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The study of recurrent neural networks with piecewise constant transition or control functions has attracted much attention recently
because they can be used to simulate many physical phenomena. A recurrent and discontinuous two-state dynamical system
involving a nonnegative bifurcation parameter is studied. By elementary but novel arguments, we are able to give a complete analysis
on its asymptotic behavior when the parameter varies from 0 to co. It is hoped that our analysis will provide motivation for further
results on large-scale recurrent McCulloch-Pitts-type neural networks and piecewise continuous discrete-time dynamical systems.

1. Introduction

It is generally accepted that the McCulloch-Pitts model of a
neural network can be used as the components of computer-
like systems. That is, where neural networks are commonly
used to learn something, a McCulloch-Pitts neuron is con-
structed to do a particular job. Although the same job can be
done by means of traditional Boolean components, it is inter-
esting to see how it all works using components which are
closer to “biological” components. One particular important
component can be described by means of the step (activation)
function defined by

1 ifu<o
f"(”)_{—l ifu>o @
with a nonnegative (threshold) real parameter o. Roughly, a
neuron may receive an inhibitory (indicated by a —1 sign)
value if the input signal has strength exceeding the biological
threshold o and otherwise it remains intact with an excitory
(indicated by a +1 sign) value.
Therefore, if we let x,, be the state value of a neural
unit during the time period #, then the following recurrence
relation:

Xn = F (fa (xn—l) ’xn—Z) (2)

may be used to describe a one-neuron McCulloch-Pitts sys-
tem where the state value is updated from the two most recent
state values. There are now many studies that are concerned
with such neural networks.

For a neural network system that contains two or more
neural units, things are much more complicated, and a variety
of models can be designed. In usual practice, we can build
a mathematical model and use it to generate simulation
results, and from these results, we may understand the gen-
eral properties of our models. What is now more difficult
but important is to make mathematical conclusions that may
provide a full understanding of all the properties observed.

In this paper, we consider a two-neuron dynamical neural
network system:

xn:axn_2+(1—a)fa()’n—1)’ (3)
yn = ayn_z + (1 - a) fa (xn—l)

forn e N =1{0,1,2,...}, wherea € (0,1),and f, : R — Ris
the function in. Note that if we make the change of variables

Y= @)

1-a
X, = —U,

b



where b is an arbitrary positive number, then (3) becomes the
“more general” system:

U, =au, , + bfbo/(l—u) (Vn)
(5)
Vpy=av,,t bfba/(lfa) (un) >

and hence all properties of (5) can be inferred from those of
(3).

In this paper, we are concerned with the asymptotic
behavior of (3) when the nonnegative parameter o is treated
as a bifurcation variable and allowed to vary from 0 to co
(cf. [1, 2]). What is interesting is that a complete asymptotic
and bifurcation analysis can be obtained. With such success,
it is expected that more general discontinuous recurrent
McCulloch-Pitts-type neural networks [3] can be dealt with
to some extent in a similar manner.

To simplify matters, note that if we let z = (x, y) and

Fy(2) = (fo (¥), fo () (6)
then the above system (3) can be written as

z,=az,,+a'F,(z,,), neN, (7)
where we write z, = (x,,y,) and @' = 1 — a for the sake
of convenience. The above vector equation is a three-term
recurrence relation. Hence for given z_, and z_; in the plane,
a unique sequence {z;}y-_, can be calculated from it. Such a
sequence is called a solution of (7) determined by z_, and z_;.

Depending on the locations of z_, and z_,, it is clear that
the behavior of the corresponding solution may differ. For
this reason, it is convenient to distinguish various parts of R
Before doing so, it is convenient to adopt several simplifying
conventions. First, we set

R, = (-00,0], = (0,00). (8)

Next, if I and ] are real intervals, their cross-product I x J will
be denoted by I] instead, and we will assume that this product
receives the priority attention in a mathematical expression.
By means of these convections,
R;R; = (0,00)% R;R; = (0,00) X (—00,0],
)
R, R, = (-0o0, 0]2, R;R; = (—00,0] X (0,00).

Clearly, {R*R!, R*R_, R_R!, R R’} is a partition of R*>. Other
subsets of the plane will be introduced in the subsequent
sections.

For solutions originated from z_, and z_; in the above
subsets, we will show that they are all “asymptotically peri-
odic” More precisely, we say that a positive integer # is a
period of a scalar or vector sequence v = {v,};2, if v, = v,
for all n > o and that 7 is the least or prime period of
{v}ho, if T is the least among all periods of {v,},> . The
sequence {v,} > issaid to be 7-periodicif 7 is the Jeast period

of {v,}72, The sequence {vuhoo, is said to be asymptotically

periodic 1f there exist real numbers v W)@ where
w is a positive integer such that
,,h_,r%ovwnﬂ =9 i=0,1,..,0-1. (10)
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In case {V(©, v, y@D O M @D Yig also an

w-periodic sequence, we say that v is an asymptotically w-
periodic sequence tending to the limit w-cycle (this term is
introduced since the underlying concept is similar to that of
the limit cycle in the theory of ordinary differential equations)
O,y @Dy For the sake of convenience, for such an
asymptotically w-periodic sequence v, we write

v, — <v(0) ,...,v(w_1)>. 1)

Note that in case v is asymptotically 1-periodic, then it is a
sequence convergent to v'*) for some v, The converse is also
true. In such a case, we simply write v, ©
v, — (V).

Having these terminologies at hand, our main issue is to
show that each solution of (3) originated from R? is either
asymptotically 1- or 2-periodic. Note, however, that since f,
is a discontinuous function, the standard theories that employ
continuous arguments cannot be applied to yield asymptotic
criteria. Fortunately, we may resort to elementary arguments
as to be seen below.

Before doing so, let us make a few remarks. First note
that our system (7) is autonomous (time invariant) and also
symmetric in the sense that under two sets of “symmetric
initial conditions,” the behaviors of the corresponding solu-
tions are also “symmetric.” This statement can be made more
precise in mathematical terms. However, a simple example
is sufficient to illustrate this: if {z,},_, is a solution of (3)
with (z_,,2_;) € RIR! x R_R_, then as will be seen below,
z,, — (1,-1)and z,,,;, — (-1,1). If we now replace the
condition (z_,z_;) € RIR! x R_R_ with the symmetric
initial condition (z,z, z,l) € RGR; x RIR?, then we will end
up with the conclusion that z,, — (-1,1) and z,,,;, —
(1,-1). Such two conclusions will be referred to as dual
results, and the principle of proof for either one can be applied
to that of the other.

In the sequel, we will first distinguish three different cases
(i) 0 < 0 < 1, (ii) ¢ = 1, and (iii) ¢ > 1 and then con-
sider different z_,, z_; in RJR},R'R,R R}, or R.R_
and the (asymptotic) behaviors of the corresponding solu-
tions determined by them.

We will need the following simple but useful results. First,
let {x;},o_, be real scalar (or vector) sequences that satisfy

— v instead of

Xy = aXg_,+d, neEN, (12)

Xppy1 = AXg_q +d, k€N, (13)
where a € (0, 1), and d is a real number (resp., a real vector).

(i) If {x,}2_, is a sequence which satisfies (12), then

SN Gl PPV

(i) If {x,} 2

, is a sequence which satisfies (13), then

1-a

k eN. (15)

Xokt1 = 4
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Second, the function F, in (6) satisfies

Fa (R;R;) _R’ th (R;R;) = i"

. (16)
E,(RR})=-i, F,(RR))=k,

wherei = (1,-1) and k = (1,1).

Third, we need to consider various ordering arrange-
ments for three nonnegative integers k, p, and [ or four non-
negative integers k, p, I, and m. First, the ordering arrange-
ments of three integers k, p, and ] can be classified into 6 cases:

(Al) k=p<l (A2) I=k<p
(A3) p=Il<k (A4) k < min{p,I} (17)
(A5) p < min{k,l} (A6) I < min {k, p}.

Indeed, let a, b, c € R. Then, since eithera < b,a = b or
a > b, we see that

a<b=ce(-00,a),
c=a, c€(ab), c=borce((boo),
a=b=ce(-00,a), c=aorcée€(aom), (18)
a>b= ce(-00,b),
c=b, ce(b,a), c=aorcce€(a).
These are equivalent to
b=c<a,

a=b<cg, c=ac<hb,

¢ < min{a, b},
(19)

a < min {b,c}, b < min{a,c},

by comparing the two sets of statements (18) and (19).
By similar reasoning, there are 12 ordering arrangements
for four nonnegative integers k, p, [, and m:

(B1) k= p < min{l,m} (B2) k < min{p,I,m}
(B3) p < min {k,I,m} (B4) p =1 < min{k,m}
(B5) p=l=m<k (B6) I < min{p, k,m}
(B7) I =m < min {k, p} (B8) I=m=k<p
(B9) m < min {L, k, p} (B10) m =k < min {I, p}

(B11) p =m < min{l,k} (B12) k=1< min{p,m}.

(20)

In the sequel, if &, f € R and I, ] are real intervals, then
we adopt the convention that

ol ={ax | x eI}, a+l={a+x|xel},
al] ={ax | x e I} x{ay | y €J}, (21)

(wB)+IJ={a+x|xe}x{B+ylye]}.

3
On the other hand, since a € (0,1), o > 0, we have
k
<G+(1_a)<a+(1—a2)< <c7+(1—a)
a a? ak (22)
— 400.
If we let
k k+1
W a+(1—a)cr+(1—a ) X
J7 = k > K+l > €N,
a a (23)
](_1) = a](o) -d = (ac-(1-a),0],
then
a](k) —d = ](k_l), k=0,
_ _ © (24)
S er, R=| %)
k=0
RIR, =119 = JIOrR =URTY.  (25)
kys=0 k=0 =0

2. The Case 0 =1

In this section, we assume that o = 1.

Let {z,}_, be a solution of (3). Let us consider first the

case where (z,,,z,,,) € R{R] x R|R]. Then by (7) and (16),
we see that
Zypy = a2, + a'k,
aR[R] +d'F, (R{R]) = aR{R; +d'k
= 61((—00, 1] X (_OO> 1])
+(1-a)(1,1)
= (—00, 1] X (—00, 1]
=R/R;].

(26)

Hence, we may see further that z,, € R{R]. Similarly, since
a]“R; +ad'F, (R{]Y) = aJ"R; +d' ()
=a(J% x (-00,1]) + (1 - a) (-1,1)
= J% x (~c0,0]
_ ](k71)RI’
(27)

we see that if (z,,, 2,,,,) € J® R xR ], then z,,,, € J*VR].
By similar considerations, we may build a “directed graph”
represented by Table 1.

In this table, we record the fact that aR; R} +a'F; (R R}) €
R{R] as the (R] R}, R R) entry and so forth.

Next, we let {z,}7° , be a solution of (3) again. If
(z_5,z_1) € R]R] x R{R], then from Table 1 we see that
zy € R{R]. Now that (z_;,z;) € R{R] x R{R], we may use
Table 1 to infer that z, € R]R; again. By induction, we see
that z, € R R] for all n > -2. By (7), we then see that

z,=az,,+ak, neN, (28)



and hence by (14) and (15), we see that z,, — kasn — oo.
If (z_5,z_;) € R R] x R{R|, then from the (R R],R/R))
entry of Table 1 we see that z, € R, R]. Now that (z_,z,) €
R R; x R R}, by Table 1 again, we see that

zy=az_, +ad (—f) € R|R|. (29)

By induction, we see that z,;, € R|R| and z,,,; € R R for
k > —1. By (7), we may see further that

)o
Zyy = A2y, 5 +a K,
(30)

iy
Zone1 = G2y — AL

for n € N, and hence by (14) and (15), z,, — kandz,,,, —
—iasn — 00.By considering z_, and z_, in different parts of
the plane, we may apply the same principle to obtain Table 2.

In this table, there are seven indeterminate cases. Let us go
through two cases. First, let (z_,,z_;) € RR| x R/ R]. Then
in view of (25), (z_,,2_;) € ](k)RI X RI](S) for some k,s € N.
There are then two subcases: (i) 0 < k < sor (ii) 0 < s < k. In
the former case, by Table 1,

zo=az_,+d'F (z_)) € J*VR;, (31)
and (hence)

z,=az_, +d'F, (z,) € R, ], (32)
and by induction,

zy € JVR] < R{R],
(33)
-+
Zoks1 € R Ry

In the latter case, we may similarly show that (z,,,2z,,,,) €
RIR; x R/R;. By considering (z_,,z_,) in different parts of
the plane, we may then construct the following three self-
explanatory Tables 3, 4, and 5.

As a consequence, if (z_,,z_,) € ](k)RI X RI](S) and 0 <
k < s, then the solution of (3) originated from z_, and z_,
will satisfy (25, Zo5,1) € Ry R xR, R{. Then by Table 2,z, —
(-i.k).

Next, let (z_,,z_;) € R/R} x R/R]. Then by (25), (z_,,
z) € JR P D1 for some k, p.l,m € N. As men-
tioned before, there are twelve different ordering arrange-
ments B1-BI2 for these integers. In case Bl holds, we may
make use of Table 1 repeatedly to show that (z,,25,;) €
R R; x R| R (which is recorded in self-explanatory Table 6),
and then by Table 2, we finally see that z, — (-k,k).

In conclusion, we have shown the following result.

Theorem 1. Suppose that o = 1. Then, a solution of (3) must
either be asymptotically 1-periodic tending to the limit cycles

iy, (), or (k), (34)
or asymptotically 2-periodic tending to the limit cycles

GE), (G,

or <—E, E> . (35)
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TABLE 1
Rl_Rl_ ](s)Rl— RI](S) R;](S) ](S)R; ](s)](l)
R/R; R|R] R/R| R/R; RIR; R/R; RR;
JOR; RiRy  RiRy  J*URy JUUR;
RJY RiRy RV Ry RyJY
RO RIR R
](k)R'I*- R'I*'R‘l*' ](k_l)Rr
(k) 1(p) (k=1) 7(p-1)
J® TP RIRY Jlen et
TABLE 2
R R, RR, R, R; RiR}
R/R; (k) ik) (-i.k) (-k k)
RIR; <k, i <1> See Table 3 See Table 4
RIR] <K, —f> See Table 3 <—I> See Table 4
R/R] <E —f(> See Table5  SeeTable5  See Table 6
TABLE 3

(z_5,2_,) € JOR x Ry JY (R % JOR)

0<k<s= (2y2y,) € RR] X R/ R]
0<s<k= (2,,25,) € RYR] X RIR]

(R/R; X R{Ry)
(R{R] xR/ Ry)

TABLE 4

(z_5,2,) € JOR xR JV
0<k<s= (2y2y,,) € RR X R/R]
0<s<k=(2,,25,1) € RYR] X R{R]

(RI](k) x ](S)RT)
(R{R} x RIRy)
(R{R} x R Ry)

We remark that, as can be seen from the above exhaustive
arguments, the “region of attraction” of each limit cycle can
be given, here if S is the set of all solutions of (3) that tend to
the limit cycle G, then {(z_,,z_;) € R*x R?| {ziho, € Stis
called the region of attraction of G.

Example 2. Consider the region of attraction of the limit cycle
G, E). By Table 2, we first see that solutions with initial values
in R;R; x R{R; or RiR; x R} R; tend to the limit cycle (i, k)
(and hence (R, i)); and solutions with initial values in the
seven indeterminate cases may or may not tend to the limit
cycle G, E).

Therefore, we next consider Table 3. If (z_,,z_;) ¢
JORT x R T where 0 < s < k, then (z,,, 2,,,,) € RIR] x
R{R; and hence z, — (k). If (z_5,z_,) € R;J® x JOR;
where 0 < k < s, then (24, Z55,1) € R{R] X R{R| and hence
z, — G, R). Furthermore, no other cases in Tables 3, 4, and
5 can lead to (z,,,2,,,1) € RjR; X RyR|,RR| x R| R}, or
RIR} x R{R;.

Next, we consider Table 6. By direct examination, there
is no case which leads to (x,,,x,,,;) € R/R; x R/R] or
R R; X R|R;. There is no case, except possibly B10, that leads
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TABLE 5 TABLE 7
(z_5,2_,) € RTJ® x JOR] PR xR JY) R,R; 19R; JOR: RIY
0<k<s= (Zy2ys) € RIR, X RIR] (R, R x R{R}) RSR; R;R; R R, R;R; R;R;
0<s<k= (2,,25,1) € RYR X RIR] (R'R x R{R}) PR %R 1% DR [%VR
](k) R; ](k*l)R;
TABLE 6 R; 1% R; %D R k-1
(z3,2) € ]9 x O RJY RED R
-1 -1 (k-1 —1
Bl = (25, Zy1,1) € RyR; x RIR" e 1oy vy
B2 = (2 2p641) € R JPkD) o gUok-bpt A JED D
> + 1 1
(k=p=1) = 5 R+ Jm=p=1) T S Cnd
B3 = (25, 23p1) €] R, x R[] 150

B4 = (25, 25p,,) € J¥PUR x Ry JPY
B5 = (2, 241) € R{R] X RIR}

B6 = (25, 2y1) € J¥ VR x R J Y
B7 = (25, 2y,1) € RiR] X R{R]

B8 = (23, Zy,1) € Ry R} X Ry R}

B9 = (25 Zymsr) € R TP 5 JEMDRT
BI0 = (2y Zyy1) € Ry JEF Y x JERDRY
Bl = (2,,,25,41) € RYR] X R{R}

B12 = (2,,2,,,) € RyR] X R/ R}

t0 (X Xs) € JPR) x R{J with 0 < s < k, or (z_5,2_,) €
R{J® x JYR; with 0 < k < s. However, if B10 holds and
p-—k—-1<I-k- 1then(zpz ) € JOJP x jOjm
implies (2y, Zyp) € Ry TP x JEFDRE which in turn
implies (by Table 3) that (z,,,2,,,1) € R/ R} X R|R;. Hence,
z, — (I, R)

In summary, the region of attraction of (i R) is the union

of the following sets:
R R, x R/R}, R/R, xR/ R},

RiJ®PxJ9R; (0<k<s),

JOR xR JY  (0<s<k), (36)

JOFE 5 g1 (= k < min {L, p},

p-k-1<l-k-1).

3. The Case o > 1

In this section, we assume that o > 1.

Lemma 3. Suppose that ¢ > 1. Let {z,},>_, be a solution of
(3) originated from z_,z_; € R}R!. Then, there exists m €

{~1,0,...} such that z,, € R'R} and z,,,, € R* \ R'R.

Proof. Let {z,};°_, be a solution of (3) originated from

Z_5,z_; € RIR;. Assume to the contrary that z, € RIR} for

all n € N. Then,
z,=az, ,+a (—ﬁ), neN. (37)
By (14) and (15), we see that z, — —kasn — co.Buto > 1

implies —K is in the interior of R_R_ which is disjointed from
RYR?. A contradiction is, thus, obtained. O

In view of Lemma 3, we only need to investigate the
asymptotic behaviors of solutions {z,,},_, of (3) such thatz_,
and z_, are not simultaneously in R} R’ . To this end, we first
note that

0_<ai(1—a)<‘7J—r(12_“2)<m<‘7i(1k_“k)
a a a (38)
— +00.

Hence, if we let

oo l—ak o— 1_ak+1
. ( ) ( ) , keN,
ak ak+1 (39)
I(_l) — aI(O) + a’ = (aG + (1 - a) ’U] >
then
al® +a' = 1%, ke,
00 (o]
Ry =9 =Ur®,
k=0 k=0
0 k S Kk
RiR, = | J1%R, = | JJ¥R;.
k=0 k=0
00 X e k
R;R;:UR;I():UR;]( ), (40)
k=0 k=0

o0 o0
R;R; — U I(k)](S) — U I(k)I(S)

k,s=0 k,s=0
00 ¢S]

— U I(k)I(S) — U ](k)](s)’
k,s=0 k,s=0

1Y, ]V R

As in the previous section, we may build a table (consisting of
two separate parts Tables 7 and 8) which plays the same role
as Table 1.

Then, we may construct Tables 9-14 which play the same
role as Tables 3-6.

Then by Lemma 3 and these tables, we may show the
following result.
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TABLE 8 TABLE 10
R;](S) I(S)](Z) ](S)I(l) OO ](S)](l) (z_y2.,) € I(k)R; x I<S)R; (R;I(S) x R;I(k>)
RR, KRR, RR: RR; R R, RR, 0k <s= (20 2501) € RoR, x ISF VRS (RIEFD x ROR,)
- k=s=1) = =D - o - (k=s-
1MR; 0<s<k= (2,2, € "R xR R, (RR, xR I**)
k) p— 1)y 1)y 1) e 1) 1) e
] Ra ](k 1)Rg ](k 1)R(7 ](k I)Rg ](k I)Ro ](k 1)R(7
RI® gD TaBLE 11
a o
R,J® RJ&D Ry gogky peped (z52.,) € JYR, xR, JY (RJ™ x JUR)
~ sk e S JE——
7@ 0<k<s= (zy 2y € R;:](‘ "xRR,  (J¢ k)RU x R_R;)
JO L@ k1) f(p-0 0<s<k= (22, € J* "R xR R, (R J**VxRR))
I(k)I(P)
TABLE 12
](k)](p) ](k—l)](p—l) ](k—l)](p—l) ](k—l)](p—l) ](k—l)](p—l)

TABLE 9

(z_5,2.,) € RR, x PR = (2, 231,,) € R,R, X R R;
(z_32.) € R, x RJI® = (2, 2,,) € KR, X RJR,
(z_5,2_,) € IR X R IR, = (23, Z31s1) € ;R X ROR;
(z_5,2_1) € RI® X R R, = (25, 234,) € R;R, X ROR;

Lemma 4. Suppose that 0 > 1. Let {z,},>_, be a solution of

(3). Then, there exists m € {-2,-1,...} such that z,,,z,,,, €
R R

Proof. In view of Lemma 3, we may assume that z_, € R* and
z, € R*\R'R},or,z, e R*\R'R and z_, € R'R’.

Consider first the case wherez_, € RIR_andz_; € R_R.
Then, z_, € ](k)R; andz_; € R;](S) for some k,s € N. By
Table 11, if 0 < k < s, then (zy_,,25) € R,J“® x ROR].
Since J®™® ¢ (0, +00), there exists some t € N such that
(Z91_1>Z21) € R;I(t) XR_R_.By thelast entryin Table 9, we see
that there is some m such that z,,, z,,,, € ROR_.If0 < s <k,
then (2,5, Z55,1) € J¥ VR xR R Since ¥V ¢ (0, +00),
there exists some ¢ € N such that (z,,,2,,,;) € I (t)R; xR R_.
By the last entry in Table 9, we see that there is some m such
thatz,,,z,,, € R_R_.

Consider next the case where z, € R/ R and z_; €
RIR}. Then, z_, € I¥I® for some k,s € N. By Table 12
if0 < k < s, then (zy,2y0y,) € R,R;, x ISF VR . By
the last entry in Table 9, we see that there is some m such
that z,,,z,,,;, € RIR.If0 < s < k, then (z,,2,,,,) €
R;R; x R;I*™D_ By the last entry in Table 9, we see that
there is some m such that (z,,, z,,,;) € R_R_.

Consider next the case where z_, € R'R and z_; €
RIR’.Then, z_, € J¥R  and z_, € IVJ for some k,1, p €
N. By Table 13, if Al holds, thatis, 0 < k = p < [, then
(Zojr> 2ox) € 1TRJP™P x ROR. Then, there exists t € N
such that (z,,_,,z,;) € ™10 x R_R_. By Table 12 again, if
0 <t <I—k then (Zypps1> Zorsanss) € I"F VR X ROR;.
By the last entry in Table 9, we see that there is some m such
that z,,,z,,,, € ROR;if 0 < [ -k < t, then (25,1, 25,,) €
R 1“5 RZR™. By the last entry in Table 9, we see that
there is some m such that z,,,z,,, € R R_. If A5 holds,
thatis, 0 < p < min{k, I}, then (z,,,2,,1) € JEPUR x

(z_,,2.,) € SR, x 191V (191 x R R))
0<k<s= (20 25,1) € RR; x ISFVR (1M VR X RIR))
0<5<k= (2,,2p,1) € RR x RI*D (RI“*D xR R)

TABLE 13

(Z_2> Z—l) € R;](k) x ](P)I(l) (](k)R; x I(l)](P))
Al = (2, 25) € JPPIP x ROR] (1"P]*™9 x R_R;)
A2 = (zyp,2y) € JPPIR x ROR, (1"P]*™ x R R;)

o
A3 = (zy,25,,) € RJ*V x ROR, J IR, x ROR;)
Ad = (2, 2y) € JP PRI x ROR, 1EP]P0 X RIR)
A5 = (Z2p>z2p+l) € R;](k*P*l) X R;I(Z*Pﬂ)(](k*P*l)R; x I(l*P*I)R;)

A6 = (2 2y € RJ“V xJUIR, (4R, x R JOY)

TABLE 14

(Z—2>Z—1) c I(S)](P) x ](k)R;
0=s<p=(z,2) € PR xR JP
0<s<p=(z,2) PR x 1V FD
0=s=p=(z_,2) € JPR, xR R,
0<s=p=(z2) € JOR, x ICDJED (R W x JeD D)
0=p<s=(z,2) e PR, xIVR; (R,J® x J*UR)
0<p<s=(z,2)e]OR x IV (R J© 5 JeD D)

(](S)I(P) x R*](k))
fod
(R;](k) x R;I(‘D—l))
(R*](k) % ](S*I)I(P*I))
(RJ® x R R;)

1%°P"UR: . Then, there exists t € N such that (23> Z2p11) €
1R x I""P"VR_ . By Table 10 e}gain, if0<t<I-p-1,then
(Zatrapea Zatsapes) € RyRG x P71 7"URT. By the last entry
in Table 9, we see that there is some m such that z,,,z,,,; €
RyR;if0 <I—p—1 < t,then (zy, 2,,,) € RIP xR R,
By the last entry in Table 9, we see that there is some m such
that z,,,, z,,,; € R_R_. The other cases are similarly proved.

Consider next the case where z_, € R'R! and z_; €

RIR_.Then, z_, € 197® and z., € ](k)R; for some k, 1, p €
N. Next, we need to consider six cases: (i) 0 = [ < p, (ii)
0<Il<p (i)0=I=p,(Aiv)0<I=p,(v)0=p <[ and
(vi) 0 < p < I Suppose that 0 < I < p holds, by Table 14,
then (z_;,2,) € JPR; x 1"V Furthermore, we need
to consider six cases: Al-A6. Suppose that A3 holds, that is,
p—1=1-1 <k, thenby Table13, (zy_,, z) € J* "R xR R’
Then there exists t € N such that (z,,_,,25) € I(t)R; X R R’.
By the third entry in Table 9, we see that there is some m
such that z,,z,,, € R_R’. Suppose that A6 holds, that
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is, =1 < min{k, p — 1}, then by Table 13, (zy_;,2,) €
JEDRS x RyJPT D Ifk— 1 < p —1— 1, then by Table 11,
(Zyo Zor1) € RS JP ¥ ROR: . Then, there exists t € N such
that (2, 25141) € R;I(t) X R_R_. By the last entry in Table 9,
we see that thereis some m such thatz,,, z,,,; € R R ;if p—I-
1 < k-1, thenby Table11, (z,, ,2,,) € J* PR xR_R;. Then
there exists some t € Nsuch that (z,,_;,2,,) € I(t)R; XR_R_.
By the last entry in Table 9, we see that there is some m such
that z,,,, z,,,; € R_R_. The other cases are similarly proved.
The proof is complete. O

Theorem 5. Suppose that o > 1. Then, every solution of (3)

tends to K.

Indeed, let {z,}.°_, be a solution of (3). In view of
Lemma 4, one may assume that z_,,z_, € R_R_. Then by the
(ROR_,R_R) entry in Table 7, one may sees that z, € R_ R
and by induction, z,, € R_R_ for alln > =2. By (14) and (15),

then sees that z, — Kk as required.

4. TheCase0<o<1

Suppose that 0 < ¢ < 1. Then,

o-(-a) o-(1-@)

o> 2
a a
(41)
o - (1 - ak)
>e> ———— 2 5 _c0.
ak
If we let
o— 1_ak+1 o— 1_ak
K(k):< (k+1 )’ (k ) » keN,
a a (42)
K™Y =gk + 4’ = (0,a0 + (1 - a)],
then
ak® +a' =K%Y, keN,
o . e X
R=1J1% R =JK®,
k=0 k=0
NN R —
RR, = JK¥R, = JRK
k=0 k=0
(o)
_ U K(k)K(S)
k,s=0
0 " (o8 K
R;R; — U]( )R; — UR;‘]( )
k=0 k=0
o0
k,s=0

- N .
RR = JKPR = | |JR)J
k=0 k=0

(e}
— U K(k)](s)

k,s=0
(43)

Let {z,}_, be a solution of (3). Let us consider first the case
where z,,,z,,,; € R.R_. Then by (7) and (16), we see that

Za40 = OZ, + a'i. (44)
Note that (in view of our assumption that 0 < 0 < 1)
aR'R. +a'F, (RR)) = aR'R, +a'i
= a((o,00) X (00, 0])
+(1-a)(1,-1)
(45)
=(ao+ (1 -a),o0)
X (—00,a0 — (1 — a)]
CRR.
Hence, we may see further that z,,,, € R} R_. Similarly, since
aR!R! +d'F, (R,R;) = aR!R} +a'k
=a((o,00) x (0,00))
+(1-a)(1,1)
= (ac + (1 -a),00)
x (ac + (1 —a), 00)
CR'R!

o o’

46
-n- ! +pt) _ - I ( )
aR,R_ +a'F,(RR!) =aR R, -a'k

a ((—oo, 0] x (—00,0])

-(1-a)(1,1)

(—00,a0 — (1 —a)]
X (—00,a0 — (1 —a)]
SRR,

we see that if (z,,2,,,) € RIR! x R.R_, then z,,, € R'R!
and z,,,; € R_R_. By similar considerations, we may build a
table (consisting of two separate parts Tables 15 and 16) which

plays the same role as Table 1.



(z_,,z_,) € KPR, x RFK®

- (k) (s)
(RK® x KORY)

0<k<s= (zy02y,) € RIR, XR
0<s<k= (2,,25,1) € RR, XR'R!

R

g~ o

(R,R; X R,R7)

(R R, X R3R;)

TABLE 19

(z_5,2.,) € JYRY x R J®

(R;](k) x ](S)R;)

0<k<s= (230 241) € RLR; xR
0<s<k= (2,,255,1) € ORI XR R

R

o7 o0

(R;R, x R;R;)

(RyR; X R R;)

Next, we let {z,},° , be a solution of (3) again. If

(z_3,2_)) € R}

oo

R’ x R;R, then by the (R} J®, R 1) entry

of Table 15, we see that z, € R} R!. Now that (z_j,z,) €
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TABLE 15
K(S)R; R;K(s) KOO ](S)R; R;K(l) ](S)K(l)
(k) p- (k=1) p- (k=1) p- (k=1) p-
K }(zka) K* DR K*&DR K*& DR
R K
K?k)K(P) K& DD K& D -1 K& D -1
® p- - - -
](k)R(E | RIR; R'R; RIR;
JOK RIR RIR R'R;
RIK® REK®D REK®D REK®D R'R; R'R; R'R;
.G
RD_K( )
K(k)R; K(k_DR; K(k_l)R; K(k_l)R;
K(k)](P) K(k—l)](P—l) K(k—l)](P—l) K(k—l)](}?—l)
R R R R Ry Ry R
IO, R, R, R,
(k) 1(p)
I RR, RR, RR,
TABLE 16
R;](S) K(S)R; K(S)](l) R;](S) ](S)R; ](S)](Z)
) p- - - -
N Isz; (k=1) (k=1) (k-1) Rt Rl Rola
- — (k-1 — (k-1 — (k-1 -p- -p- - -
RK R K R K R K RR R R, R R,
KPK® RR; RR; R,R;
](k)Rf ](k—l)R— ](k—l)R— ](k—l)R—
o [ o [
](k)K(S) ](k*I)K(S*I) ](k—l)K(s—l) ](k*I)K(S*I)
RIK®
R, R,R; R,R; R,R; R4 R RJ*
K®R? R R} R R} R R}
k®j@ R R} R R} R R}
](k)R+ ](k—l)R+ ](k—l)R+ ](k—l)R+
o a [ [
](k)](P) ](kfl)](Pfl) ](kfl)](Pfl) ](kfl)](Pfl)
TABLE 17 TABLE 20
RIR. R R} R'R} (z_5,2_,) € RRK® x KR, (KPR} x R KY)
R'R.  SeeTable8  SeeTablel8  See Table 18 (-k.k) 0<k<s= (zy2y,) € RER. X ROR” (R'R! X R)R))
R'R; SeeTable5 (i) See Table7  See Table 6 0<s <k = (2y25) € RIR, X RIR, (R,R: x R_R?)
R R! SeeTable5  SeeTable7 <—;> See Table 6
RIR! <f( —f(> See Table4 ~ See Table4  See Table 8 TapLE 21
(z_52.)) € R JO x JUR! J®R; xR JY)
TABLE 18 0<k<s= (2y2y,,) € RLR, xRIR! (RCR. xR'RY)

0<s<k= (2, 2,) € R X RR! (R'R, x R'R})

R, R xR’ R*, we may use the (K R_, J*)R*) entry of Table 16
to infer z; € R_R_ again. By induction, we see that z,, €
RIR!,z,,,1 € R_R_ foralln > -2. By (7), we then see that

g o’

25, =0z, 5+ dk, neN,

) (47)

Zypiy = G2y, —a Kk, neN,

and hence by (14) and (15), we see that z,, — K, Zopr1 — -k

asn — 00. By considering z_, and z_, in different parts of

the plane, we may apply the same principle to obtain Table 17.
In this table, there are twelve indeterminate cases. Let us

+

go through one case. Let (z_,,z_;) € RZR_ x R°R”. Then,
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TABLE 22
(Z,z, Z,l) € K(k)](P) x ](I)K(m) (](k)K(P) x K(l)](m))
Bl = (23 Zys1) € RR, X RIR (R;R! x R;R}
B2 = (2, Zyp,1) € REJPHFD 5 JERUR- (R K™ x K¢FDRY)
B3 = (2, 25,,) € K P7VR, x REK™ 27V (J& PR x R J D)
B4 = (2,,,2,,,,) € KN PR, x REKP7Y (J&PDRE x R J™m D)
B5 = (2, 23p41) € R,R, X ROR] (RIRI xR R))
B6 = (23, 2y1,,) € K(k’H)R; % R;K(WH) (](k I- I)R’ % R+]m I- 1))
B7 = (2,,2,,,) € R;RS x R R} (R'R; x R'R))
B8 = (2,2,.,) € R'R' x R R; (R;R; x R'R?)
B9 = (23 Zoms1) € R ]‘P ) x JEmDRE (RIKP D x K DR
BI0 = (25 Zypsy) € REJE™ D 5 JEM VRS (R;KP™™ D x KEmDRY)
Bl = (25, 23p41) € R;R; X ROR] (R*R* x ROR)
B12 = (2,,2y,;) € RIR! X R_R_ (ROR, xRIR!
TABLE 23
(Z,z, Z,l) € ](k)](P) x ](1)]("1) (K(k)K(P) K(l)K(m))
Bl = (2, Z30,1) € R;R, X R'R" (RIR! x R,R))
B2 = (2y, Zys1) € R JPTFD x JORDR? (RIKPHD x KEFDR)

B3 = (2, 2yp1) € J¥PVR, x RLJP7Y
B4 = (25, 25p,) € J¥POR, x R J 27D
B5 = (2, 2y11) € RIR, X RIR]

B6 = (25, 2,.,) € J¥VRE x RS J Y

B7 = (25, 2y,1) € RIRI X R R

B8 = (2y,2y,,) € R,R! xR R!

B9 = (2, Zymar) € REJED 5 JEmDR-
B0 = (25, Zypy1) € Ry JP 7 x JEmDRY
Bll = (2,,,25,41) € RJR, X RIR]

B12 = (2,,2,,,) € R.RI xR R}

(K(k P- 1)R+ X R; K (m=p= 1))
(K*PDR! x ROK™P7V)
(R R; x R,R;)
(K*DR, x REK™ D)
(R;R; x R'R"
(R'R; x RIR))
(RyKP™) X KU URY)
(REK®™D x KmDR)
(R;R! x R;R})
(R'R; x R'R})

(z_5,z_1) €K k)R’ XRIK © for some k, s € N. There are then
two subcases: (i) 0 < k < sor(ii) 0 £ s < k. In the former

case, by Table 15,

zo=az_,+d'F,(z_) e KE¥VR, (48)
and (hence)

z, =az_, +d'F, (z)) e K", (49)

and so forth, and finally,

, € KTVR c R'R,
(50)
.
Zyks1 € RGR,.

In the latter case, we may similarly show that (z,,,2z,,;) €
R R_xR!R'.By considering (z_,, z_) in different parts, we
may ‘then construct four self- explanatory Tables 18,19, 20, and
21

As a consequence, if (z_,,z_;) € KPR xR KYand0 <
k < s, then the solution of (3) originated from z_, and z_, will

satisfy (251 Zok1) € RIR. x RIR_. Then by Table 17, z,, —
.

Next, let (z_,,z_;) € R,R} x R'R_. Then, (z_,,z_;) €
K@ 5 JOKM for some k, p,I,m € N. As mentioned
before, there are twelve different ordering arrangements Bl-
B12 for the nonnegative integers k, p,l,and m. In case B2
holds, we may make use of Table 22 repeatedly to show that
(Zy Zoe1) € REJPFD 5 JEFDR- (which is recorded in
self-explanatory Tables 22 and 23). If 0 < p—-k—-1<I-k-1,
then by Table 19, (2,,,2,,41) € RyR; x RJR_. By Table 17
again, z, — (i).

In conclusion, we have shown the following result.

Theorem 6. Suppose that 0 < o < 1. Then, a solution of (3)
must be either asymptotically 1-periodic tending to the limit

cycles (i) or (-i) or asymptotically 2-periodic tending to the
limit cycle (R, —E).

We remark that, as can be seen from the above exhaustive
arguments and Example 2, the region of attraction of each
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limit cycle can be given precisely (by implementing a simple
computer program, if necessary).

5. Conclusions

In neural network terminologies, we have discussed a simple
two-neuron recurrent McCulloch-Pitts-type neural network
with a nonnegative threshold o. For ¢ > 1, all solutions
tend to the limiting state (1,1); for 0 = 1, all solutions
must either be tending to the limiting states (-1, 1), (1,-1) or
(1, 1), or asymptotically 2-periodic tending to the limit cycles
((1,-1), (1, 1)), {(-1,1),(1, 1)), or {(-1,-1),(1,1)); and for
0 < o < 1, all solutions must either be tending to the
steady states (-1, 1), or (1,—1) or asymptotically 2-periodic
tending to the limit cycle ((1,1),(-1,-1)). In all cases, the
corresponding region of attraction of each limit cycle can be
given.

Our proofs show that more general multiple-neuron
recurrent McCulloch-Pitts-type neural networks possess
similar behaviors. However, the derivations may involve more
delicate graph theoretic arguments and are better left for other
studies.
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