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This paper develops a dynamicmodel in a one-supplier-one-retailer fresh agricultural product supply chain that experiences supply
disruptions during the planning horizon.The optimal solutions in the centralized and decentralized supply chains are studied. It is
found that the retailer’s optimal order quantity and the maximum total supply chain profit in the decentralized supply chain with
wholesale price contract are less than that in the centralized supply chain. A two-part tariff contract is proposed to coordinate the
decentralized supply chain with which the maximum profit can be achieved. It is found that the optimal wholesale price should be
a decreasing piecewise function of the final output. To ensure that the supplier and the retailer both have incentives to accept the
coordination contract, a lump-sum fee is offered. The interval of lump-sum fee is given leaving both the supplier and the retailer
better off with the two-part tariff contract.

1. Introduction

Agriculture plays a vital role in the world economy. However,
the production of most agricultural products is affected
by a lot of external factors, such as the weather changes,
seeds quality, and culture methods, which are not in full
control by the supply chain members.The situation is further
complicated by the fact that there is a long lead time in
the production of agricultural product. It means that it is
impossible to adjust the production plan when the environ-
ment changes. For the agricultural product producers, they
lack the market information and are not certain of the final
output when going into production. They are more blindfold
to choose what to produce and how much to produce,
especially in the uncertain environment. Then oversupply
and shortage of the agricultural product are quite popular
in the agricultural product market, which reduce the profit
of the supply chain and hurt the enthusiasms of the supply
chain members. How to reduce the effects of the fluctuations
and share the risks facing the supply chain members is an
important topic in the supply chain management.

Coordinating supply chain has been a major issue in sup-
ply chain management research. Supply chain contracts are

contractual agreements governing the pricing and exchange
of goods or services between independent members in
a supply chain. Properly designed supply contracts are
an effective means to share the demand and supply risk
and better coordinate the decentralized supply chain. It is
widely recognized that the supplier and retailer can both
benefit from coordination and thereby improve the overall
performance of the supply chain as a whole. Many well-
known contract forms such as buy-back, revenue-sharing,
quantity flexibility, sales rebate, two-part tariff, and quantity
discount have shown to coordinate the supply chain. In this
paper, a dynamic model in a one-supplier-one-retailer fresh
agricultural product supply chain that experiences supply
disruptions during the planning horizon is studied. The two-
part tariff contract that can coordinate the fresh agricultural
product supply chain with supply disruptions effectively is
determined.

The remainder of the paper is organized as follows. In
the next section, a brief literature review and a summary
of the contributions of this research are provided. Section 3
introduces the notations and formulates the decisionmodels.
In Section 4, the centralized supply chain model is discussed.
In Section 5, the fresh agricultural product supply chain in
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the decentralized case is studied. In Section 6, the design
of coordination contract is given. The supply chain can
be coordinated when the supplier and the retailer make
decisions independently. A numerical example is given in
Section 7. The work is summarized, and topics for future
study are discussed in Section 8.

2. Literature Review

One stream of the literature related to the research is on fresh
agricultural product supply chain. Samuel et al. [1] examined
contract practices between suppliers and retailers in the agri-
cultural seed industry. Xiao et al. [2] researched on the opti-
mization and coordination of fresh-product supply chains
under the Cost Insurance and Freight business model with
uncertain long distance transportation delays and devised
a simple cost sharing mechanism to coordinate the supply
chain under consideration. Wang and Chen [3] introduced
the options contracts into the fresh produce supply chain and
took the huge circulation wastages both from quantity and
quality into account. Cai et al. [4] considered a supply chain
in which a fresh-product producer supplies the product to a
distant market, via a specialized third-party logistics (3PL)
provider, where a distributor purchases and sells it to end
customers. An incentive scheme is proposed to coordinate
the supply chain. Yu and Nagurney [5] developed a network-
based food supply chain model under oligopolistic compe-
tition and perishability with a focus on fresh produce and
proposed an algorithmwith elegant features for computation.

This paper is also closely related to supply chain coordi-
nationmanagement and disruptionmanagement. In a decen-
tralized decision-making setting, the optimal supply chain
profit is usually not achieved due to double marginalization.
Double marginalization means the fact that each supply
chain member’s relative cost structure is distorted when a
transfer price is introduced within a supply chain. Designing
coordination contract is an important issue which aimed
at reconciling conflicts and achieves a better profit among
supply chain members. Lariviere [6], Tsay et al. [7], and
Cachon [8] provided excellent introduction and summaries
on coordination contracts. Our coordination contract is
closely related to Jeuland and Shugan [9], Moorthy [10], and
Georges [11]. Georges [11] investigated under which condi-
tions the manufacturer can reach the vertically integrated
channel solution through the use of a two-part wholesale
price in a static marketing channel where demand also
depends on players’ advertising.

For the literature on disruption management, Qi et al.
[12] first introduced the disruption management into supply
chain management. They investigate a one-supplier-one-
retailer supply chain that experienced a disruption in demand
during the planning horizon.They examinedhow the original
production plan should be adjusted after demand disruptions
occurred and how to coordinate the supply chain using
wholesale quantity discount policies. Xiao et al. [13] further
studied the coordination of the supply chain with demand
disruptions and considered a price-subsidy rate contract to
coordinate the investments of the competing retailers with
sales promotion opportunities and demand disruptions. Xiao

and Yu [14] developed an indirect evolutionary game model
with two vertically integrated channels to study evolutionarily
stable strategies (ESS) of retailers in the quantity-setting
duopoly situation with homogeneous goods and analyzed the
effects of the demand and rawmaterial supply disruptions on
the retailers’ strategies. Xiao and Qi [15] studied the disrup-
tion management of the supply chain with two competing
retailers, where the manufacturer faces a production cost
disruption. Chen and Xiao [16] developed two coordination
models of a supply chain consisting of one manufacturer,
one dominant retailer, and multiple fringe retailers to inves-
tigate how to coordinate the supply chain after demand
disruption. They considered two coordination schedules,
linear quantity discount schedule and Groves wholesale price
schedule. Li et al. [17] investigated the sourcing strategy of
a retailer and the pricing strategies of two suppliers in a
supply chain under an environment of supply disruption.
They characterized the sourcing strategies of the retailer
in a centralized and a decentralized system. They derived
a sufficient condition for the existence of an equilibrium
price in the decentralized system when the suppliers were
competitive. Huang et al. [18] developed a two-period pricing
and production decision model in a one-manufacturer-
one-retailer dual-channel supply chain that experienced a
disruption in demand during the planning horizon. They
studied the scenarios where themanufacturer and the retailer
were in a vertically integrated setting and in a decentralized
decision-making setting. They derived conditions under
which the maximum profit can be achieved. Anastasios et
al. [19] proposed generic single period inventory models
for capturing the tradeoff between inventory policies and
disruption risks in a dual-sourcing supply chain network both
unconstrained and under service level constraints, where
both supply channelswere susceptible to disruption risks.The
models were developed for both risk-neutral and risk-averse
decision-makers and can be applicable for different types of
disruptions.

There are two main differences between the works cited
and the paper. First, most previous results are dependent on
the assumption that the supply is deterministic or obeys a
certain distribution. Only few studies examine the supply
chain with supply disruptions. Second, most research related
to the supply chain disruptions focuses on the demand
disruptions. In this paper, a dynamicmodel in a one-supplier-
one-retailer fresh agricultural product supply chain that
experiences supply disruptions during the planning horizon
is proposed, and the agricultural product supply chain with
supply disruptions is coordinated.

3. Problem Description

A fresh agricultural product supply chain composed of a
supplier and a retailer is studied in the paper. The supplier
produces fresh agricultural product with a long production
lead time and a short lifecycle. The supplier sells the fresh
agricultural product to the retailer, and the retailer sells the
product to the customers in a single selling season. The
supplier and the retailer are assumed to be risk neutral and
pursue profit maximization.
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The demand of the fresh agricultural product is 𝑑 =
𝐷 − 𝑘𝑝, where 𝐷 is the market scale, 𝑘 is the price-sensitive
coefficient, and𝑑 is the real demandunder the unit retail price
𝑝.

Since the supplier produces fresh agricultural product
with a long production lead time, the supplier must make the
production plan before the retailer makes the order decision.
While making the production plan, the supplier does not
consider the supply disruptions, since the supply disruptions
cannot be anticipated. Usually there is no supply disruption,
that is, the supplier puts 𝑞

𝑠
units into production, and the final

output is exactly 𝑞
𝑠
units. If there are supply disruptions, the

supplier still puts 𝑞
𝑠
units into production and the final output

is uncertain to be 𝑞
𝑠
.

When the agricultural product harvests and the selling
season comes, the final output of the supplier is found to be
𝑄(= 𝑞

𝑠
+ Δ𝑞
𝑠
), where the supply disruptions are captured by

the term Δ𝑞
𝑠
. To be reasonable, there is an upper bound Δ𝑞

𝑠

of Δ𝑞
𝑠
and a lower bound Δ𝑞

𝑠

of Δ𝑞
𝑠
, where Δ𝑞

𝑠
≥ 0 and

Δ𝑞
𝑠

≤ 0.The upper bound of final output is𝑄(= 𝑞
𝑠
+Δ𝑞
𝑠
), and

the lower bound of final output is𝑄(= 𝑞
𝑠
+Δ𝑞
𝑠

). After the final
output is realized, the supplier decides the wholesale price,
and the retailer makes the order decision according to the
wholesale price. The paper focuses on the decision-making
problem after the supply disruptions happen.
𝑐 is the unit distributing cost of the fresh agricultural

product from the supplier to the retailer. 𝑝
𝑠
is the unit

supplying cost from the spot market incurred by the supplier
when the retailer’s demand cannot be satisfied by the product
produced by the supplier, and V

𝑠
is unit salvage cost of the

supplier when there are surplus products. To be reasonable,
the following assumption is given.

Assumption 1 (𝑐 > V
𝑠
). 𝑐 > V

𝑠
is assumed, otherwise

the supplier can earn infinite profit by distributing infinite
products.

Assumption 2 (𝑝
𝑠
> V
𝑠
). 𝑝
𝑠
> V
𝑠
is assumed since the fresh

agricultural product is of little salvage value.

The following mathematical notation is used. 𝜋𝑖
𝑗
denotes

the profit function for channel member 𝑗 in supply chain
model 𝑖. Superscript 𝑖 takes values 𝐼𝐷,𝐷, and𝐶, which denote
the centralized supply chain, decentralized supply chain and
supply chain with coordination contract, respectively. The
subscript 𝑗 takes values 𝑟 and 𝑠, which denotes the retailer
and the supplier.

4. The Centralized Supply Chain with
Supply Disruptions

It is obvious that the supply chain performs best if the channel
is centrally controlled.Thedecision variable in the centralized
supply chain is only the order quantity 𝑞.

When the supplier’s final output is 𝑄, the total supply
chain profit is

𝜋
𝐼𝐷

(𝑞) = 𝑞 (
𝐷 − 𝑞

𝑘
− 𝑐) + V

𝑠
(𝑄 − 𝑞)

+

− 𝑝
𝑠
(𝑞 − 𝑄)

+ (1)

The following conclusions about the optimal order quan-
tity in the centralized agricultural product supply chain are
got.

Theorem 1. When the final output is 𝑄, the optimal order
quantity 𝑞𝐼𝐷

∗

of the retailer is

(i) when 𝑄 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/2, 𝑞𝐼𝐷

∗

= (𝐷 − 𝑘(𝑐 +

𝑝
𝑠
))/2;

(ii) when (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/2 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + V

𝑠
))/2,

𝑞
𝐼𝐷
∗

= 𝑄;

(iii) when (𝐷 − 𝑘(𝑐 + V
𝑠
))/2 ≤ 𝑄 ≤ 𝑄, 𝑞𝐼𝐷

∗

= (𝐷 − 𝑘(𝑐 +

V
𝑠
))/2.

From Theorem 1, the optimal profit in the centralized
agricultural product supply chain can be got.

Theorem 2. When the final output is 𝑄, the maximum total
profit in the centralized supply chain 𝜋𝐼𝐷

∗

is

(i) when 𝑄 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/2, 𝜋𝐼𝐷

∗

= (1/𝑘)[(𝐷−

𝑘(𝑐 + 𝑝
𝑠
))/2]
2

+ 𝑝
𝑠
𝑄;

(ii) when (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/2 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + V

𝑠
))/2,

𝜋
𝐼𝐷
∗

= 𝑄(((𝐷 − 𝑄)/𝑘) − 𝑐);
(iii) when (𝐷 − 𝑘(𝑐 + V

𝑠
))/2 ≤ 𝑄 ≤ 𝑄, 𝜋𝐼𝐷

∗

= (1/𝑘)[(𝐷−

𝑘(𝑐 + V
𝑠
))/2]
2

+ V
𝑠
𝑄.

5. The Decentralized Supply Chain with
Supply Disruptions

In this section, the problem that the supplier and the
retailer make decisions with wholesale price contract in a
decentralized way under the disrupted output is discussed.
In this case, the supplier acts as the leader, and the retailer
acts as the follower. When the agricultural product harvests,
the supplier first decides on the wholesale price 𝜔, and the
retailer decides the order quantity 𝑞 accordingly.The supplier
distributes 𝑞 units fresh agricultural product to the retailer.
If the final output cannot satisfy the retailer, the supplier
buys the remaining products from the spot market. If there is
surplus after satisfying the retailer, the residual products are
salvaged.

Because the supplier is the leader, the best-response
function of the retailer should be got at first. For a given 𝜔,
the retailer’s profit is

𝜋
𝐷

𝑟
(𝑞) = 𝑞 (

𝐷 − 𝑞

𝑘
− 𝜔) . (2)

The retailer aims to maximize his profit. The objective
function is concave in 𝜔, and the retailer’s first-order condi-
tions characterize the unique best response: 𝑞𝐷

∗

𝑟
(𝜔) = (𝐷 −

𝑘𝜔)/2.
The supplier’s optimization problem can be stated as

𝜋
𝐷

𝑠
(𝑞) = (𝜔 − 𝑐) 𝑞

𝐷
∗

𝑟
+ V
𝑠
(𝑄 − 𝑞

𝐷
∗

𝑟
)
+

− 𝑝
𝑠
(𝑞
𝐷
∗

𝑟
− 𝑄)
+

. (3)
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Lemma 3. When the final output is 𝑄, the optimal wholesale
price 𝜔𝐷

∗

of the supplier is

(i) when 𝑄 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/4, 𝜔𝐷

∗

= (𝐷 + 𝑘(𝑐 +

𝑝
𝑠
))/2𝑘;

(ii) when (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/4 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + V

𝑠
))/4,

𝜔
𝐷
∗

= (𝐷 − 2𝑄)/𝑘;
(iii) when (𝐷 − 𝑘(𝑐 + V

𝑠
))/4 ≤ 𝑄 ≤ 𝑄, 𝜔𝐷

∗

= (𝐷 + 𝑘(𝑐 +

V
𝑠
))/2𝑘.

It is not hard to get Theorems 4 and 5 from Lemma 3.

Theorem 4. When the final output is 𝑄, the optimal order
quantity 𝑞𝐷

∗

𝑟
of the retailer is

(i) when 𝑄 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/4, 𝑞𝐷

∗

𝑟
= (𝐷 − 𝑘(𝑝

𝑠
+

𝑐))/4;
(ii) when (𝐷 − 𝑘(𝑐 + 𝑝

𝑠
))/4 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + V

𝑠
))/4,

𝑞
𝐷
∗

𝑟
= 𝑄;

(iii) when (𝐷 − 𝑘(𝑐 + V
𝑠
))/4 ≤ 𝑄 ≤ 𝑄, 𝑞𝐷

∗

𝑟
= (𝐷 − 𝑘(V

𝑠
+

𝑐))/4.

Theorem 5. When the final output is 𝑄, the maximum
supplier profit 𝜋𝐷

∗

𝑠
, the maximum retailer profit 𝜋𝐷

∗

𝑟
, and the

maximum total profit 𝜋𝐷
∗

in the decentralized supply chain are

(i) when 𝑄 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/4, 𝜋𝐷

∗

𝑠
= (2/𝑘)[(𝐷−

𝑘(𝑝
𝑠
+𝑐))/4]

2

+𝑝
𝑠
𝑄, 𝜋𝐷

∗

𝑟
= (1/𝑘)[(𝐷 − 𝑘(𝑝

𝑠
+ 𝑐))/4]

2,
𝜋
𝐷
∗

= (3/𝑘)[(𝐷 − 𝑘(𝑝
𝑠
+ 𝑐))/4]

2

+ 𝑝
𝑠
𝑄;

(ii) when (𝐷−𝑘(𝑐+𝑝
𝑠
))/4 ≤ 𝑄 ≤ (𝐷−𝑘(𝑐+V

𝑠
))/4, 𝜋𝐷

∗

𝑠
=

(((𝐷 − 2𝑄)/𝑘) − 𝑐)𝑄, 𝜋𝐷
∗

𝑟
= (1/𝑘)𝑄

2, 𝜋𝐷
∗

= (((𝐷−

𝑄)/𝑘) − 𝑐)𝑄;
(iii) when (𝐷 − 𝑘(𝑐 + V

𝑠
))/4 ≤ 𝑄 ≤ 𝑄, 𝜋𝐷

∗

𝑠
= (2/𝑘)[(𝐷−

𝑘(V
𝑠
+ 𝑐))/4]

2

+ V
𝑠
𝑄, 𝜋𝐷

∗

𝑟
= (1/𝑘)[(𝐷 − 𝑘(V

𝑠
+ c))/4]2,

𝜋
𝐷
∗

= (3/𝑘)[(𝐷 − 𝑘(V
𝑠
+ 𝑐))/4]

2

+ V
𝑠
𝑄.

Theorem 6. The optimal order quantity in the centralized and
decentralized supply chains with supply disruptions satisfies
𝑞
𝐷
∗

𝑟
≤ 𝑞
𝐼𝐷
∗

.

Let 𝑞𝐷
∗

1
= (𝐷 − 𝑘(𝑐 + V

𝑠
))/4, 𝑞𝐷

∗

2
= (𝐷 − 𝑘(𝑐 + 𝑝

𝑠
))/4,

𝑞
𝐼𝐷
∗

1
= (𝐷 − 𝑘(𝑐 + V

𝑠
))/2, and 𝑞𝐼𝐷

∗

2
= (𝐷 − 𝑘(𝑐 + 𝑝

𝑠
))/2;

the relation between the optimal order quantity and the final
output is shown in Figure 1. The optimal order quantity in
the decentralized supply chain is always less than that in the
centralized supply chain.

FromTheorems 2 and 5, Theorem 7 can be got.

Theorem 7. The maximum total supply chain profits in
the centralized and decentralized supply chains with supply
disruptions satisfy 𝜋𝐼𝐷

∗

≥ 𝜋
𝐷
∗

.

FromTheorem 7, the maximum total supply chain profit
in the decentralized supply chain is less than that in the cen-
tralized supply chain. In the next section, it is shown that the

Centralized supply chain
Decentralized supply chain

𝑞∗

𝑄
𝑄 𝑄𝑞

𝐷∗

2

𝑞
𝐷∗

2

𝑞
𝐼𝐷∗

2

𝑞
𝐼𝐷∗

2

𝑞
𝐷∗

1

𝑞
𝐷∗

1

𝑞
𝐼𝐷∗

1

𝑞
𝐼𝐷∗

1

(a) 𝑞𝐼𝐷
∗

2
≤ 𝑞
𝐷
∗

1

Centralized supply chain
Decentralized supply chain

𝑞∗

𝑄
𝑄 𝑄𝑞

𝐷∗

2

𝑞
𝐷∗

2

𝑞
𝐼𝐷∗

2

𝑞
𝐼𝐷∗

2

𝑞
𝐷∗

1

𝑞
𝐷∗

1

𝑞
𝐼𝐷∗

1

𝑞
𝐼𝐷∗

1

(b) 𝑞𝐷
∗

1
≤ 𝑞
𝐼𝐷
∗

2

Figure 1: Relation between optimal order quantity and final output.

supplier can further improve the profits in the decentralized
supply chain by offering the coordination contract.

6. Design of Coordination Contract

In Section 5, it is shown thatwhen the supplier and the retailer
make decisions in a decentralized way, the wholesale price
contract cannot coordinate the supply chain and must be
modified to achieve the optimal total supply chain profit.

Theorem 8. When the final output is 𝑄, to ensure that the
retailer’s order quantity equals the optimal order quantity in
the centralized supply chain, the optimal wholesale price 𝜔𝐶

∗

is

(i) when 𝑄 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/2, 𝜔𝐶

∗

= 𝑐 + 𝑝
𝑠
;
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(ii) when (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/2 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + V

𝑠
))/2,

𝜔
𝐶
∗

= (𝐷 − 2𝑄)/𝑘;

(iii) when (𝐷 − 𝑘(𝑐 + V
𝑠
))/2 ≤ 𝑄 ≤ 𝑄, 𝜔𝐶

∗

= 𝑐 + V
𝑠
.

FromTheorem 8, Theorem 9 can be obtained.

Theorem 9. When the wholesale price 𝜔∗ = 𝜔𝐶
∗

, the
decentralized supply chain can be coordinated.

When the wholesale price 𝜔∗ = 𝜔𝐶
∗

, the profits of the
supplier and the retailer are

(i) when 𝑄 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/2, 𝜋𝐶

∗

𝑠
= 𝑝
𝑠
𝑄, 𝜋𝐶

∗

𝑟
=

(1/𝑘)[(𝐷 − 𝑘(𝑝
𝑠
+ 𝑐))/2]

2;

(ii) when (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/2 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + V

𝑠
))/2,

𝜋
𝐶
∗

𝑠
= (((𝐷 − 2𝑄)/𝑘) − 𝑐)𝑄, 𝜋𝐶

∗

𝑟
= 𝑄
2

/𝑘;

(iii) when (𝐷 − 𝑘(𝑐 + V
𝑠
))/2 ≤ 𝑄 ≤ 𝑄, 𝜋𝐶

∗

𝑠
= V
𝑠
𝑄, 𝜋𝐶

∗

𝑟
=

(1/𝑘)[(𝐷 − 𝑘(𝑐 + V
𝑠
))/2]
2.

It can be verified that 𝜋𝐶
∗

𝑠
+ 𝜋
𝐶
∗

𝑟
= 𝜋
𝐼𝐷
∗

.
Theorem 8 indicates that, in a decentralized supply

chain, to coordinate the fresh agricultural product supply
chain with supply disruptions, the optimal wholesale price
depends on the final output. The optimal wholesale price is a
decreasing piecewise function of final output. To ensure that
the supplier and the retailer both have incentives to accept
the coordination contract, the profits of the supplier and the
retailer should satisfy 𝜋𝐶

𝑠
≥ 𝜋
𝐷
∗

𝑠
, 𝜋𝐶
𝑟
≥ 𝜋
𝐷
∗

𝑟
. This problem can

be easily solved by offering a lump-sum fee 𝐹(𝐹 ≤ 𝐹 ≤ 𝐹),
where 𝐹 = max(𝜋𝐷

∗

𝑠
− 𝜋
𝐶
∗

𝑠
, 𝜋
𝐷
∗

𝑟
− 𝜋
𝐶
∗

𝑟
, 0), 𝐹 = max(𝜋𝐶

∗

𝑠
−

𝜋
𝐷
∗

𝑠
, 𝜋
𝐶
∗

𝑟
− 𝜋
𝐷
∗

𝑟
). (Since 𝜋𝐶

∗

𝑠
+ 𝜋
𝐶
∗

𝑟
≥ 𝜋
𝐷
∗

𝑠
+ 𝜋
𝐷
∗

𝑟
, 𝐹 and 𝐹

are different.) When 𝜋𝐷
∗

𝑠
≥ 𝜋
𝐶
∗

𝑠
, that is, the supplier earns

less with the coordination contract, the retailer should pay
the lump-sum fee 𝐹 to the supplier.The profits of the supplier
and the retailer are 𝜋𝐶

𝑠
= 𝜋
𝐶
∗

𝑠
+ 𝐹, 𝜋𝐶

𝑟
= 𝜋
𝐶
∗

𝑟
− 𝐹. Otherwise,

the supplier should pay the lump-sum fee 𝐹 to the retailer.
The profits of the supplier and the retailer are 𝜋𝐶

𝑠
= 𝜋
𝐶
∗

𝑠
− 𝐹,

𝜋
𝐶

𝑟
= 𝜋
𝐶
∗

𝑟
+ 𝐹. Then 𝜋𝐶

𝑠
≥ 𝜋
𝐷
∗

𝑠
and 𝜋𝐶

𝑟
≥ 𝜋
𝐷
∗

𝑟
are satisfied.

7. Numerical Example

A numerical example is given to illustrate some of results
derived throughout the paper.

Suppose the supplier’s unit distribution cost 𝑐 = 2, the
unit buying cost 𝑝

𝑠
= 5, and the unit salvage cost V

𝑠
= 1. The

demand function is 𝑞 = 40 − 𝑝.
When there are supply disruptions and the supplier’s

production is 𝑞
𝑠
, the final output 𝑄 is not certain. The supply

disruptions are captured by the term Δ𝑞
𝑠
, where Δ𝑞

𝑠
lies in

the interval [−𝑞
𝑠
, 0.5𝑞
𝑠
]. That is, the final output 𝑄 lies in the

interval [Q, Q], where 𝑄 = 0, 𝑄 = 1.5𝑞
𝑠
.

When the supply disruptions happen and the final output
is found to be𝑄, in the centralized supply chain, the retailer’s
optimal order quantity 𝑞𝐼𝐷

∗

is (i) when 0 ≤ 𝑄 ≤ 16.5,

𝑞
𝐼𝐷
∗

= 16.5; (ii) when 16.5 ≤ 𝑄 ≤ 18.5, 𝑞𝐼𝐷
∗

= 𝑄; (iii) when
18.5 ≤ 𝑄 ≤ 𝑄, 𝑞𝐼𝐷

∗

= 18.5.
Correspondingly, the maximum supply chain profit 𝜋𝐼𝐷

∗

is

(i) when 0 ≤ 𝑄 ≤ 16.5, 𝜋𝐼𝐷
∗

= 272.25 + 5𝑄;

(ii) when 16.5 ≤ 𝑄 ≤ 18.5, 𝜋𝐼𝐷
∗

= 𝑄(38 − 𝑄);

(iii) when 18.5 ≤ 𝑄 ≤ 𝑄, 𝜋𝐼𝐷
∗

= 342.25 + 𝑄.

In the decentralized agricultural product supply chain,
when the supply disruptions happen and the final output is
found to be𝑄, the optimal wholesale price𝜔𝐷

∗

of the supplier
is (i) when 0 ≤ 𝑄 ≤ 8.25, 𝜔𝐷

∗

= 23.5; (ii) when 8.25 ≤ 𝑄 ≤
9.25, 𝜔𝐷

∗

= 40 − 2𝑄; (iii) when 9.25 ≤ 𝑄 ≤ 𝑄, 𝜔𝐷
∗

= 21.5.
Correspondingly, the optimal order quantity 𝑞𝐷

∗

𝑟
of the

retailer is (i) when 0 ≤ 𝑄 ≤ 8.25, 𝑞𝐷
∗

𝑟
= 8.25; (ii) when 8.25 ≤

𝑄 ≤ 9.25, 𝑞𝐷
∗

𝑟
= 𝑄; (iii) when 9.25 ≤ 𝑄 ≤ 𝑄, 𝑞𝐷

∗

𝑟
= 9.25.

The supplier profit 𝜋𝐷
∗

𝑠
, the retailer profit 𝜋𝐷

∗

𝑟
, and total

supply chain profit 𝜋𝐷
∗

are

(i) when 0 ≤ 𝑄 ≤ 8.25, 𝜋𝐷
∗

𝑠
= 136.125 + 5𝑄, 𝜋𝐷

∗

𝑟
=

68.0625, 𝜋𝐷
∗

= 204.1875 + 5𝑄;

(ii) when 8.25 ≤ 𝑄 ≤ 9.25, 𝜋𝐷
∗

𝑠
= (38 − 2𝑄)𝑄, 𝜋𝐷

∗

𝑟
= 𝑄
2,

𝜋
𝐷
∗

= (38 − 𝑄)𝑄;

(iii) when 9.25 ≤ 𝑄 ≤ 𝑄, 𝜋𝐷
∗

𝑠
= 171.125 + 𝑄, 𝜋𝐷

∗

𝑟
=

85.5625, 𝜋𝐷
∗

= 256.6875 + 𝑄.

For a given final output 𝑄, it can be verified that 𝑞𝐷
∗

𝑟
≤

𝑞
𝐼𝐷
∗

, 𝜋𝐷
∗

≤ 𝜋
𝐼𝐷
∗

. The decentralized supply chain should
be coordinated to achieve the optimal total supply chain
profit. To ensure that the retailer’s order quantity in the
decentralized supply chain equals that in the centralized
supply chain, the optimal wholesale price 𝜔𝐶

∗

is (i) when
0 ≤ 𝑄 ≤ 16.5, 𝜔𝐶

∗

= 7; (ii) when 16.5 ≤ 𝑄 ≤ 18.5, 𝜔𝐶
∗

= 40−

2𝑄; (iii) when 18.5 ≤ 𝑄 ≤ 𝑄, 𝜔𝐶
∗

= 3.
The retailer’s profit is (i) when 0 ≤ 𝑄 ≤ 16.5, 𝜋𝐶

𝑟
(𝑞) =

𝑞(33 − 𝑞); (ii) when 16.5 ≤ 𝑄 ≤ 18.5, 𝜋𝐶
𝑟
(𝑞) = 2𝑞𝑄; (iii) when

18.5 ≤ 𝑄 ≤ 𝑄, 𝜋𝐶
𝑟
(𝑞) = 𝑞(37 − 𝑞).

Then the retailer’s optimal order quantity is (i) when 0 ≤
Q ≤ 16.5, 𝑞𝐶

∗

𝑟
= 16.5; (ii) when 16.5 ≤ 𝑄 ≤ 18.5, 𝑞𝐶

∗

𝑟
= 𝑄;

(iii) when 18.5 ≤ 𝑄 ≤ 𝑄, 𝑞𝐶
∗

𝑟
= 18.5.

Correspondingly, the maximum supplier profit 𝜋𝐷
∗

𝑠
, the

maximum retailer profit 𝜋𝐷
∗

𝑟
, and the maximum total profit

𝜋
𝐷
∗

in the decentralized supply chain are

(i) when 0 ≤ 𝑄 ≤ 16.5, 𝜋𝐶
∗

𝑠
= 5𝑄, 𝜋𝐶

∗

𝑟
= 272.25, 𝜋𝐶

∗

=

272.25 + 5𝑄;

(ii) when 16.5 ≤ 𝑄 ≤ 18.5, 𝜋𝐶
∗

𝑠
= 𝑄(38 − 2𝑄), 𝜋𝐶

∗

𝑟
= 𝑄
2,

𝜋
𝐶
∗

= 𝑄(38 − 𝑄);

(iii) when 18.5 ≤ 𝑄 ≤ 𝑄, 𝜋𝐶
∗

𝑠
= 𝑄, 𝜋𝐶

∗

𝑟
= 342.25, 𝜋𝐶

∗

=

342.25 + 𝑄.
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It is obvious that𝜋𝐶
∗

= 𝜋
𝐼𝐷
∗

, and the supply chain is coor-
dinated.

To ensure that the supplier and the retailer both have
incentives to accept the coordination contract, the profits of
the supplier and the retailer should satisfy 𝜋𝐶

𝑠
≥ 𝜋
𝐷
∗

𝑠
, 𝜋𝐶
𝑟
≥

𝜋
𝐷
∗

𝑟
.

(i) When 0 ≤ Q ≤ 8.25, 𝜋𝐷
∗

𝑠
≥ 𝜋
𝐶
∗

𝑠
, 𝜋𝐷

∗

𝑟
≤ 𝜋
𝐶
∗

𝑟
. In this

case, 𝐹 = 𝜋𝐷
∗

𝑠
− 𝜋
𝐶
∗

𝑠
= 136.125, 𝐹 = 𝜋𝐶

∗

𝑟
− 𝜋
𝐷
∗

𝑟
=

204.1875, and the retailer should pay the supplier a
lump-sum fee 𝐹(𝐹 ≤ 𝐹 ≤ 𝐹). The profits of the
supplier and the retailer are 𝜋𝐶

𝑠
= 𝜋
𝐶
∗

𝑠
+ 𝐹, 𝜋𝐶

𝑟
=

𝜋
𝐶
∗

𝑟
− 𝐹.

(ii) When 8.25 ≤ Q ≤ 9.25, 𝜋𝐷
∗

𝑠
≥ 𝜋
𝐶
∗

𝑠
, 𝜋𝐷

∗

𝑟
≤ 𝜋
𝐶
∗

𝑟
. In

this case, 𝐹 = 𝜋𝐷
∗

𝑠
− 𝜋
𝐶
∗

𝑠
= 𝑄(33 − 2𝑄), 𝐹 = 𝜋𝐶

∗

𝑟
−

𝜋
𝐷
∗

𝑟
= 272.25 − 𝑄

2, and the retailer should pay the
supplier a lump-sum fee 𝐹(𝐹 ≤ 𝐹 ≤ 𝐹). The profits of
the supplier and the retailer are 𝜋𝐶

𝑠
= 𝜋
𝐶
∗

𝑠
+ 𝐹, 𝜋𝐶

𝑟
=

𝜋
𝐶
∗

𝑟
− 𝐹.

(iii) When 9.25 ≤ Q ≤ 16.5, 𝜋𝐷
∗

𝑠
≥ 𝜋
𝐶
∗

𝑠
, 𝜋𝐷

∗

𝑟
≤ 𝜋
𝐶
∗

𝑟
.

In this case, 𝐹 = 𝜋𝐷
∗

𝑠
− 𝜋
𝐶
∗

𝑠
= 171.125 − 4𝑄, 𝐹 =

𝜋
𝐶
∗

𝑟
−𝜋
𝐷
∗

𝑟
= 186.6875, and the retailer should pay the

supplier a lump-sum fee 𝐹(𝐹 ≤ 𝐹 ≤ 𝐹). The profits of
the supplier and the retailer are 𝜋𝐶

𝑠
= 𝜋
𝐶
∗

𝑠
+ 𝐹, 𝜋𝐶

𝑟
=

𝜋
𝐶
∗

𝑟
− 𝐹.

(iv) When 16.5 ≤ 𝑄 ≤ 18.5, 𝜋𝐷
∗

𝑠
≥ 𝜋
𝐶
∗

𝑠
, 𝜋𝐷

∗

𝑟
≤ 𝜋
𝐶
∗

𝑟
. In

this case, 𝐹 = 𝜋𝐷
∗

𝑠
− 𝜋
𝐶
∗

𝑠
= 171.125 − 37𝑄 + 2𝑄

2, 𝐹 =
𝜋
𝐶
∗

𝑟
− 𝜋
𝐷
∗

𝑟
= 38𝑄 − 𝑄

2

− 85.5625. The retailer should
pay the supplier a lump-sum fee 𝐹(𝐹 ≤ 𝐹 ≤ 𝐹). The
profits of the supplier and the retailer are𝜋𝐶

𝑠
= 𝜋
𝐶
∗

𝑠
+𝐹,

𝜋
𝐶

𝑟
= 𝜋
𝐶
∗

𝑟
− 𝐹.

(v) When 18.5 ≤ 𝑄 ≤ 𝑄, 𝜋𝐷
∗

𝑠
≥ 𝜋
𝐶
∗

𝑠
, 𝜋𝐷

∗

𝑟
≤ 𝜋
𝐶
∗

𝑟
. In this

case, 𝐹 = 𝜋𝐷
∗

𝑠
− 𝜋
𝐶
∗

𝑠
= 171.125, 𝐹 = 𝜋𝐶

∗

𝑟
− 𝜋
𝐷
∗

𝑟
=

256.6875, and the retailer should pay the supplier a
lump-sum fee 𝐹(𝐹 ≤ 𝐹 ≤ 𝐹). The profits of the
supplier and the retailer are 𝜋𝐶

𝑠
= 𝜋
𝐶
∗

𝑠
+ 𝐹, 𝜋𝐶

𝑟
=

𝜋
𝐶
∗

𝑟
− 𝐹. Then 𝜋𝐶

𝑠
≥ 𝜋
𝐷
∗

𝑠
and 𝜋𝐶

𝑟
≥ 𝜋
𝐷
∗

𝑟
is satisfied.

The supplier and the retailer both benefit from the
coordination contract and have incentives to accept the
contract.

8. Summary and Conclusions

In this paper, supply disruptions are introduced in the analy-
sis of a one-supplier-one-retailer fresh agricultural product
supply chain. The optimal decisions in the centralized and
decentralized supply chain are analyzed. It is found that
the retailer’s optimal order quantity and the maximum total
supply chain profit in the decentralized supply chain are less
than that in the centralized supply chain. A two-part tariff
contract is proposed. It shows that the supply chain can be

coordinated leaving both the supplier and the retailer better
off with a two-part tariff contract.

The aim of the paper is to develop a supply chain
coordination scheme for adjusting the sale plan after supply
disruptions occur, rather than making decisions considering
all possible uncertainties in the planning stage. Of course,
formulating a good plan based on certain probability assump-
tions is important, but, realistically, it is not possible for the
decision-maker to anticipate all contingencies. In practice,
for most agricultural products, the final output cannot be
estimated precisely, so providing guidance for adjusting a
predetermined plan can be as important as making the plan
itself.

In the paper, one-supplier-one-retailer fresh agricultural
product supply chain is studied. There are abundant oppor-
tunities for research on extensions ranging from multiple
suppliers, multiple periods, and longer supply chains.

Appendix

Proof ofTheorem 1. (i)When 𝑞 ≤ 𝑄, the supply chain profit is
𝜋
𝐼𝐷

1
(𝑞) = 𝑞(((𝐷−𝑞)/𝑘)−𝑐)+V

𝑠
(𝑄−𝑞), where𝜋𝐼𝐷

1
(𝑞) is concave

in 𝑞. The optimal solution without constraint is 𝑞𝐼𝐷
∗

1
= (𝐷 −

𝑘(𝑐 + V
𝑠
))/2. Then if 𝑞∗

1
≤ 𝑄, the optimal order quantity is

𝑞
𝐼𝐷
∗

1
= 𝑞
𝐼𝐷
∗

1
, and the maximum supply chain profit is 𝜋𝐼𝐷

∗

1
=

(1/𝑘)𝑞
𝐼𝐷
∗

2

1
+V
𝑠
𝑄. Otherwise, the optimal solution is 𝑞𝐼𝐷

∗

1
= 𝑄.

Correspondingly, the maximum supply chain profit is 𝜋𝐼𝐷
∗

1
=

𝑄(((𝐷 − 𝑄)/𝑘) − 𝑐).
(ii) When 𝑞 ≥ 𝑄, the supply chain profit is: 𝜋𝐼𝐷

2
(𝑞) =

𝑞(((𝐷 − 𝑞)/𝑘) − 𝑐) − 𝑝
𝑠
(𝑞 − 𝑄), where 𝜋𝐼𝐷

2
(𝑞) is concave in

𝑞. The optimal solution without constraint is 𝑞𝐼𝐷
∗

2
= (𝐷 −

𝑘(𝑐 + 𝑝
𝑠
))/2. Then if 𝑞𝐼𝐷

∗

2
≥ 𝑄, the optimal order quantity

is 𝑞𝐼𝐷
∗

2
= 𝑞
𝐼𝐷
∗

2
, and the maximum supply chain profit is

𝜋
𝐼𝐷
∗

2
= (1/𝑘)𝑞

𝐼𝐷
∗

2

2
− 𝑝
𝑠
𝑄. Otherwise, the optimal solution

is: 𝑞𝐼𝐷
∗

2
= 𝑄. Correspondingly, the maximum supply chain

profit is 𝜋𝐼𝐷
∗

2
= 𝑄(((𝐷 − 𝑄)/𝑘) − 𝑐).

With Assumption 1, it is not hard to verify 𝑞𝐼𝐷
∗

1
≥ 𝑞
𝐼𝐷
∗

2
.

(i) When 𝑄 ≤ 𝑞𝐼𝐷
∗

2
, if the retailer chooses to order more

than 𝑄 unit products, the maximum supply chain
profit is 𝜋𝐼𝐷

∗

= (1/𝑘)𝑞
𝐼𝐷
∗

2

2
− 𝑝
𝑠
𝑄; otherwise, if the

retailer orders 𝑄 unit products from the supplier, the
maximum supply chain profit is𝜋𝐼𝐷

∗

= 𝑄(((𝐷−𝑄)/𝑘)

−𝑐). As 𝜋𝐼𝐷
2
(𝑄) = 𝜋

𝐼𝐷

1
(𝑄) and 𝜋𝐼𝐷

2
(𝑞
𝐼𝐷
∗

2
) ≥ 𝜋

𝐼𝐷

2
(𝑄),

the optimal order quantity is 𝑞𝐼𝐷
∗

= (𝐷−𝑘(𝑐+𝑝
𝑠
))/2.

(ii) When 𝑞𝐼𝐷
∗

2
≤ 𝑄 ≤ 𝑞

𝐼𝐷
∗

1
, if the retailer chooses to order

less than 𝑄 unit products, the supplier salvages some
products. Since 𝜋𝐼𝐷

1
(𝑞) is increasing in 𝑞, the more

the retailer orders, the more supply chain profit is got.
Otherwise, if the retailer chooses to order more than
𝑄 unit products, the supplier buys some products
from the spot market. Since 𝜋𝐼𝐷

2
(𝑞) is decreasing in

𝑞, the more the retailer orders, the less supply chain
profit is got. Then the optimal order quantity is 𝑄.
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(iii) When 𝑄 ≥ 𝑞𝐼𝐷
∗

1
, if the retailer chooses to order less

than 𝑄 unit products, the maximum supply chain
profit is 𝜋𝐼𝐷

∗

= (1/𝑘)𝑞
𝐼𝐷
∗

2

1
+ V
𝑠
𝑄; otherwise if the

retailer orders 𝑄 unit products from the supplier, the
maximum supply chain profit is 𝜋𝐼𝐷

∗

= 𝑄(((𝐷 − 𝑄)/

𝑘) − 𝑐). As 𝜋𝐼𝐷
2
(𝑄) = 𝜋

𝐼𝐷

1
(𝑄) and 𝜋𝐼𝐷

1
(𝑞
𝐼𝐷
∗

1
) ≥ 𝜋
𝐼𝐷

1
(𝑄),

the optimal order quantity is 𝑞𝐼𝐷
∗

= (𝐷−𝑘(𝑐+ V
𝑠
))/2.

Proof of Theorem 2. The total supply chain profit is 𝜋𝐼𝐷(𝑞) =
𝑞(((𝐷−𝑞)/𝑘)−𝑐)+V

𝑠
(𝑄 − 𝑞)

+

−𝑝
𝑠
(𝑞 − 𝑄)

+. FromTheorem 1,
the optimal profit of the centralized supply chain can be got.

Proof of Lemma 1. (i) When 𝑄 ≥ 𝑞, the supply chain profit is
𝜋
𝐷

𝑠1
(𝑞) = (𝜔 − 𝑐)𝑞 + V

𝑠
(𝑄 − 𝑞), where 𝜋𝐷

𝑠1
(𝑞) is concave in

𝑞. The optimal solution without constraint is 𝜔𝐷
∗

1
= (𝐷 +

𝑘(𝑐 + V
𝑠
))/2𝑘. The retailer’s order quantity is: 𝑞𝐷

∗

1
= (𝐷 −

𝑘(𝑐 + V
𝑠
))/4. Then if 𝑄 ≥ (𝐷 − 𝑘(𝑐 + V

𝑠
))/4, the optimal

wholesale price is 𝜔𝐷
∗

1
= (𝐷 + 𝑘(𝑐 + V

𝑠
))/2𝑘. The supplier’s

profit is 𝜋𝐷
∗

𝑠1
= (2/𝑘)[(𝐷 − 𝑘(𝑐 + V

𝑠
))/4]
2

+ V
𝑠
𝑄. Otherwise,

the optimal solution is 𝜔𝐷
∗

1
= (𝐷 − 2𝑄)/𝑘. In this case, the

retailer’s order quantity is 𝑞𝐷
∗

1
= 𝑄. Correspondingly, the

maximum supply chain profit is: 𝜋𝐷
∗

𝑠1
= 𝑄(((𝐷 − 2𝑄)/𝑘) − 𝑐).

(ii) When 𝑄 ≤ 𝑞, the supply chain profit is 𝜋𝐷
𝑠2
(𝑞) =

(𝜔−𝑐)𝑞−𝑝
𝑠
(𝑞−𝑄), where 𝜋𝐷

𝑠2
(𝑞) is concave in 𝑞.The optimal

solution without constraint is 𝜔𝐷
∗

2
= (𝐷 + 𝑘(𝑐 + 𝑝

𝑠
))/2𝑘.

The retailer’s order quantity is: 𝑞𝐷
∗

2
= (𝐷 − 𝑘(𝑐 + 𝑝

𝑠
))/4.

Then if 𝑄 ≥ (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/4, the optimal wholesale

price is 𝜔𝐷
∗

2
= (𝐷 + 𝑘(𝑐 + 𝑝

𝑠
))/2𝑘. The supplier’s profit

is 𝜋𝐷
∗

𝑠1
= (2/𝑘)[(𝐷 − 𝑘(𝑐 + 𝑝

𝑠
))/4]
2

+ 𝑝
𝑠
𝑄. Otherwise, the

optimal solution is 𝜔𝐷
∗

2
= (𝐷 − 2𝑄)/𝑘. In this case, the

retailer’s order quantity is 𝑞𝐷
∗

2
= 𝑄. Correspondingly, the

maximum supply chain profit is 𝜋𝐷
∗

𝑠2
= 𝑄(((𝐷 − 2𝑄)/𝑘) − 𝑐).

With Assumption 1, it is not hard to verify 𝑞𝐷
∗

1
≥ 𝑞
𝐷
∗

2
.

(i) When 𝑄 ≤ 𝑞∗
2
, if the retailer chooses to order more

than 𝑄 unit products, the maximum supply chain
profit is 𝜋𝐷

∗

= (1/𝑘)𝑞
𝐷
∗

2

2
− 𝑝
𝑠
𝑄; otherwise if the

retailer orders 𝑄 unit products from the supplier, the
maximum supply chain profit is 𝜋𝐷

∗

= 𝑄(((𝐷 −

𝑄)/𝑘)−𝑐). As 𝜋𝐷
2
(𝑄) = 𝜋

𝐷

1
(𝑄) and 𝜋𝐷

2
(𝑞
𝐷
∗

2
) ≥ 𝜋
𝐷

2
(𝑄);

the optimal wholesale price is 𝜔𝐷
∗

= (𝐷 + 𝑘(𝑐 +

𝑝
𝑠
))/2𝑘.

(ii) When 𝑞𝐷
∗

2
≤ 𝑄 ≤ 𝑞

𝐷
∗

1
, if the retailer chooses to order

less than 𝑄 unit products, the supplier salvages some
products. Since 𝜋𝐷

1
(𝑞) is increasing in 𝑞, the more the

retailer orders, the more supply chain profit is got.
Otherwise, if the retailer chooses to order more than
𝑄 unit products, the supplier buys some products
from the spot market. Since 𝜋𝐷

2
(𝑞) is decreasing in

𝑞, the more the retailer orders, the less supply chain
profit is got. Then the optimal order quantity is 𝑄.

(iii) When 𝑄 ≥ 𝑞𝐷
∗

1
, if the retailer chooses to order less

than 𝑄 unit products, the maximum supply chain

profit is 𝜋𝐷
∗

= (1/𝑘)𝑞
∗2

1
+ V
𝑠
𝑄; otherwise, if the

retailer orders 𝑄 unit products from the supplier, the
maximum supply chain profit is 𝜋𝐷

∗

= 𝑄(((𝐷−𝑄)/𝑘)

− 𝑐). As 𝜋𝐷
2
(𝑄) = 𝜋

𝐷

1
(𝑄) and 𝜋𝐷

1
(𝑞
𝐷
∗

1
) ≥ 𝜋

𝐷

1
(𝑄), the

optimal wholesale price is: 𝜔𝐷
∗

= (𝐷 + 𝑘(𝑐 + V
𝑠
))/2𝑘.

Proof of Theorem 3. From the retailer’s best response
𝑞
𝐷
∗

𝑟
(𝜔) = (𝐷 − 𝑘𝜔)/2 and the optimal wholesale price 𝜔𝐷

∗

given in Lemma 3, the results in Theorem 4 are obtained.

Proof of Theorem 4. By substituting the optimal wholesale
price 𝜔𝐷

∗

given in Lemma 3 and the optimal order quantity
given in Theorem 4 in 𝜋𝐷

𝑟
(𝑞), 𝜋𝐷
𝑠
(𝑞), and 𝜋𝐷

𝑟
(𝑞) + 𝜋

𝐷

𝑠
(𝑞), the

results in Theorem 5 are obtained.

Proof of Theorem 5. It is not hard to verify 𝑞𝐷
∗

1
≥ 𝑞
𝐷
∗

2
and

𝑞
𝐼𝐷
∗

1
≥ 𝑞
𝐼𝐷
∗

2
, where 𝑞𝐼𝐷

∗

1
= (𝐷−𝑘(𝑐+V

𝑠
))/2, 𝑞𝐼𝐷

∗

2
= (𝐷−𝑘(𝑐+

𝑝
𝑠
))/2, 𝑞𝐷

∗

1
= (𝐷−𝑘(𝑐+V

𝑠
))/4, and 𝑞𝐷

∗

2
= (𝐷−𝑘(𝑐+𝑝

𝑠
))/4. It is

not hard to verify 𝑞𝐼𝐷
∗

1
≥ 𝑞
𝐷
∗

1
and 𝑞𝐼𝐷

∗

2
≥ 𝑞
𝐷
∗

2
. As the relation

between 𝑞𝐷
∗

1
and 𝑞𝐼𝐷

∗

2
is not known, the following two cases

are discussed.

(i) When 𝑞𝐼𝐷
∗

2
≤ 𝑞
𝐷
∗

1
, 𝑞𝐷
∗

2
≤ 𝑞
𝐼𝐷
∗

2
≤ 𝑞
𝐷
∗

1
≤ 𝑞
𝐼𝐷
∗

1
is got.

In this case, when 0 ≤ 𝑄 ≤ 𝑞𝐷
∗

2
, 𝑞𝐼𝐷

∗

= 𝑞
𝐼𝐷
∗

2
, 𝑞𝐷
∗

𝑟
= 𝑞
𝐷
∗

2
;

when 𝑞𝐷
∗

2
≤ 𝑄 ≤ 𝑞

𝐼𝐷
∗

2
, 𝑞𝐼𝐷

∗

= 𝑞
𝐼𝐷
∗

2
, 𝑞𝐷
∗

𝑟
= 𝑄; when 𝑞𝐼𝐷

∗

2
≤

𝑄 ≤ 𝑞
𝐷
∗

1
, 𝑞𝐼𝐷

∗

= 𝑄, 𝑞𝐷
∗

𝑟
= 𝑄; when 𝑞𝐷

∗

1
≤ 𝑄 ≤ 𝑞

𝐼𝐷
∗

1
, 𝑞𝐼𝐷

∗

= 𝑄,
𝑞
𝐷
∗

𝑟
= 𝑞
𝐷
∗

1
; when 𝑞𝐼𝐷

∗

1
≤ 𝑄 ≤ 𝑄, 𝑞𝐼𝐷

∗

= 𝑞
𝐼𝐷
∗

1
, 𝑞𝐷
∗

𝑟
= 𝑞
𝐷
∗

1
. It is

not hard to get 𝑞𝐷
∗

𝑟
≤ 𝑞
𝐼𝐷
∗

, when 𝑞𝐼𝐷
∗

2
≤ 𝑞
𝐷
∗

1
.

(ii) When 𝑞𝐼𝐷
∗

2
≥ 𝑞
𝐷
∗

1
, 𝑞𝐷
∗

2
≤ 𝑞
𝐷
∗

1
≤ 𝑞
𝐼𝐷
∗

2
≤ 𝑞
𝐼𝐷
∗

1
is got.

In this case, when 0 ≤ 𝑄 ≤ 𝑞𝐷
∗

2
, 𝑞𝐼𝐷

∗

= 𝑞
𝐼𝐷
∗

2
, 𝑞𝐷
∗

𝑟
= 𝑞
𝐷
∗

2
;

when 𝑞𝐷
∗

2
≤ 𝑄 ≤ 𝑞

𝐷
∗

1
, 𝑞𝐼𝐷

∗

= 𝑞
𝐼𝐷
∗

2
, 𝑞𝐷
∗

𝑟
= 𝑄; when 𝑞𝐷

∗

1
≤

𝑄 ≤ 𝑞
𝐼𝐷
∗

2
, 𝑞𝐼𝐷

∗

= 𝑞
𝐼𝐷
∗

2
, 𝑞𝐷
∗

𝑟
= 𝑞
𝐷
∗

1
; when 𝑞𝐼𝐷

∗

2
≤ 𝑄 ≤ 𝑞

𝐼𝐷
∗

1
,

𝑞
𝐼𝐷
∗

= 𝑄, 𝑞𝐷
∗

𝑟
= 𝑞
𝐷
∗

1
; when 𝑞𝐼𝐷

∗

1
≤ 𝑄 ≤ 𝑄, 𝑞𝐼𝐷

∗

= 𝑞
𝐼𝐷
∗

1
,

𝑞
𝐷
∗

𝑟
= 𝑞
𝐷
∗

1
.

It is not hard to get 𝑞𝐷
∗

𝑟
≤ 𝑞
𝐼𝐷
∗

, when 𝑞𝐼𝐷
∗

2
≥ 𝑞
𝐷
∗

1
.

Proof of Theorem 6. Because the relation between (𝐷 − 𝑘(𝑐 +
𝑝
𝑠
))/2, (𝐷−𝑘(𝑐+V

𝑠
))/4 is not known, the following two cases

are discussed.

Case 1. When (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/2 ≤ (𝐷 − 𝑘(𝑐 + V

𝑠
))/4, The

following five cases are discussed.

(i) When 𝑄 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
)/4), 𝜋𝐼𝐷

∗

= (1/𝑘)[(𝐷−

𝑘(𝑐+𝑝
𝑠
))/2]
2

+𝑝
𝑠
𝑄,𝜋𝐷

∗

= (3/𝑘)[(𝐷 − 𝑘(𝑝
𝑠
+ 𝑐))/4]

2

+

𝑝
𝑠
𝑄. It is obvious that 𝜋𝐼𝐷

∗

≥ 𝜋
𝐷
∗

.

(ii) When (𝐷−𝑘(𝑐+𝑝
𝑠
))/4 ≤ 𝑄 ≤ (𝐷−𝑘(𝑐+𝑝

𝑠
))/2,𝜋𝐼𝐷

∗

=

(1/𝑘)[(𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/2]
2

+ 𝑝
𝑠
𝑄, 𝜋𝐷

∗

= 𝑄(((𝐷 − 𝑄)/

𝑘) − 𝑐). Because 𝜋𝐷
∗

is an increasing function of 𝑄
and 𝜋𝐷

∗

((𝐷 − 𝑘(𝑐 + 𝑝
𝑠
)/2)) = 𝜋

𝐼𝐷
∗

, it’s obvious that
𝜋
𝐼𝐷
∗

≥ 𝜋
𝐷
∗

.
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(iii) When (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/2 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + V

𝑠
))/4,

𝜋
𝐼𝐷
∗

= 𝑄(((𝐷−𝑄)/𝑘) − 𝑐), 𝜋𝐷
∗

= 𝑄(((𝐷−𝑄)/𝑘) − 𝑐).
It is obvious that 𝜋𝐼𝐷

∗

= 𝜋
𝐷
∗

.
(iv) When (𝐷−𝑘(𝑐+V

𝑠
))/4 ≤ 𝑄 ≤ (𝐷−𝑘(𝑐+V

𝑠
))/2,𝜋𝐼𝐷

∗

=

𝑄((((𝐷−𝑄))/𝑘)−𝑐),𝜋𝐷
∗

= (3/𝑘)[(𝐷 − 𝑘(V
𝑠
+ 𝑐))/4]

2

+

V
𝑠
𝑄. Because 𝜋𝐼𝐷

∗

is an increasing function of 𝑄 and
𝜋
𝐼𝐷
∗

((𝐷−𝑘(𝑐+V
𝑠
))/4) = 𝜋

𝐼𝐷
∗

, it is obvious that𝜋𝐼𝐷
∗

≥

𝜋
𝐷
∗

.
(v) When (𝐷 − 𝑘(𝑐 + V

𝑠
))/2 ≤ 𝑄 ≤ 𝑄, 𝜋𝐼𝐷

∗

= (1/𝑘)[(𝐷−

𝑘(𝑐+V
𝑠
))/2]
2

+V
𝑠
𝑄, 𝜋𝐷

∗

= (3/𝑘)[(𝐷 − 𝑘(V
𝑠
+ 𝑐))/4]

2

+

V
𝑠
𝑄. It is obvious that 𝜋𝐼𝐷

∗

≥ 𝜋
𝐷
∗

.

Case 2. When (𝐷 − 𝑘(𝑐 + V
𝑠
))/4 ≤ (𝐷 − 𝑘(𝑐 + 𝑝

𝑠
))/2, The

following five cases are discussed.

(i) When 𝑄 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/4, 𝜋𝐼𝐷

∗

= (1/𝑘)[(𝐷−

𝑘(𝑐+𝑝
𝑠
))/2]
2

+𝑝
𝑠
𝑄,𝜋𝐷

∗

= (3/𝑘)[(𝐷 − 𝑘(𝑝
𝑠
+ 𝑐))/4]

2

+

𝑝
𝑠
𝑄. It is obvious that 𝜋𝐼𝐷

∗

≥ 𝜋
𝐷
∗

.

(ii) When (𝐷−𝑘(𝑐+𝑝
𝑠
))/4 ≤ 𝑄 ≤ (𝐷−𝑘(𝑐+V

𝑠
))/4,𝜋𝐼𝐷

∗

=

(1/𝑘)[(𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/2]
2

+ 𝑝
𝑠
𝑄, 𝜋𝐷

∗

= 𝑄(((𝐷 − 𝑄)/

𝑘) − 𝑐). Because 𝜋𝐷
∗

is an increasing function of 𝑄
and 𝜋𝐷

∗

((𝐷 − 𝑘(𝑐 + V
𝑠
))/4) < 𝜋

𝐼𝐷
∗

, it’s obvious that
𝜋
𝐼𝐷
∗

≥ 𝜋
𝐷
∗

.
(iii) When (𝐷 − 𝑘(𝑐 + V

𝑠
))/4 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + 𝑝

𝑠
))/2,

𝜋
𝐼𝐷
∗

= (1/𝑘)[(𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/2]
2

+ 𝑝
𝑠
𝑄, 𝜋𝐷

∗

=

(3/𝑘)[(𝐷 − 𝑘(V
𝑠
+ 𝑐))/4]

2

+ V
𝑠
𝑄. It is obvious that

𝜋
𝐼𝐷
∗

≥ 𝜋
𝐷
∗

.
(iv) When (𝐷−𝑘(𝑐+𝑝

𝑠
))/2 ≤ 𝑄 ≤ (𝐷−𝑘(𝑐+V

𝑠
))/2,𝜋𝐼𝐷

∗

=

𝑄(((𝐷−𝑄)/𝑘)−𝑐), 𝜋𝐷
∗

= (3/𝑘)[(𝐷 − 𝑘(V
𝑠
+ 𝑐))/4]

2

+

V
𝑠
𝑄. Because 𝜋𝐼𝐷

∗

is an increasing function of 𝑄 and
𝜋
𝐼𝐷
∗

((𝐷−𝑘(𝑐+𝑝
𝑠
))/2) > 𝜋

𝐷
∗

, it is obvious that𝜋𝐼𝐷
∗

≥

𝜋
𝐷
∗

.
(v) When (𝐷 − 𝑘(𝑐 + V

𝑠
))/2 ≤ 𝑄 ≤ 𝑄, 𝜋𝐼𝐷

∗

= (1/𝑘)[(𝐷−

𝑘(𝑐+V
𝑠
))/2]
2

+V
𝑠
𝑄, 𝜋𝐷

∗

= (3/𝑘)[(𝐷 − 𝑘(V
𝑠
+ 𝑐))/4]

2

+

V
𝑠
𝑄. It is obvious that 𝜋𝐼𝐷

∗

≥ 𝜋
𝐷
∗

.

In summary, 𝜋𝐼𝐷
∗

≥ 𝜋
𝐷
∗

is always true.

Proof of Theorem 7. From the retailer’s profit in the decen-
tralized supply chain given in (2), the best response 𝑞𝐶

∗

𝑟
(𝜔) =

(𝐷 − 𝑘𝜔)/2 is got. To ensure that the retailer’s order quantity
equals the optimal order quantity in the centralized supply
chain, that is, 𝑞𝐶

∗

𝑟
(𝜔) = 𝑞

𝐼𝐷
∗

, the results in Theorem 8 are
obtained.

Proof of Theorem 8. (i)When 0 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/2,

the supplier and retailer’s profits are 𝜋𝐶
∗

𝑠
= 𝑝
𝑠
𝑄, 𝜋𝐶

∗

𝑟
=

(1/𝑘)[(𝐷 − 𝑘(𝑝
𝑠
+ 𝑐))/2]

2. The total supply chain profit is:
𝜋
𝐶
∗

= (1/𝑘)[(𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/2]
2

+ 𝑝
𝑠
𝑄;

(ii) when (𝐷 − 𝑘(𝑐 + 𝑝
𝑠
))/2 ≤ 𝑄 ≤ (𝐷 − 𝑘(𝑐 + V

𝑠
))/2, The

supplier and retailer’s profits are 𝜋𝐶
∗

𝑠
= 𝑄(((𝐷 − 2𝑄)/𝑘) − 𝑐),

𝜋
𝐶
∗

𝑟
= 𝑄
2

/𝑘.The total supply chain profit is𝜋𝐶
∗

= 𝑄(((𝐷−𝑄)/

𝑘) − 𝑐);
(iii) when (𝐷 − 𝑘(𝑐 + V

𝑠
))/2 ≤ 𝑄 ≤ 𝑄, the

supplier and retailer’s profits are 𝜋𝐶
∗

𝑠
= V
𝑠
𝑄, 𝜋𝐶

∗

𝑟
=

(1/𝑘)[(𝐷 − 𝑘(V
𝑠
+ 𝑐))/2]

2. The total supply chain profit is
𝜋
𝐶
∗

= (1/𝑘)[(𝐷 − 𝑘(𝑐 + V
𝑠
))/2]
2

+ V
𝑠
𝑄.

Summarizing the above results, 𝜋𝐶
∗

= 𝜋
𝐼𝐷
∗

is got; that is,
the decentralized supply chain is coordinated.
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