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The objective of vehicle routing problem is usually to minimize the total traveling distance or cost. But in practice, there are a lot
of problems needed to minimize the fastest completion time. The milk-run vehicle routing problem (MRVRP) is widely used in
milk-run distribution. The mutation ACO is given to solve MRVRP with fastest completion time in this paper. The milk-run VRP
with fastest completion time is introduced first, and then the customer division method based on dynamic optimization and split
algorithm is given to transform this problem into finding the optimal customer order. At last the mutation ACO is given and the
numerical examples verify the effectiveness of the algorithm.

1. Introduction

The vehicle routing problem (VRP) was firstly brought
forward by Dantzig and Ramser in 1960 [1]. With the
development of VRP, there exist several variations and spe-
cializations. Mostly VRP aims to minimize the total travel
distance (or travel time) and total cost. But for distribution
of fast foods, express delivery, and emergency supplies, these
objectives are not suitable and the completion time is more
important.

Though the vehicle routing problem with time windows
takes the service time into consideration [2], it cannot solve
the problem when all customers want to be served as early
as possible. Nikolakopoulou et al. solved a vehicle routing
problem by balancing the vehicles time utilization [3]. But
it maybe takes a long time for some vehicles to complete
the distribution tasks when the vehicles time utilizations are
balanced. The VRP with fastest completion time was studied
to minimize the fastest completion time [4–6].

Traditional vehicle routing problem assumes that the total
distribution can be completed by one vehicle in a round
trip. In practice, the number of vehicles is limited and there
are many customers to be served. So a round trip by one

vehicle is impossible and more round trips and vehicles are
needed, such as the tobacco distribution with thousands of
customers. As JIT production, small-scaled and multiple-
batch distributions are more popular, in which one vehicle
is needed to collect goods on multiple round trips. This kind
of vehicle routing problem is called milk-run vehicle routing
problem (MRVRP).

For problem aiming to minimize total travel distance or
total cost, MRVRP can be transferred into the traditional
VPR by increasing the routes number and allowing a vehicle
serving customers in different routes. But for problem to
minimize the fastest completion time, the completion time
in the first period affects that in the second period. It is
multiperiod optimization problem, so the algorithm of the
MRVRP with fastest completion time will be studied based
on dynamic optimization.

VRP is an NP-hard problem [7]; heuristics and evolu-
tionary algorithms are used to solve VRP. In this paper,
mutation ant colony algorithm is used to solve MRVRP with
fastest completion time. In the next section, we will give the
description of the MRVRP with fastest completion time. In
Section 3, optimal divisionmethods of customer orders based
on dynamic optimization are given. In Section 4, mutation
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Figure 1: The milk-run vehicle routes of two vehicles.

ant colony algorithm is given to solve the problem. In the last
section, a numerical example is given.

2. MRVRP with Fastest Completion Time

Suppose that there is one depot serving n customers, which
have 𝑚 vehicles with capacity 𝑤. The demand of customer 𝑖
is 𝑞
𝑖
(𝑖 = 1, . . . , 𝑛) and satisfies (𝑘 − 1)𝑤 ≤ ∑

𝑛

𝑖=1
𝑞
𝑖
< 𝑘𝑤,

which means that for every vehicle, it needs 𝑘 times to finish
the distribution tasks on average.

Because the distances between the depot and the cus-
tomers and the distances between the customers are different,
the travel time between any two nodes is different. Supposing
that the traveling time between node 𝑖 and node 𝑗 is 𝑡

𝑖𝑗
, 𝑖 =

0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑛, node 0 is depot and the times
satisfy the triangle inequality.

The vehicle routes satisfy the following.

(i) Each customer is served by a certain vehicle.
(ii) One vehicle can serve many customers. When the

demands of the customers exceed the vehicle capacity,
the vehicle returns to the depot to unload and goes
back to serve the next customer.

(iii) The demands of the customers served by a vehicle
cannot exceed 𝑘 times vehicle capacity.

(iv) All vehicles should depart from the depot and return
to the depot.

When the demands of the customers exceed the vehicle
capacity, the customers should be divided into different
groups.The customers in the first group are served first, then
the second group, until all the customers are served, which is
shown in Figure 1.

For the MRVRP aiming to minimize total travel distance
or total cost, because the traveling distance of a vehicle is the
sum of the distances of each round and the total distance is
the sum of all vehicle traveling distances, the MRVRP can
be transferred as the VRP with km vehicles. The customers
are divided into km routes and each vehicle serves 𝑘 routes.
The total traveling distance of 𝑚 vehicles equals the total
distance of km routes. Then if the total distance of km routes
is minimized, the total traveling distance of𝑚 vehicles is also
minimized.

But for the MRVRP with fastest completion time, the
completion time of the whole distribution task is the com-
pletion time of the last vehicle. Suppose that the completion

time of vehicle 𝑙 is𝑇
𝑙
, 𝑙 = 1, 2, . . . , 𝑚, and the completion time

of the whole distribution task is 𝑇; then we have,

𝑇 = max
𝑙=1,2,...𝑚

𝑇
𝑙
. (1)

For each vehicle, the distribution task needs to complete
several routes and the completion time is determined by the
time when last customer served. Because there is order of
each route, the completion time of vehicle 𝑖 is the sumof every
route completion time. In the last route, the time from the
customer to the depot is not considered.

If this problem is transferred to the problem with km
routes in which each vehicle is in charge of 𝑘 routes, the
completion time is the sumof the travel times of previous 𝑘−1
routes and the completion time of the last routes. Supposing
that the 𝑙th vehicle is in charge of the distribution task in 𝑘

routes, the traveling time of the 𝑗th route is 𝑎
𝑗
, 𝑗 = 1, 2, . . . , 𝑘,

and the traveling time from the last served customer to the
depot is 𝑡, the completion time of this vehicle is

𝑇
𝑙
=

𝑘

∑

𝑗=1

𝑎
𝑗
− 𝑡. (2)

The difficulty of solving VRP lies in too many arrays of
customer service order. It is hard to solve VRP by dynamic
programming since there are too many states. For a given
array of customers, the problem is transferred to how to
divide the customers into groups and the customers in the
same group are served by one vehicle. The feasible groups’
division scheme is much less and it is easy to be solved by
dynamic programming. In this paper, we will fix the serving
array first and then give the optimal division scheme and
calculate the fastest completion time. Taking this completion
time as the objective, we will determine the final customer
serving order by ACO.

3. Customer Division Method Based on
Dynamic Programming

The problem of dividing customers into groups is how to
divide a given serving array 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑛
into m groups to

ensure that the completion time of all the distribution tasks is
minimized and the total demands of the same group do not
exceed kw. The customers belonging to the same group are
served by one vehicle on the array order.

Usually there are a lot of division schemes and their
completion times are different. Nikolakopoulou gave the split
method to minimize the total traveling distances by transfer-
ring the dividing problem into the shortest-path problem [3].
We gave the improved split method to minimize the fastest
completion time by transferring the division problem into
the longest-edge shortest problem [5]. The improved split
method spends a long calculation time, as it repeats to find
the shortest paths.Then the customer division method based
ondynamic programming is givenwhich spends less time [6].

For the MRVRP, there are two divisions: the first is to
divide the customers into 𝑚 groups and the second is to
divide the customers in the same groups into 𝑘 routes. The
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aim of the first division is tominimize the longest completion
time and is solved with dynamic programming. The aim of
the second division is tominimize the total traveling time and
is solved with split method.

3.1. The First Division of Customers. The problem of dividing
customers into𝑚 groups is to determine𝑚−1 cut points and
can be looked as at 𝑚-period decision problem. In a period,
the number of customers served by a vehicle is determined.
So the state variable is the number of customers who have
not assigned, denoted as 𝑠, and the number of vehicles which
have not assigned, denoted as 𝑥. Then the state variable is
(𝑠, 𝑥), and the initial state is (𝑛, 𝑚). The decision variable is
the number 𝑧 of customers served by the next vehicle.

In the next period, the numbers of unassigned customers
and vehicles are 𝑠−𝑧 and𝑥−1.The state variable is (𝑠−𝑧, 𝑥−1).
The state variable and decision variable are both confined
by the vehicle capacity. For a given (𝑠, 𝑥), the demands of
assigned customer cannot exceed 𝑘 times vehicle capacity.
Supposing that 𝑑

𝑖
(𝑖 = 1, . . . , 𝑛) is the total demand from the

first customer to the 𝑖th customer, we have

𝑑
𝑛−𝑠

≤ (𝑚 − 𝑥) 𝑘𝑤. (3)

When the decision variable in the present period is 𝑧 and
the unassigned customers need 𝑥 − 1 vehicles to distribute,
the total demand of the 𝑧 customers cannot exceed 𝑘𝑤; that
is,

𝑑
𝑛
− 𝑑
𝑛−𝑠+𝑧

≤ (𝑥 − 1) 𝑘𝑤,

𝑑
𝑛−𝑠+𝑧

− 𝑑
𝑛−𝑠

≤ 𝑘𝑤.

(4)

Denote decision variable set as Ω; then

Ω={𝑧∈Ζ | 𝑑
𝑛
− 𝑑
𝑛−𝑠+𝑧

≤(𝑥 − 1) 𝑘𝑤, 𝑑𝑛−𝑠+𝑧
− 𝑑
𝑛−𝑠

≤𝑘𝑤} .

(5)

Supposing that 𝑓(𝑠, 𝑥) is the fastest completion time of
serving the 𝑠 customers with 𝑥 vehicles and ℎ(𝑠, 𝑧) is the
completion time if the former 𝑧 customers are served by a
vehicle, we have

𝑓 (𝑠, 𝑥) = min
𝑧∈Ω

max (ℎ (𝑠, 𝑧) , 𝑓 (𝑠 − 𝑧, 𝑥 − 1)) . (6)

When there is a vehicle left, if the total demands of 𝑠
customers do not exceed kw, the 𝑠 customers are served by
this vehicle and the completion time is ℎ(𝑠, 𝑠); otherwise the
completion time is infinite; that is,

𝑓 (𝑠, 1) = {

ℎ (𝑠, 𝑠) , if 𝑞
𝑛−𝑠+1

+ ⋅ ⋅ ⋅ 𝑞
𝑛
≤ 𝑤,

+∞, if 𝑞
𝑛−𝑠+1

+ ⋅ ⋅ ⋅ 𝑞
𝑛
> 𝑤.

(7)

The state variable and decision variable are discrete. It can
be solved by enumeration method. In a period, the vehicle
number decreases one unit and the unassigned vehicle is
determined by the periods. Then the number of states is
determined by the number of unassigned customers, the
number of states of each period does not exceed 𝑛. Since the
upper bound of vehicle capacity is 𝑘𝑤, there is also an upper

321 𝑧 𝑧 + 1

Figure 2: Split graph.

bound of the number of customers to be served, denoted as
𝑔. The maximum iteration time of the method is 𝑚𝑛𝑔. In
practice, since the state variable should satisfy the inequality
(3) and the decision variable should satisfy the inequality (4),
the actual iteration time is much less than𝑚𝑛𝑔.

In each period, the completion time of every vehicle is
needed to calculate and the second division of customers is
needed.

3.2. The Second Division of Customers. Suppose that the
customers served by a given vehicle are 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑧
. Because

the total demands exceed the vehicle capacity 𝑤, the route
should be cut into smaller groups to ensure that the customers
in the same group can be served by the same vehicle. This
is also a division problem which is different from that in
Section 3.1 in the scale. The scale is smaller and the objective
is not to minimize the maximal completion but to minimize
the total milk run completion time.

To get the division schemes, a directed graph is con-
structed. The vertex set has the depot and the customers
served by the same vehicle. For nodes 𝑗

1
and 𝑗
2
, supposing

that 𝑖
𝑗
1

is in front of 𝑖
𝑗
2

, the total demand of all customers
between 𝑖

𝑗
1

and 𝑖
𝑗
2

(Including customer 𝑖
𝑗
1

but not 𝑖
𝑗
2

) is
calculated. If the total demand is less than𝑤, an arc from𝑗

1
to

𝑗
2
is drawn. The weight is the traveling time from the depot

in turn reach all customers between 𝑖
𝑗
1

and 𝑖
𝑗
2

(including
customer 𝑖

𝑗
1

but not 𝑖
𝑗
2

), and then return.The weighted direct
graph is called split graph which is shown in Figure 2.

The shortest distance from 1 to 𝑧 + 1 is the shortest travel
time of all distribution tasks and the fastest completion time
is this time minus the return time from customer 𝑖

𝑧
to depot.

Suppose the capacity of a vehicle is 15 and the order
of customers to be served by the vehicle is 1-2-5-3-4-7; the
traveling times between the nodes are shown in Figure 3,
where the numbers in the brackets are the demands.

The total demand of customers 1, 2, and 5 is no more
than 15; then an edge is drawn between node 1 and 3 with
the weight 90. The other weights are got similarly. After
calculation, the directed weighted graph is got in Figure 4.

The shortest path is from node 1 to node 3 plus from node
3 to node 0.The optimal distance is 180. Customers 1, 2, and 5
construct the first route. Customers 3, 4, and 7 construct the
second route. The completion time is 155 (= 180 − 25).

The algorithm to solve the shortest path problem such
as Dijkstra algorithm is polynomial. Its complexity is 𝑂(𝑛2),
where 𝑛 is the number of nodes. For this problem, the
maximum number of nodes is 𝑔 and the complexity is𝑂(𝑔2).
Because for every iteration the shortest path problem should
be solved to calculate the completion time of a vehicle, the
complexity of the whole algorithm is 𝑂(𝑚𝑛𝑔3).
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Figure 3: The distribution of customers.
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4. Mutation ACO Algorithm

In this section, we will give an improved ACO to solve the
optimal customers array.

4.1. ACO Algorithm. Themain idea of ant colony algorithms
is tomimic the pheromone trail used by real ants as amedium
for communication and feedback among ants. Basically, the
ACO algorithm is a population-based, cooperative search
procedure that is derived from the behavior of real ants.
ACO algorithms make use of simple agents called ants that
iteratively construct solutions to combinatorial optimization
problems.The key problem to solve VRPwith ACO is how an
individual ant constructs a complete solution by starting with
a null solution and iteratively adding solution components
until a complete solution is constructed. The key problem of
ACO is to determine the pheromone matrix.The pheromone
matrix is (𝑛 + 1) × 𝑛 when there are 𝑛 customers, where
the last row stands for the information from the depot to
the customer and the 𝑖th row stands for the information
from customer 𝑖 to other customers. Initially, since for a
given customer there is the same possibility following other
customers, the pheromone matrix starts with equal probable
matrix. When 𝑡 = 0, the pheromone matrix is

𝐵
𝑖𝑗 (
0) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

0

1

𝑛 − 1

⋅ ⋅ ⋅

1

𝑛 − 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1

𝑛 − 1

1

𝑛 − 1

⋅ ⋅ ⋅ 0

1

𝑛

1

𝑛

⋅ ⋅ ⋅

1

𝑛

}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}

}(𝑛+1)×𝑛

, (8)

where 𝑏
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑛 + 1, 𝑗 = 1, 2, . . . , 𝑛 is the pheromone

from 𝑖 to j.
In the 𝑡th iteration, there are 𝑚 ants and 𝑚 customer

arrays can be got. Supposing that the fastest completion time
of each array is 𝐿

𝑘
(𝑡); 𝑘 = 1, 2, . . . , 𝑚, the increased value of

pheromone in the 𝑡th iteration isΔ𝑏
𝑖𝑗
(𝑡) = ∑

𝑚

𝑘=1
Δ𝑏
𝑘

𝑖𝑗
(𝑡), where

Δ𝑏
𝑘

𝑖𝑗
(𝑡)

=

{

{

{

𝑄

𝐿
𝑘 (
𝑡)

; if 𝑗 follows 𝑖 closely, where𝑄 is a constant,

0; otherwise.

(9)
Local update is performed during the ant constructive proce-
dure in the following way:

𝑏
𝑖𝑗 (
𝑡 + 1) = (1 − 𝜌) 𝑏

𝑖𝑗 (
𝑡) + Δ𝑏𝑖𝑗 (

𝑡) , (10)
where 𝜌 is the evaporation coefficient.

The heuristic information is in an (𝑛 + 1) × 𝑛matrix, with
the last row 𝜂

𝑛+1,𝑗
= 𝐴/𝑡

𝑗
and the other rows 𝜂

𝑖𝑗
= 𝐴/𝑡

𝑖𝑗
,

where 𝑡
𝑖𝑗
is the traveling time between two nodes, 𝑡

𝑗
is the

average traveling time from customer 𝑗 to the depot, and𝐴 is
a constant depending on the situations.

In a given service order, the first served customer is deter-
mined by probability. The next served customer is selected
from the allowing set allowed

𝑖
, which is the customers set

that can be served after 𝑖. The customer 𝑗 is chosen with the
probability 𝑝

𝑖𝑗
, where

𝑝
𝑖𝑗 (
𝑡) =

{
{
{

{
{
{

{

(𝑏
𝑖𝑗 (
𝑡))

𝛼

(𝜂
𝑖𝑗
)

𝛽

∑
𝑠∈allowed

𝑖

(𝑏
𝑖𝑠 (
𝑡))
𝛼
(𝜂
𝑖𝑠
)
𝛽
; 𝑗 ∈ allowed

𝑖
,

0; 𝑗 ∉ allowed
𝑖
.

(11)

𝛼 is the importance of pheromone information, and 𝛽 is the
importance of heuristics information. After calculation of the
probability matrix, the node is selected by the probability
𝑝
𝑖𝑗
and the node is deleted from the allowing set. Then a

customer service order is got with the pheromone.

4.2. Mutation Operator. ACO algorithm possibly runs into
prematurity just as other evolutionary algorithms. The main
reason is the concentrations of pheromone which makes
the same solutions be got. In reality, the pheromone may
be changed by rain and other factors and this change may
help the ants find a new route. A mutation operator will be
introduced into the pheromone of ACO to escape from local
optima and strengthen its global search ability.

The initial pheromone matrix’s factors are the same.
As time goes on, some elements become large but other
elements become small in the same row. The pheromone is
concentrated which obstructs the ability to findmore optimal
solutions.The concentration of a row is defined as the ratio of
themaximum factor and the sumof the factors in the row.The
𝑖th row concentration 𝜇

𝑖
(𝑡) is

𝜇
𝑖 (
𝑡) =

max
𝑗=1,2,...,𝑛

𝜏
𝑖𝑗

∑
𝑛

𝑗=1
𝜏
𝑖𝑗

, 𝑖 = 1, 2, . . . , 𝑛 + 1. (12)
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The concentrations of different row are not the same.
Whether tomutate a row should depend on the concentration
of the row. When the concentrations of a row exceed the
threshold value, the factors in the row should be mutated.

For the row mutation, the maximum factor decreases
randomly and the decreased value is assigned to other
positions. Suppose 𝑗

0
th factor is the maximum factor in the

𝑖th row, and given a random number 𝑟 (0 ≤ 𝑟 ≤ 1) and a
random vector 𝑅

1×𝑛
. A new row is got with the 𝑗

0
th factor

multiplied by 𝑟, and the decreased value is assigned to other
positions; that is,

𝜏
󸀠

𝑖
= 𝜏
󸀠

𝑖
+

𝜏
𝑖𝑗
0
(1 − 𝑟)

∑
𝑛

𝑗=1
𝑅
𝑗

𝑅. (13)

Row mutation is a local mutation and only affects the
choice of routes partly. When the matrix has high con-
centration, local mutation cannot ensure escaping the local
optima and matrix mutation is necessary. The minimum
concentration of the row is the matrix concentration, which
is ](𝑡):

] (𝑡) = min
𝑖=1,2,...,𝑛+1

𝜇
𝑖 (
𝑡) . (14)

Whether to mutate a matrix should also depend on the
concentration of the matrix. When the concentrations of
a matrix exceed the threshold value, the matrix should be
mutated. For the matrix mutation, every element in the
matrix decreases randomly and the decreased value is again
randomly assigned. A random number 𝑟 (0 ≤ 𝑟 ≤ 1) and a
random vector 𝑅

𝑛+1×𝑛
are got. New values are got with every

factor multiplied by 𝑟. Then the decreased value is assigned
randomly’ that is,

𝜏
󸀠
= 𝑟 ∗ 𝜏,

𝜏
󸀠
= 𝜏
󸀠
+

∑
𝑛+1

𝑖=1
∑
𝑛

𝑗=1
(𝜏
𝑖𝑗
− 𝜏
󸀠

𝑖𝑗
)

∑
𝑛+1

𝑖=1
∑
𝑛

𝑗=1
𝑅
𝑖𝑗

𝑅.

(15)

Then a new pheromone matrix is got and the mutation
can ensure that the total pheromones do not change.

The mutation ACO algorithm is as follows.

Step 1. Initiation: Determine the parameters𝑚, 𝑇, 𝛼, 𝛽, 𝜀, 𝜙,
and 𝑝. Input the initial pheromone 𝜏

𝑖𝑗
(0) and heuristics

matrix 𝜂
𝑖𝑗
and get the initial ants. Give 𝑚 customers arrays

randomly as

𝐴 (0) = {𝐴
1 (
0) , 𝐴2 (

0) , . . . , 𝐴𝑚 (
0)} . (16)

Step 2. For a given array, assign the customers to the vehicle
and get the corresponding completion time by dynamic
programming and split algorithm. Record the present best
route 𝑏𝑒𝑠𝑡𝑡𝑟𝑖𝑝 and the fastest completion time 𝑓𝑖𝑛𝑖𝑠ℎ𝑡𝑖𝑚𝑒.

Step 3. The local pheromone update is performed by all the
ants after each construction step on the formulas (9) and (10).

Step 4. Row Mutation: Inspect whether the pheromone
concentration of the row in the pheromone matrix is more
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Figure 5: 20 times calculation results.

than 𝜀; if yes, a random number 𝑟 is got. If 𝑟 ≤ 𝑝, a new row
is got by (13).

Step 5. Matrix Mutation: Inspect whether the pheromone
matrix concentration ismore than𝜙; if yes, a randomnumber
𝑟 is got. If 𝑟 ≤ 𝑝, a new pheromone matrix is got by the
formula (15).

Step 6. According to the new pheromone matrix 𝐵
𝑖𝑗
(𝑡) and

the heuristics information matrix 𝜂
𝑖𝑗
, Give 𝑚 customers

arrays randomly as

𝐴 (𝑡 + 1) = {𝐴
1 (
𝑡 + 1) , 𝐴2 (

𝑡 + 1) , . . . , 𝐴𝑚 (
𝑡 + 1)} . (17)

Step 7. Let 𝑡 = 𝑡+1. ACO procedure stops if 𝑡 = 𝑇 and output
the finishtime and besttrip; otherwise return to Step 2.

5. Numerical Examples

In this section, we will consider the emergency supplies
distribution after the earthquake in Wenchuan. After the
earthquake, the roads on earth are not fluent.The emergency
supplies are mainly transported by helicopter. As the number
of helicopters is limited comparED to the broad place, the
helicopter 𝑠 is needed for distribution many times. The
problem is a typical MRVRP with fastest completion time.

Suppose there are 3 helicopters in charge of the distribu-
tion of emergency supplies to 20 settlements. The location
of material distribution center is (30, 40), the demands and
location of the settlements are given in Table 1.

The capacity of a helicopter is 12t.The total demand is 92t.
Every plane is needed to fly 3 times on average and distribute
at most 5 settlements every time.

The algorithm is realized by Scilab. The parameters are as
follows: the ants number is 10 and 𝛼 = 1.2, 𝛽 = 0.5, 𝑃 =

0.15, 𝜀 = 0.8, 𝜙 = 0.75. The iteration time is 400. Run the
program 20 times for the same problem, and get the fastest
completion which times are as shown in Figure 5.

Average fastest completion time is 244.9978, their maxi-
mum gap is 7.291, and the gap is 3.1014% of the best scheme.
It shows that the algorithm has good convergence.

Best distribution route is as shown in Figure 6.
Its fastest completion time is 235.08428 and total travel

time is 865.66435.Anew scheme tominimize total travel time
is as shown in Figure 7.

Its shortest total travel time is 845.89676, the fastest
completion time of this customer array is 273.379, and it is
38.295 minutes more than the first scheme. And the total
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Table 1: Locations and demands of settlement.

Settlement 1 2 3 4 5 6 7 8 9 10
Location (74, 29) (64, 26) (67, 80) (88, 15) (21, 65) (72, 42) (92, 80) (46, 38) (76, 86) (30, 46)

Demand 3 7 5 6 2 9 7 4 4 3.5
Settlement 11 12 13 14 15 16 17 18 19 20
Location (63, 48) (23, 11) (36, 72) (29, 54) (66, 16) (10, 10) (15, 50) (10, 10) (20, 70) (70, 12)

Demand 4 3 8 6 5 1.5 5 2.5 3 3.5
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Figure 6: Optimal scheme ofMRVRPwith fastest completion time.
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Figure 7: Optimal scheme.

flight time is reduced by 19.76759 minutes. In emergency
management, effectively shortening the completion time
is very necessary, and therefore the first scheme is more
reasonable.

6. Conclusions

In this paper, the MRVRP with fastest completion time is
proposed, which has many applications in fast foods dis-
tribution, express delivery, and emergency supplies. Solving
the problem is more difficult than the general VRP. The key
problem to solve MRVRP with fastest completion time is to
give the division method for customer array. The customer
division method based on dynamic programming and split
method is given in this paper, which can transfer MRVRP
with fastest completion time into the problem of finding the
optimal customer service order. Then the problem is solved
with mutation ACO.
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