us state several lemmas which will be useful to prove
our main conclusion.

Definition I (see [5]). System (1) said to be permanent if there
exist positive constants m and M, which are independent of
the solution of system (1), such that for any positive solution
{x(k), y(k)} of system (1) satisfies

m < hm 1nf {x k), y (k)} < limsup {x (k), y (k)} <

k — +00

3)
Lemma 2 (see [14]). Assume that {x(k)} satisfies x(k) > 0 and
x (k+1) < x(k)exp{a (k) —b(k)x (k)}, (4)

for k € N, where a(k) and b(k) are all nonnegative sequences
bounded above and below by positive constants. Then,

lim sup x (k) < — exp (@ -1). (5)

k— +0o

Lemma 3 (see [14]). Assume that {x(k)} satisfies
x(k+1)=x(k)expfa(k)-b(k)x(k)}, k=N, (6)

lim sup,. _, ,,x(k) < x*, and x(N,) > 0, where a(k) and b(k)
are all nonnegative sequences bounded above and below by
positive constants and N, € N. Then,

] !
lim infx (k) > min {Z— exp {a —b'x *} a_} . @

k— +00 ¢

Theorem 4. Assume that

A

a — > 0> (H)
2Vt 1
B -d“">0 (H,)

hold, then system (1) is permanent, that is, for any positive solu-
tion {x(k), y(k)} of system (1), one has

L < hm infx (k) < lim supx (k) < M;,

k— +oo k— +00

(8)
hm 1nfy (k) <limsupy (k) < M,,

k — 400
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Proof. We divided the proof into four steps.
Step 1. We show
lllcnlil(g)x (k) < M,. (10)
From the first equation of (1), we have
x(k+1) < x(k)exp{a(k)—b(k)x(k)}. (11)
By Lemma 2, we have
lim supx (k) < l cexp (a — 1) = M. (12)

k— +00

Previous inequality shows that for any € > 0, there exists a
k, > 0, such that

x(k) <M, +e, Vk=k. (13)

Step 2. We prove limsup,. _, , . y(k) < M, by distinguishing
two cases.

Case 1. There exists a [, > k;, such that y(I; + 1) > y(I,).
By the second equation of system (1), we have

B(ly) x* (L)

SR PEITA R (8 I

—d (ly) +

which implies

B(ly) x* () S
y*R (lo) =0

—d (Iy) + (15)
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The previous inequality combined with (13) leads to y(I;) <

{B*(M, + e)?/ dl}l/ZR. Thus, from the second equation of sys-
tem (1), again we have

y (o +1)

B () x* (1) }

e ) e

(16)
_ [ B ey 2R . B
Sy—— expi-d + —
d r
dif M2s'
We claim that
y(k) < M,, Vk=I, 17)

By a way of contradiction, assume that there exists a p, >
Iy such that y(p,) > M,,. Then p, > I, + 2. Let p, >
Iy + 2 be the smallest integer such that y(p,) > M,,. Then
y(py) > y(py — 1). The previous argument produces that
y(py) < M,,, a contradiction. This proves the claim. There-
fore, limsup, _,  ¥(k) < M,,. Settinge — 0 in it leads to
limsup, _, , ., y(k) < M,.

Case 2. Suppose y(k + 1) < y(k) for all k > k;. Since y(k)
is nonincreasing and has a lower bound 0, we know that
limy _, |, y(k) exists, denoted by y, we claim that

(B 1/2R
y< { 7 - } . (18)

By a way of contradiction, assume that y > {B“M?/d'}'/*~,

Taking limit in the second equation in system (1) gives

B (k) x* (k)
r (k) x* (k) + y*R (k)

lim {—d (k) +

— +00

} =0, (19

however,

lim {—d (k) +
-

k — +00

B (k) x* (k)
(k) x* (k) + y*R (k)

B (k) x* (k) }
r (k) x2 (k) + y*R (k) (20)

< lim sup {—d (k) +

k— +00
B“M?
< —dl + TRI
y
<0,
which is a contradiction. It implies that y < {B*"M f / dl}l/ R
By the fact B“ > d'r', we obtain that

/2R 24 1/2R
BM? )" B*M B
?S{ 1} S{ 1]’ exp{—d1+7}:M2.

d d'

3

Therefore, we have
Then,

limsupy (k) < M,. (23)

k— +o0o
Step 3. We verify

liminf. > .

jmire @ zm o

Conditions (H,) imply that for enough small positive con-
stant ¢, we have

; AY(M, +5)17R
a-——>0
2Vr!

For the previous ¢, it follows from Steps 1 and 2 that there
exists a k, such that for all k > k,

(25)

x (k) < M, +¢, y(k) <M, +e (26)

Then, for k > k,, it follows from (26) and the first equation of
system (1) that
AY(M, + )"

x(k+1)2x(k)exp‘[“l_ Vi

-b'x (k)} .
(27)

According to Lemma 3, one has

liminfx (k)
k — +0o
I pu 1-R 1
> min {ml*, a-4 (Mzbz 2 /2\/7]» (28)
=My
where

a - AY(M, +e) 2V

my, =

bu
AY(M, +¢)' "
1 2 u
xexpqa - ————— -b" (M, +¢)¢t.
(29)
Setting e — 0 in (28) leads to
1 uqar1-R
- A*MIR2AT
liminfx (k) > ? 2 2T
k— +00 b
fo 2y )
xXexpia — - =m
P 2Vr! ' '
(30)



By the fact that min, . p+ {[exp(x—1)]/x} = 1, we see that M, =

exp(a* - 1)/b' = a“/b’ > d'b* > (@ — A*MIR2VA B >
mrThis ends the proof of Step 3.
Step 4. We present two cases to prove that

liminfy (k) > m,. (31)

k — 400

For any small positive constant & < m, /2, from Step 1 to Step
3, it follows that there exists a k3 > k, such that for all k > k5

x (k) =m; —¢, x (k) < M, +¢,

32
y(k) <M, +e (2

Case 1. There exists an, > kj such that y(n,+1) < y(n,), then

B(n) x* (no)

—d <0. 33
0o ) 22 () + 17 () )
Hence,
1/2R
B —rd") (m, —¢) .
y (ny) = {( ) o) } e (39
du
and so,
y(ny+1)
1/2R
{ (Bl - r“d”) (m, - )’ }
>
du
(35)
B'(m, - ¢)’
X exp {—d” + (Tl ) R }
r“(m; —e)”" + (M, +¢)
def
= G-
Set
mZS = min {Cls> GZS} . (36)
We claim that
y (k) >m,, Vk=n,. (37)

By a way of contradiction, assume that there exists a g, > n,,
such that y(q,) < m,,. Then q, > ny+2. Letq, > n,+2 be the
smallest integer such that y(g,) < m,,. Then y(g,) < y(g,—1),
which implies that y(q,) > m,,, a contradiction, this proves
the claim. Therefore, lim inf, _, ,  y(k) > m,,, settinge — 0
in it leads to liminf, _, , y(k) > m,.

Case 2. Assume that y(k + 1) > y(k) for all k > k;, then,
lim; _, ,, y(k) exists, denoted by y, then lim; _, ., y(k) = y.
We claim that

yzm, (38)
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By a way of contradiction, assume that y < m,. Taking limit
in the second equation in system (1) gives

B (k) x* (k)
r (k) x* (k) + y?R (k)

k — +00

lim «]—d W)+ } _o, ()

which is a contradiction since

lim {—d (k) +

k— +oo

B (k) x* (k)
r (k) x2 (k) + y*R (k)

B (k) x” (k) }
r (k) x* (k) + )’ZR (k) (40)

> lim inf {—d (k) +

k— +00

Blmf

U2 2R
r‘my+ y

u

v
|

> 0.

This proves the claim, then we have

Jim y (k) = y > m,. (41)
So,
liminfy (k) > m,. (42)

Obviously, M, = {B*M?2/d'}'/*R exp{-d' + B*/r'} = {(B' -
rd*“ym?[d"}'*R > m,. This completes the proof of the theo-
rem. O

3. Global Attractivity
Definition 5 (see [18]). System (1) is said to be globally attrac-

tive if any two positive solutions (x;(k), y;(k)) and (x,(k),
¥,(k)) of system (1) satisfy

lim |x; (k) - x, (k)| =0, lim |y, (k) - y, (k)| = 0.
k—+0o k — +00

(43)

Theorem 6. Assume that (H;) and (H,) hold. Assume further
that there exist positive constants «, 3, and & such that

o min {bl, 2 b”}

M,
(H;)
- ocAuleiR - ocAMM2 - B"M§ >0 3
4mR 4rlm? 2rlmf ’
A“M AY(M, + )"
Bmin{G,, Gy, Gy Gy} - 6ok — (M, + ¢) .
4m 4r'm, (m, + €)
2 1\
(Hy)

A“R MO\'"R /M, \R
-« max (—2> ,(—2> >0,
2rhm, m, m,
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where

I 2 2R-1
2RB'mim;
(r M3 + M3R)?

I 24 r2R-1
2RB'm|Mj
(3 + MY

(44)
2 2RB“M2M2R’1

3_M2

(r'm? + m2 )

2 ZRBuMZ 2R—1

4_]\42

(r'm? + m3 )

Then, system (1), with initial condition (2), is globally
attractive, that is, for any two positive solutions (x; (k), y, (k))
and (x,(k), y,(k)) of system (1), we have

klim |x; (k) = x, (k)| = 0, lim |y, (k) - y, (k)| = 0.
— +00 k — +00

(45)

Proof. From conditions (H;) and (H,), there exists an
enough small positive constant ¢ < min{m,/2,m,/2} such

that
l) 2 _bu} _
M, +¢

u U R
_(XA (M2+sz_/3 B(M2R+s) S5,
4rl(m, — &) 2ri(m, —€)” (m; —¢)

A (M, + )"
(X—

4(m, — )"

«a min {b

ﬁ min {Gle’ G28’ GSe’ G4e} -a (46)

A <M2+s> AR
4rl(m1—s)

M Y R
xmax{( 2+8> ,( 2+s> >0,
my —¢ my — ¢

where

m, — &€

2RB (m, — &)’ (m, — )"

[r“(M1 + 8)2 + (M, + s)ZR]Z’

G, =

£

2RB (m, — &)’ (M, + &)**""

[re(M, + &) + (M, + &)™

2e

u 2 2R-1 (47)
2 2RB*(M, +¢&)" (M, +¢)

G, =
M, +e

[F(my - &) + (my - )]

G . 2 2RB(M, +¢)’(m, — &)™
UM, +e

[F(m, — &)+ (m, - &)*]"

Since (H,) and (H,) hold, for any positive solutions
(x,(k), y,(k)) and (x,(k), y,(k)) of system (1), it follows from
Theorem 4 that

1 < 11m 1nfx (k) <limsupx; (k) < M;,
k — +oc0
) (48)
m, < hm 1nfy, (k) < limsupy; (k) < M,, i=1,2.

k — 400

For the previous € and (48), there exists a k, > 0 such that for
allk > ky,

my; —e < x; (k) <M +¢,

m, —e < x; (k) < M, +e, (49)
i=1,2.
Let
V, (k) = [Inx, (k) - Inx, (k)| . (50)

Then from the first equation of system (1), we have
Vi (k+1)

= |lnx1 (k+1)-Inx, (k+ 1)|

< |Inx; (k) —Inx, (k) = b (k) (x; (k) — x, (k))]|

x, (k) y, (k) x, (k) y, (k)
Ak . :
AW r (k)3 (k) + y2R (k) 1 (k) 3 (K) + y2R (k)
(51)
Using the mean value theorem, we get
x; (k) = x, (k)
= exp (In x, (k)) — exp (In x, (k))
(52)
=&, (k) (Inx, (k) - Inx, (k)),

71 (k) = 355 (k) = 2RE (k) (71 (k) = 3 (K)),
where &, (k) lies between x, (k) and x,(k), &, (k) lies between

y,(k) and y, (k).
It follows from (51) and (52) that

Vik+1)

< |ln x; (k) —Inx, (k)|
1
& )

_ ( 1
& (k)
A(k)r(k) xy (k) x, (k) y, (k)
(r (k) x2 (k) + y3R (k) (r (k) x% (k) + y2R (k))

x |y (k) = x, (k)

A (k) y2R (k) y, (k)
(r (k) X2 (k) + y2R (k) (r (k) %2 (k) + 2% (k))

b(k)[) 1y (0) = x, (R)|




x [y (k) = x, (k)

A (k)1 (k) x} () x, (k) l
)+ ¥R (k) (r (k) x3 (k) + y3R (k)

x|y (k) = y, (k)|

A (k) x, (k) y*R (k) l
(r (k) %2 (k) + y2R (k) (r () 2 () + 2R (K))

x |y, (k) - y, (k)|

A (k) x, (k) y, (k)
(r () 3 (k) + yi* (K)) (r (k) o5 (K

RIGCrE

+

' )+ 7R ()

x 2RER (k) ’ |y (k) = y, (k)] .
(53)

And so, for k > k,,

AV,
< —min {bl, M2 . b“} EROEENG]
1
AY(M, +¢)' "
+fEi:$—mw%@wn
A" (M, +e¢)
—| 1 (k) = x, (k)|
4rt(m,
Au(Ll (k) - y, (k)|
4(m2 _ )2R yl y2
A* M,
-+M%ml_@<nh+s)|ymm 7 0

RA" <M2+£>1_R <M2+8>R
+ ——————— max ,
2rl (m, —¢) m, —¢ m, —¢
ACESAGIE
(54)
Let
V; (k) = [In y; (k) = In y, (k)| (55)
Then, from the second equation of system (1), we have
V,(k+1)
= |lny1 (k+1)-Iny, (k+ 1)|

= |In y; (k) —In y, (k) + B (k)

X( %} (k) B x; (k) )
r(k)xt (k) + yi* (k) 7 (k)3 (k) + 3% (k)
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<|lny, (k) -1Iny, (k)

B (k) x3 () (7% () = 3" (k)
(r () X2 (k) + yIR () (r (k) 23 () + y3% (K))

B (k) yfR (k) (%, (k) + x, (k))
+
(r (k) x% (k) + y3R (k) (r (k) x% (k) + y2R (k))

x |y (k) = x; ()]

(56)
Using the mean value theorem, we get

¥, (k) = exp (ln Y1 (k)) — &Xp (ln Y2 (k))
=& (k) (Iny, (k) -Iny, (1),  (57)
2RE (k) (3, (k) = y, (K)),

¥y (k) -

iR (k) - y3% (k) =

where &;(k), &,(k) lies between y, (k) and y,(k), respectively.
Then, it follows from (56) and (57) that for k > k,,

AV,

<
<
£3 (‘c)

i
& (k)

B (k) x5 (k) 2RE™ (k) D
(r (k) 2 (k) + 2R (k) (r (k) 2 (k) + y2R (k)

x |y, (k) = y, ()|

. B(K) y5" (k) (%, (k) + x; ()
(r () xt () + yi* (k) (r () x5 () + y3* (k)

X |x1 (k) — X (k)|
< - min {GIS’ sta G3s’ G4€} X

Iy (k) = y, (k)|

BY(M, +¢)"
2rl (my —€) (m, — €)

= %1 (k) = x, (k)| .

(58)
Now, we define a Lyapunov function as follows:

V (k) = aV, (k) + BV, (k). (59)
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Calculating the difference of V along the solution of system
(1), for k > k,, it follows from (54) and (58) that

AV
< - [ocmin {bl, 2 —b”}
M, +¢
A¥(M, + )" LAY (M, 1)
4(m, — )" 4rl(m —e)’

BY(M, +¢)" ]
2rl(m, — )% (m, - )

X |x; (k) = x, ()|

A" (M, +e¢)

4(m2 - S)ZR

- [ﬁ min {Gle’ GZe’ GSe’ G4s} - (60)

A” (M; +¢&) (M, + s)

4" (m, —€) (m, - 5)

N A"2R
21t (m, —€)

{<M2+£>1_R <M2+8>RH
X max ,
m, — € m, — &

x|y (k) = y, ()|
< =38 (|x, (k) - x, (k)|

+ |y (k) = 3, (K)]).

Summating both sides of the previous inequalities from k, to
k, we have

k

Zk V(p+1)-v(p))
p=ky (61)

-6 Z (|21 (p) =%, (P)| + |1 (p)

p=ky

-7 @),

which implies

Vi(k+1)+96 Z (Ix1 (p) = %2 ()] + |31 (P) = 72 (P)])

=k,
<V (ky).
(62)
It follows that
k
> (1 (p) = %2 (P)] + 31 () = 72 (P)]) < r Esk“). (63)

p=ky

Using the fundamental theorem of positive series, there exists
small enough positive constant € > 0 such that

S (1 (0) - 2 (0)] + s ()

p=ky

+ &

V (k
() < g
(64)
which implies that

hm le (k) — x, (k)l I)’l (k) =, (k)|) =0, (65)

that is,

klim |, (k) = x, (k)| =0, lim |y, (k) -y, (k)| = 0.
— +00 k — +oo

(66)

This completes the proof of Theorem 6. O

4. Extinction of the Predator Species

This section is devoted to study the extinction of the predator
species y.

Theorem 7. Assume that
u
—dl + - < 0. (HS)
r
Then, the species y will be driven to extinction, and the species
x is permanent, that is, for any positive solution (x(k), y(k)) of
system (1),

lim y(k) =

k— +00
(67)

m, < hm infx (k) < lim supx (k) < M;,
k= +co k— +oco
where
I
m, = Z_” exp {al - b”Ml} ,

(68)

1
M, =aexp(au—l).

Proof. For condition (H;), there exists small enough positive
y > 0, such that
U

d+2 <o, (69)
r

forallk € N, from (69) and the second equation of the system
(1), one can easily obtain that

y(k+1)

2
= y (k) exp 1—d (k) + B (k) x* (k) }

r (k) x* (k) + y?R (k)
(70)

< y (k) exp {—dl + Ii—l}

< y(k)exp{-y}.
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Therefore,
y(k+1) < y(0)exp{-ky}, (71)
which yields
Jim y (k) =0. (72)

From the proof of Theorem 4, we have

lim sup x (k) < M. (73)

k — +00
For enough small positive constant € > 0,

a — A% R .

74
i 0. (74)

For the previous ¢, from (72) and (73) there exists a k5 > 0
such that for all k > kg,
x(k) < M, +¢, y (k) <e. (75)

From the first equation of (1), we have

I qu_ l-R 1
x(k+1) > x (k) exp {al - “AZ—M/M —b”x(k)} .
(76)
By Lemma 3, we have
I 4u l-R 1
liminfx (k) > M
k— +00 b 77
X exp {al _A b (M, + a)l>
2V 1

Setting ¢ — 0in (72) leads to
I
liminfx (k) > a exp {al - b”Ml} def m,. (78)
k— +00 b
The proof of Theorem 7 is completed. O

5. Example

The following example shows the feasibility of the main
results.

Example 8. Consider the following system:

x(k+1)
= x (k) exp <‘0.85 +0.05 cos (k) — 2.4x (k)
_ L7x (k) y (k) } (79)
0.3x(k)* + y (k) |

1.6x(k)* }

y(k+1) = y (k) exp {‘4‘1 " 03x007 + y (k)

Discrete Dynamics in Nature and Society

0 5 10 15 20 25 30

FIGURE 1: Dynamics behaviors of system (1) with initial conditions
(x(0), ¥(0)) = (0.3,0.3), (0.4, 0.2), (0.2, 0.4), respectively.

One could easily see that

AuMl—R
d -2 -01228>0, (Hy)
2Vt
B —d"r* =037 > 0. (H,)

Clearly, conditions (Hy ) and (H, ) are satisfied. It follows from
Theorem 4 that the system is permanent. Numerical simu-
lation from Figure 1 shows that solutions do converge and
system is permanent and globally attractive.

6. Conclusion

In this paper, a discrete predator-prey model with Hassell-
Varley-Holling IIT type functional response is discussed. The
main topics are focused on permanence, global attractivity,
and extinction of predator species. The numerical simulation
shows that the main results are verifiable.

The investigation in this paper suggests the following bio-
logical implications. Theorem 4 shows that the coefficients,
such as the death rate of the predator, the capturing rate,
and the intraspecific effects of prey species, influence perma-
nence. Conditions (H;) and (H,) imply that the higher the
intraspecific effects of prey species are, the more favourable
permanence is. Those results have further application on
predator-prey population dynamics. However, the conditions
for global attractivity in Theorem 4 is so complicated that
its application is very difficult. A further study is required to
simplify the application.
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