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A function 𝑓 : R → R is said to be a Fibonacci function if 𝑓(𝑥 + 2) = 𝑓(𝑥 + 1) + 𝑓(𝑥) for all 𝑥 ∈ R. In 2012, some properties on
the Fibonacci functions were presented. In this paper, for any positive integer 𝑘, a function 𝑓 : R → R is said to be a Fibonacci
function with period 𝑘 if 𝑓(𝑥 + 2𝑘) = 𝑓(𝑥 + 𝑘) + 𝑓(𝑥) for all 𝑥 ∈ R; we present some properties on the Fibonacci functions with
period 𝑘.

1. Introduction

Presently, there are many research articles about Fibonacci
numbers (see [1]). Fibonacci numbers are also involved in the
golden ratio (see [2]). In 2008, Kim and Neggers [3] studied
Fibonacci means. In 2009, Jung [4] studied Hyers-Ulam
stability of Fibonacci functional equation. In 2010, Han et al.
[5] studied a Fibonacci normof positive integers. In 2012,Han
et al. [6] studied Fibonacci sequences in groupoids.Moreover,
they [7] gave some properties on Fibonacci functions; a
function 𝑓 : R → R is said to be a Fibonacci function if
𝑓(𝑥+2) = 𝑓(𝑥+1)+𝑓(𝑥), for all 𝑥 ∈ R, using the concept of
𝑓-even and 𝑓-odd functions. They also showed that if 𝑓 is a
Fibonacci function, then lim

𝑥→∞
𝑓(𝑥+1)/𝑓(𝑥) = (1+√5)/2.

In this paper, for any positive integer 𝑘, a function 𝑓 :
R → R is said to be a Fibonacci function with period 𝑘
if 𝑓(𝑥 + 2𝑘) = 𝑓(𝑥 + 𝑘) + 𝑓(𝑥) for all 𝑥 ∈ R; we present
some properties on the Fibonacci functions with period 𝑘
using the concept of𝑓-even and𝑓-odd functions with period
𝑘. Moreover, we also present some properties on the odd
Fibonacci functions with period 𝑘.

2. Fibonacci Functions with Period 𝑘

Definition 1. Let 𝑘 be a positive integer. A function 𝑓 : R →
R is said to be a Fibonacci function with period 𝑘 if 𝑓(𝑥 +
2𝑘) = 𝑓(𝑥 + 𝑘) + 𝑓(𝑥) for all 𝑥 ∈ R.

Example 2. Let 𝑓(𝑥) = 𝑎𝑥/𝑘 be a Fibonacci function with
period 𝑘 ∈ N, where 𝑎 > 0. It follows that 𝑎(𝑥/𝑘)+2 = 𝑎(𝑥/𝑘)+1 +
𝑎𝑥/𝑘 for all 𝑥 ∈ R, so 𝑎2 = 𝑎 + 1. Then 𝑎 = (1 + √5)/2. Thus,
𝑓(𝑥) = ((1 + √5)/2)

𝑥/𝑘 for all 𝑥 ∈ R.

Proposition 3. Let 𝑓 : R → R be a Fibonacci function with
period 𝑘 ∈ N. Assume that 𝑓 is differentiable. Then 𝑓󸀠 is also a
Fibonacci function with period 𝑘.

Proof. Let 𝑥 ∈ R. Since𝑓(𝑥+2𝑘) = 𝑓(𝑥+𝑘)+𝑓(𝑥), it follows
that 𝑓󸀠(𝑥 + 2𝑘) = 𝑓󸀠(𝑥 + 𝑘) + 𝑓󸀠(𝑥).

Proposition 4. Let 𝑓 : R → R be a Fibonacci function with
period 𝑘 ∈ N, and define 𝑔

𝑡
(𝑥) = 𝑓(𝑥 + 𝑡) for all 𝑥 ∈ R, where

𝑡 ∈ R. Then 𝑔
𝑡
is also a Fibonacci function with period 𝑘.

Proof. Let 𝑥 ∈ R. Then 𝑔
𝑡
(𝑥 + 2𝑘) = 𝑓(𝑥+ 2𝑘+ 𝑡) = 𝑓(𝑥+ 𝑡 +

𝑘) + 𝑓(𝑥 + 𝑡) = 𝑔
𝑡
(𝑥 + 𝑘) + 𝑔

𝑡
(𝑥).

Example 5. Let 𝑘 ∈ N and 𝑡 ∈ R. Define 𝑔
𝑡
: R → R

by 𝑔
𝑡
(𝑥) = ((1 + √5)/2)

(𝑥+𝑡)/𝑘 for all 𝑥 ∈ R. Then 𝑔
𝑡
is a

Fibonacci function with period 𝑘.

Theorem 6. Let 𝑓 : R → R be a Fibonacci function with
period 𝑘 ∈ N, and let {𝐹

𝑛
}
𝑛∈N be a sequence of Fibonacci

numbers with 𝐹
0
= 0, 𝐹

1
= 1, and 𝐹

𝑛+1
= 𝐹
𝑛
+ 𝐹
𝑛−1

for
all 𝑛 ∈ N. Then, for any 𝑛 ∈ N and 𝑥 ∈ R, 𝑓(𝑥 + 𝑛𝑘) =
𝐹
𝑛
𝑓(𝑥 + 𝑘) + 𝐹

𝑛−1
𝑓(𝑥).
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Proof. Let 𝑥 ∈ R. We note that𝑓(𝑥+𝑘) = 𝐹
1
𝑓(𝑥+𝑘)+𝐹

0
𝑓(𝑥)

and 𝑓(𝑥 + 2𝑘) = 𝐹
2
𝑓(𝑥 + 𝑘) + 𝐹

1
𝑓(𝑥). Now, we assume that

𝑓(𝑥 + 𝑛𝑘) = 𝐹
𝑛
𝑓(𝑥 + 𝑘) + 𝐹

𝑛−1
𝑓(𝑥) and 𝑓(𝑥 + (𝑛 + 1)k) =

𝐹
𝑛+1
𝑓(𝑥 + 𝑘) + 𝐹

𝑛
𝑓(𝑥), where 𝑛 ∈ N. Then

𝑓 (𝑥 + (𝑛 + 2) 𝑘)

= 𝑓 (𝑥 + (𝑛 + 1) 𝑘) + 𝑓 (𝑥 + 𝑛𝑘)

= 𝐹
𝑛+1
𝑓 (𝑥 + 𝑘) + 𝐹

𝑛
𝑓 (𝑥) + 𝐹

𝑛
𝑓 (𝑥 + 𝑘) + 𝐹

𝑛−1
𝑓 (𝑥)

= (𝐹
𝑛+1
+ 𝐹
𝑛
) 𝑓 (𝑥 + 𝑘) + (𝐹

𝑛
+ 𝐹
𝑛−1
) 𝑓 (𝑥)

= 𝐹
𝑛+2
𝑓 (𝑥 + 𝑘) + 𝐹

𝑛+1
𝑓 (𝑥) .

(1)

This proof is completed.

3. Odd Fibonacci Functions with Period 𝑘

Definition 7. Let 𝑘 be a positive integer. A function 𝑓 : R →
R is said to be an odd Fibonacci function with period 𝑘 if
𝑓(𝑥 + 2𝑘) = −𝑓(𝑥 + 𝑘) + 𝑓(𝑥) for all 𝑥 ∈ R.

Example 8. Let 𝑓(𝑥) = 𝑎𝑥/𝑘 be an odd Fibonacci function
with period 𝑘 ∈ N, where 𝑎 > 0. It follows that 𝑎(𝑥/𝑘)+2 =
−𝑎(𝑥/𝑘)+1 + 𝑎𝑥/𝑘 for all 𝑥 ∈ R, so 𝑎2 = −𝑎 + 1. Then 𝑎 =
(−1 + √5)/2. Thus, 𝑓(𝑥) = ((−1 + √5)/2)𝑥/𝑘 for all 𝑥 ∈ R.

Proposition 9. Let 𝑓 : R → R be an odd Fibonacci function
with period 𝑘 ∈ N. Assume that 𝑓 is differentiable. Then 𝑓󸀠 is
also an odd Fibonacci function with period 𝑘.

Proof. Let 𝑥 ∈ R. Since 𝑓(𝑥 + 2𝑘) = −𝑓(𝑥 + 𝑘) + 𝑓(𝑥), it
follows that 𝑓󸀠(𝑥 + 2𝑘) = −𝑓󸀠(𝑥 + 𝑘) + 𝑓󸀠(𝑥).

Proposition 10. Let𝑓 : R → R be an odd Fibonacci function
with period 𝑘 ∈ N, and define 𝑔

𝑡
(𝑥) = 𝑓(𝑥 + 𝑡) for all 𝑥 ∈ R,

where 𝑡 ∈ R. Then 𝑔
𝑡
is also an odd Fibonacci function with

period 𝑘.

Proof. Let 𝑥 ∈ R. Then 𝑔
𝑡
(𝑥 + 2𝑘) = 𝑓(𝑥 + 2𝑘 + 𝑡) = −𝑓(𝑥 +

𝑡 + 𝑘) + 𝑓(𝑥 + 𝑡) = −𝑔t(𝑥 + 𝑘) + 𝑔𝑡(𝑥).

Example 11. Let 𝑘 ∈ N and 𝑡 ∈ R. Define 𝑔
𝑡
: R → R by

𝑔
𝑡
(𝑥) = ((−1 + √5)/2)

(𝑥+𝑡)/𝑘 for all 𝑥 ∈ R. Then 𝑔
𝑡
is an odd

Fibonacci function with period 𝑘.

Theorem 12. Let 𝑓 : R → R be an odd Fibonacci function
with period 𝑘 ∈ N, and let {𝐹

−𝑛
}
𝑛∈N be a sequence of Fibonucci

numbers with 𝐹
0
= 0, 𝐹

−1
= 1, and 𝐹

−𝑛−1
= −𝐹
−𝑛
+ 𝐹
−𝑛+1

for all 𝑛 ∈ N. Then, for any 𝑛 ∈ N and 𝑥 ∈ R, 𝑓(𝑥 + 𝑛𝑘) =
𝐹
−𝑛
𝑓(𝑥 + 𝑘) + 𝐹

−𝑛+1
𝑓(𝑥).

Proof. Let𝑥 ∈ R.We note that𝑓(𝑥+𝑘) = 𝐹
−1
𝑓(𝑥+𝑘)+𝐹

0
𝑓(𝑥)

and 𝑓(𝑥+ 2𝑘) = 𝐹
−2
𝑓(𝑥+𝑘) +𝐹

−1
𝑓(𝑥). Now, we assume that

𝑓(𝑥 + 𝑛𝑘) = 𝐹
−𝑛
𝑓(𝑥 + 𝑘) + 𝐹

−𝑛+1
𝑓(𝑥) and 𝑓(𝑥 + (𝑛 + 1)𝑘) =

𝐹
−𝑛−1
𝑓(𝑥 + 𝑘) + 𝐹

−𝑛
𝑓(𝑥), where 𝑛 ∈ N. Then

𝑓 (𝑥 + (𝑛 + 2) 𝑘)

= −𝑓 (𝑥 + (𝑛 + 1) 𝑘) + 𝑓 (𝑥 + 𝑛𝑘)

= − (𝐹
−𝑛−1
𝑓 (𝑥 + 𝑘) + 𝐹

−𝑛
𝑓 (𝑥))

+ 𝐹
−𝑛
𝑓 (𝑥 + 𝑘) + 𝐹

−𝑛+1
𝑓 (𝑥)

= (−𝐹
−𝑛−1
+ 𝐹
−𝑛
) 𝑓 (𝑥 + 𝑘)

+ (−𝐹
−𝑛
+ 𝐹
−𝑛+1
) 𝑓 (𝑥)

= 𝐹
−𝑛−2
𝑓 (𝑥 + 𝑘) + 𝐹

−𝑛−1
𝑓 (𝑥) .

(2)

This proof is completed.

4. 𝑓-Even Functions with Period 𝑘

Definition 13. Let 𝑘 be a positive integer and let 𝛼 : R → R

be such that if 𝛼ℎ = 0, where ℎ : R → R is continuous, then
ℎ = 0. The function 𝛼 is said to be an 𝑓-even function with
period 𝑘 if 𝛼(𝑥 + 𝑘) = 𝛼(𝑥) for all 𝑥 ∈ R.

Example 14. Define 𝛼(𝑥) = 𝑥−⌊𝑥⌋ for all 𝑥 ∈ R. Let ℎ : R →
R be a continuous function such that 𝛼ℎ = 0. For any 𝑥 ∉ Z,
we have 𝛼(𝑥) ̸= 0, so ℎ(𝑥) = 0. SinceR \Z is dense inR and ℎ
is continuous, it follows that ℎ = 0. Let 𝑘 ∈ N and 𝑥 ∈ R.Then
𝛼(𝑥 + 𝑘) = 𝑥+ 𝑘− ⌊𝑥 + 𝑘⌋ = 𝑥+ 𝑘− ⌊𝑥⌋ − 𝑘 = 𝑥− ⌊𝑥⌋ = 𝛼(𝑥).
Hence, 𝛼 is an 𝑓-even function with period 𝑘.

Theorem 15. Let 𝑘 ∈ N and 𝛼 : R → R be an 𝑓-even
function with period 𝑘 and let 𝑔 : R → R be a continuous
function. Then 𝑔 is a Fibonacci function with period 𝑘 if and
only if 𝛼𝑔 is a Fibonacci function with period 𝑘.

Proof. First, we assume that 𝑔 is a Fibonacci function with
period 𝑘. For any 𝑥 ∈ R, we have

(𝛼𝑔) (𝑥 + 2𝑘)

= 𝛼 (𝑥 + 2𝑘) 𝑔 (𝑥 + 2𝑘)

= 𝛼 (𝑥 + 𝑘) (𝑔 (𝑥 + 𝑘) + 𝑔 (𝑥))

= 𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 𝑘) + 𝛼 (𝑥 + 𝑘) 𝑔 (𝑥)

= 𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 𝑘) + 𝛼 (𝑥) 𝑔 (𝑥)

= (𝛼𝑔) (𝑥 + 𝑘) + (𝛼𝑔) (𝑥) .

(3)

Hence, 𝛼𝑔 is a Fibonacci function with period 𝑘.
Next, we assume that 𝛼𝑔 is a Fibonacci function with

period 𝑘. Let 𝑥 ∈ R. Then

𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 2𝑘)

= 𝛼 (𝑥 + 2𝑘) 𝑔 (𝑥 + 2𝑘)

= (𝛼𝑔) (𝑥 + 2𝑘)

= (𝛼𝑔) (𝑥 + 𝑘) + (𝛼𝑔) (𝑥)
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= 𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 𝑘) + 𝛼 (𝑥) 𝑔 (𝑥)

= 𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 𝑘) + 𝛼 (𝑥 + 𝑘) 𝑔 (𝑥)

= 𝛼 (𝑥 + 𝑘) (𝑔 (𝑥 + 𝑘) + 𝑔 (𝑥)) .

(4)

By the assumption of 𝛼, we obtain that 𝑔(𝑥 + 2𝑘) = 𝑔(𝑥 +
𝑘)+𝑔(𝑥). Hence, 𝑔 is a Fibonacci function with period 𝑘.

Example 16. Let 𝑘 ∈ N. Define 𝛼(𝑥) = 𝑥 − ⌊𝑥⌋ and 𝑔(𝑥) =
((1 + √5)/2)

𝑥/𝑘 for all 𝑥 ∈ R. For all 𝑥 ∈ R, we have
𝛼𝑔(𝑥) = (𝑥 − ⌊𝑥⌋)((1 + √5)/2)

𝑥/𝑘. We recall that 𝛼 is an 𝑓-
even function with period 𝑘, and 𝑔 is a Fibonacci function
with period 𝑘. Hence, 𝛼𝑔 is a Fibonacci function with period
𝑘.

Theorem 17. Let 𝑘 ∈ N and 𝛼 : R → R be an 𝑓-even
function with period 𝑘 and let 𝑔 : R → R be a continuous
function. Then 𝑔 is an odd Fibonacci function with period 𝑘 if
and only if 𝛼𝑔 is an odd Fibonacci function with period 𝑘.

Proof. First, we assume that 𝑔 is an odd Fibonacci function
with period 𝑘. For any 𝑥 ∈ R, we have

(𝛼𝑔) (𝑥 + 2𝑘)

= 𝛼 (𝑥 + 2𝑘) 𝑔 (𝑥 + 2𝑘)

= 𝛼 (𝑥 + 𝑘) (−𝑔 (𝑥 + 𝑘) + 𝑔 (𝑥))

= −𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 𝑘) + 𝛼 (𝑥 + 𝑘) 𝑔 (𝑥)

= −𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 𝑘) + 𝛼 (𝑥) 𝑔 (𝑥)

= − (𝛼𝑔) (𝑥 + 𝑘) + (𝛼𝑔) (𝑥) .

(5)

Hence, 𝛼𝑔 is an odd Fibonacci function with period 𝑘.
Next, we assume that 𝛼𝑔 is an odd Fibonacci function

with period 𝑘. Let 𝑥 ∈ R. Then

𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 2𝑘)

= 𝛼 (𝑥 + 2𝑘) 𝑔 (𝑥 + 2𝑘)

= (𝛼𝑔) (𝑥 + 2𝑘)

= − (𝛼𝑔) (𝑥 + 𝑘) + (𝛼𝑔) (𝑥)

= −𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 𝑘) + 𝛼 (𝑥) 𝑔 (𝑥)

= −𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 𝑘) + 𝛼 (𝑥 + 𝑘) 𝑔 (𝑥)

= 𝛼 (𝑥 + 𝑘) (−𝑔 (𝑥 + 𝑘) + 𝑔 (𝑥)) .

(6)

By the assumption of 𝛼, we obtain that 𝑔(𝑥+2𝑘) = −𝑔(𝑥+
𝑘) + 𝑔(𝑥). Hence, 𝑔 is an odd Fibonacci function with period
𝑘.

Example 18. Let 𝑘 ∈ N. Define 𝛼(𝑥) = 𝑥 − ⌊𝑥⌋ and 𝑔(𝑥) =
((−1 + √5)/2)

𝑥/𝑘 for all 𝑥 ∈ R. For all 𝑥 ∈ R, we have 𝛼𝑔(𝑥) =
(𝑥 − ⌊𝑥⌋)((−1 + √5)/2)

𝑥/𝑘. We recall that 𝛼 is an 𝑓-even

function with period 𝑘 and 𝑔 is an odd Fibonacci function
with period 𝑘. Hence, 𝛼𝑔 is an odd Fibonacci function with
period 𝑘.

5. 𝑓-Odd Functions with Period 𝑘

Definition 19. Let 𝑘 be a positive integer and let 𝛼 : R → R

be such that if 𝛼ℎ = 0 where ℎ : R → R is continuous, then
ℎ = 0. The function 𝛼 is said to be an 𝑓-odd function with
period 𝑘 if 𝛼(𝑥 + 𝑘) = −𝛼(𝑥) for all 𝑥 ∈ R.

Example 20. Define 𝛼(𝑥) = sin(𝜋𝑥) for all 𝑥 ∈ R. Let ℎ :
R → R be a continuous function such that 𝛼ℎ = 0. For any
𝑥 ∉ 𝜋Z, we have𝛼(𝑥) ̸= 0, so ℎ(𝑥) = 0. SinceR\𝜋Z is dense in
R and ℎ is continuous, it follows that ℎ = 0. Let 𝑘 be a positive
odd integer and 𝑥 ∈ R. Then 𝛼(𝑥 + 𝑘) = sin(𝜋(𝑥 + 𝑘)) =
sin(𝜋𝑥 + 𝜋𝑘) = − sin(𝜋𝑥) = −𝛼(𝑥). Hence, 𝛼 is an 𝑓-even
function with period 𝑘.

Theorem 21. Let 𝑘 ∈ N and 𝛼 : R → R be an𝑓-odd function
with period 𝑘 and let 𝑔 : R → R be a continuous function.
Then 𝑔 is a Fibonacci function with period 𝑘 if and only if 𝛼𝑔
is an odd Fibonacci function with period 𝑘.

Proof. First, we assume that 𝑔 is a Fibonacci function with
period 𝑘. For any 𝑥 ∈ R, we have

(𝛼𝑔) (𝑥 + 2𝑘)

= 𝛼 (𝑥 + 2𝑘) 𝑔 (𝑥 + 2𝑘)

= −𝛼 (𝑥 + 𝑘) (𝑔 (𝑥 + 𝑘) + 𝑔 (𝑥))

= −𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 𝑘) − 𝛼 (𝑥 + 𝑘) 𝑔 (𝑥)

= −𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 𝑘) + 𝛼 (𝑥) 𝑔 (𝑥)

= − (𝛼𝑔) (𝑥 + 𝑘) + (𝛼𝑔) (𝑥) .

(7)

Hence, 𝛼𝑔 is an odd Fibonacci function with period 𝑘.
Next, we assume that 𝛼𝑔 is an odd Fibonacci function

with period 𝑘. Let 𝑥 ∈ R. Then

𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 2𝑘)

= −𝛼 (𝑥 + 2𝑘) 𝑔 (𝑥 + 2𝑘)

= − (𝛼𝑔) (𝑥 + 2𝑘)

= − (− (𝛼𝑔) (𝑥 + 𝑘) + (𝛼𝑔) (𝑥))

= (𝛼𝑔) (𝑥 + 𝑘) − (𝛼𝑔) (𝑥)

= 𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 𝑘) − 𝛼 (𝑥) 𝑔 (𝑥)

= 𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 𝑘) + 𝛼 (𝑥 + 𝑘) 𝑔 (𝑥)

= 𝛼 (𝑥 + 𝑘) (𝑔 (𝑥 + 𝑘) + 𝑔 (𝑥)) .

(8)

By the assumption of 𝛼, we obtain that 𝑔(𝑥 + 2𝑘) = 𝑔(𝑥 +
𝑘)+𝑔(𝑥). Hence, 𝑔 is a Fibonacci function with period 𝑘.
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Example 22. Let 𝑘 be a positive odd integer. Define 𝛼(𝑥) =
sin(𝜋𝑥) and 𝑔(𝑥) = ((1 + √5)/2)𝑥/𝑘 for all 𝑥 ∈ R. We
have 𝛼𝑔(𝑥) = (sin(𝜋𝑥))((1 + √5)/2)𝑥/𝑘 for all 𝑥 ∈ R. We
recall that 𝛼 is an 𝑓-odd function with period 𝑘 and 𝑔 is
a Fibonacci function with period 𝑘. Hence, 𝛼𝑔 is an odd
Fibonacci function with period 𝑘.

Theorem23. Let 𝑘 ∈ N and𝛼 : R → R be an𝑓-odd function
with period 𝑘 and let 𝑔 : R → R be a continuous function.
Then 𝑔 is an odd Fibonacci function with period 𝑘 if and only
if 𝛼𝑔 is a Fibonacci function with period 𝑘.

Proof. First, we assume that 𝑔 is an odd Fibonacci function
with period 𝑘. For any 𝑥 ∈ R, we have

(𝛼𝑔) (𝑥 + 2𝑘)

= 𝛼 (𝑥 + 2𝑘) 𝑔 (𝑥 + 2𝑘)

= −𝛼 (𝑥 + 𝑘) (−𝑔 (𝑥 + 𝑘) + 𝑔 (𝑥))

= 𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 𝑘) − 𝛼 (𝑥 + 𝑘) 𝑔 (𝑥)

= 𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 𝑘) + 𝛼 (𝑥) 𝑔 (𝑥)

= (𝛼𝑔) (𝑥 + 𝑘) + (𝛼𝑔) (𝑥) .

(9)

Hence, 𝛼𝑔 is a Fibonacci function with period 𝑘.
Next, we assume that 𝛼𝑔 is a Fibonacci function with

period 𝑘. Let 𝑥 ∈ R. Then

𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 2𝑘)

= −𝛼 (𝑥 + 2𝑘) 𝑔 (𝑥 + 2𝑘)

= − (𝛼𝑔) (𝑥 + 2𝑘)

= − ((𝛼𝑔) (𝑥 + 𝑘) + (𝛼𝑔) (𝑥))

= − (𝛼𝑔) (𝑥 + 𝑘) − (𝛼𝑔) (𝑥)

= −𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 𝑘) − 𝛼 (𝑥) 𝑔 (𝑥)

= −𝛼 (𝑥 + 𝑘) 𝑔 (𝑥 + 𝑘) + 𝛼 (𝑥 + 𝑘) 𝑔 (𝑥)

= 𝛼 (𝑥 + 𝑘) (−𝑔 (𝑥 + 𝑘) + 𝑔 (𝑥)) .

(10)

By the assumption of 𝛼, we obtain that 𝑔(𝑥+2𝑘) = −𝑔(𝑥+
𝑘) + 𝑔(𝑥). Hence, 𝑔 is an odd Fibonacci function with period
𝑘.

Example 24. Let 𝑘 be a positive odd integer. Define 𝛼(𝑥) =
sin(𝜋𝑥) and 𝑔(𝑥) = ((−1 + √5)/2)𝑥/𝑘 for all 𝑥 ∈ R. We have
𝛼𝑔(𝑥) = (sin(𝜋𝑥))((−1 + √5)/2)𝑥/𝑘 for all 𝑥 ∈ R. We recall
that 𝛼 is an 𝑓-odd function with period 𝑘 and 𝑔 is an odd
Fibonacci function with period 𝑘. Hence, 𝛼𝑔 is a Fibonacci
function with period 𝑘.

6. Open Problems

Conjecture 25. If𝑓 is a Fibonacci function with period 𝑘 ∈ N,
then

lim
𝑥→∞

𝑓 (𝑥 + 𝑘)

𝑓 (𝑥)
=
1 + √5

2
. (11)

Conjecture 26. If 𝑓 is an odd Fibonacci function with period
𝑘 ∈ N, then

lim
𝑥→∞

𝑓 (𝑥 + 𝑘)

𝑓 (𝑥)
=
−1 − √5

2
. (12)
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