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We investigate the global convergence, boundedness, and periodicity of solutions of the recursive sequence 𝑥
𝑛+1

= (𝑎𝑥
𝑛−𝑙

+

𝑏𝑥
𝑛−𝑥

)/(𝑐 + 𝑑𝑥
𝑛−𝑙

𝑥
𝑛−𝑘

), 𝑛 = 0, 1, . . . , where the parameters a, b, c, and d are positive real numbers, and the initial conditions
𝑥
−𝑡

, 𝑥
−𝑡+1

, . . . , 𝑥
−1

and 𝑥
0
are positive real numbers where 𝑡 = max{𝑘, 𝑙}.

1. Introduction

Recently, there has been a lot of interest in studying the global
attractivity, the boundedness character, and the periodicity
nature of nonlinear difference equations see for example, [1–
22].

The study of the nonlinear rational difference equations
of a higher order is quite challenging and rewarding, and
the results about these equations offer prototypes towards the
development of the basic theory of the global behavior of
nonlinear difference equations of a big order; recently, many
researchers have investigated the behavior of the solution
of difference equations. For example, in [8]. Elabbasy et al.
investigated the global stability and periodicity character and
gave the solution of special case of the following recursive
sequence:

𝑥
𝑛+1

= 𝑎𝑥
𝑛

−

𝑏𝑥
𝑛

𝑐𝑥
𝑛

− 𝑑𝑥
𝑛−1

. (1)

Elabbasy et al. [9] investigated the global stability, bounded-
ness, and periodicity character and gave the solution of some
special cases of the difference equation

𝑥
𝑛+1

=

𝛼𝑥
𝑛−𝑘

𝛽 + 𝛾∏
𝑘

𝑖=0
𝑥
𝑛−𝑖

. (2)

Elabbasy et al. [10] investigated the global stability and
periodicity character and gave the solution of some special
cases of the difference equation

𝑥
𝑛+1

=

𝑑𝑥
𝑛−𝑙

𝑥
𝑛−𝑘

𝑐𝑥
𝑛−𝑠

− 𝑏

+ 𝑎. (3)

Saleh and Aloqeili [23] investigated the difference equation

𝑦
𝑛+1

= 𝐴 +

𝑦
𝑛

𝑦
𝑛−𝑘

, with 𝐴 < 0. (4)

Wang et al. [24] studied the global attractivity of the equilib-
rium point and the asymptotic behavior of the solutions of
the difference equation

𝑥
𝑛+1

=

𝑎𝑥
𝑛−𝑙

𝑥
𝑛−𝑘

𝛼 + 𝑏𝑥
𝑛−𝑠

+ 𝑐𝑥
𝑛−𝑡

. (5)

In [25], Wang et al. investigated the asymptotic behavior of
equilibrium point for a family of rational difference equation

𝑥
𝑛+1

=

∑
𝑡

𝑖=1
𝐴
𝑠𝑖
𝑥
𝑛−𝑠𝑖

𝐵 + 𝐶∏
𝑘

𝑗=1
𝑥
𝑛−𝑡𝑗

+ 𝐷𝑥
𝑛
. (6)

Yalçinkaya [26] considered the dynamics of the difference
equation

𝑥
𝑛+1

= 𝛼 +

𝑥
𝑛−𝑚

𝑥
𝑘

𝑛

. (7)
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Zayed and El-Moneam [27, 28] studied the behavior of the
following rational recursive sequences:

𝑥
𝑛+1

= 𝑎𝑥
𝑛

−

𝑏𝑥
𝑛

𝑐𝑥
𝑛

− 𝑑𝑥
𝑛−𝑘

, 𝑥
𝑛+1

=

𝛼 + 𝛽𝑥
𝑛

+ 𝛾𝑥
𝑛−1

𝐴 + 𝐵𝑥
𝑛

+ 𝐶𝑥
𝑛−1

.

(8)

For some related works see [29–39].
Our goal in this paper is to investigate the global stability

character and the periodicity of solutions of the recursive
sequence

𝑥
𝑛+1

=

𝑎𝑥
𝑛−𝑙

+ 𝑏𝑥
𝑛−𝑘

𝑐 + 𝑑𝑥
𝑛−𝑙

𝑥
𝑛−𝑘

, 𝑛 = 0, 1, . . . , (9)

where the parameters 𝑎, 𝑏, 𝑐, and 𝑑 are positive real num-
bers and the initial conditions 𝑥

−𝑡
, 𝑥
−𝑡+1

, . . . , 𝑥
−1

and 𝑥
0
are

positive real numbers where 𝑡 = max{𝑘, 𝑙}.

2. Local Stability of the Equilibrium
Point of (9)

This section deals with the local stability character of the
equilibrium point of (9)

Equation (9) has equilibrium points given by

𝑥 =

(𝑎 + 𝑏) 𝑥

𝑐 + 𝑑𝑥
2

, (10)

then

𝑥 {𝑑𝑥
2

+ 𝑐 − 𝑎 − 𝑏} = 0. (11)

Then the equilibrium points of (9) are given by

𝑥 = 0 or 𝑥 = √
𝑎 + 𝑏 − 𝑐

𝑑

when 𝑎 + 𝑏 > 𝑐. (12)

Let 𝑓 : (0, ∞)
2

→ (0, ∞) be a continuously differentiable
function defined by

𝑓 (𝑢, V) =

𝑎𝑢 + 𝑏V

𝑐 + 𝑑𝑢V
. (13)

Therefore, it follows that

𝜕𝑓 (𝑢, V)

𝜕𝑢

=

𝑎𝑐 − 𝑏𝑑V2

(𝑐 + 𝑑𝑢V)
2
,

𝜕𝑓 (𝑢, V)

𝜕V
=

𝑏𝑐 − 𝑎𝑑𝑢
2

(𝑐 + 𝑑𝑢V)
2
. (14)

Theorem 1. The following statements are true.

(1) If 𝑎 + 𝑏 ≤ 𝑐, then the only equilibrium point 𝑥 = 0 of
(9) is locally stable.

(2) If 𝑎 + 𝑏 > 𝑐, then the positive equilibrium point 𝑥 =

√(𝑎 + 𝑏 − 𝑐)/𝑑 of (9) is locally stable if |𝑐−𝑏|+|𝑐−𝑎| <

𝑎 + 𝑏.

Proof. (1) If 𝑎 + 𝑏 ≤ 𝑐, then we see from (14) that

𝜕𝑓 (0, 0)

𝜕𝑥
𝑛−𝑙

=

𝑎

𝑐

,

𝜕𝑓 (0, 0)

𝜕𝑥
𝑛−𝑘

=

𝑏

𝑐

. (15)

Then, the linearized equation associated with (9) about 𝑥 = 0

is

𝑦
𝑛+1

−

𝑎

𝑐

𝑦
𝑛−𝑙

−

𝑏

𝑐

𝑦
𝑛−𝑘

= 0, (16)

whose characteristic equation is

𝜆
𝑘+1

−

𝑎

𝑐

𝜆
𝑘−𝑙

−

𝑏

𝑐

= 0. (17)

Then, (16) is asymptotically stable if 𝑎 + 𝑏 < 𝑐, and then the
equilibrium point 𝑥 = 0 of (9) is locally stable.

(2) If 𝑎 + 𝑏 > 𝑐, then we see from (14) that

𝜕𝑓 (𝑥, 𝑥)

𝜕𝑥
𝑛−𝑙

=

𝑎𝑐 − 𝑏𝑑 ((𝑎 + 𝑏 − 𝑐) /𝑑)

(𝑐 + 𝑑 ((𝑎 + 𝑏 − 𝑐)/𝑑))
2

=

𝑐 − 𝑏

𝑎 + 𝑏

,

𝜕𝑓 (𝑥, 𝑥)

𝜕𝑥
𝑛−𝑘

=

𝑏𝑐 − 𝑎𝑑 ((𝑎 + 𝑏 − 𝑐) /𝑑)

(𝑐 + 𝑑 ((𝑎 + 𝑏 − 𝑐)/𝑑))
2

=

𝑐 − 𝑎

𝑎 + 𝑏

.

(18)

Then, the linearized equation of (9) about 𝑥 is

𝑦
𝑛+1

−

𝑐 − 𝑏

𝑎 + 𝑏

𝑦
𝑛−𝑙

−

𝑐 − 𝑎

𝑎 + 𝑏

𝑦
𝑛−𝑘

= 0, (19)

whose characteristic equation is

𝜆
𝑘+1

−

𝑐 − 𝑏

𝑎 + 𝑏

𝜆
𝑘−𝑙

−

𝑐 − 𝑎

𝑎 + 𝑏

= 0. (20)

Then, (19) is asymptotically stable if all roots of (20) lie in the
open disc |𝜆| < 1, that is, if

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑐 − 𝑏

𝑎 + 𝑏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑐 − 𝑎

𝑎 + 𝑏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 1, (21)

which is true if

|𝑐 − 𝑏| + |𝑐 − 𝑎| < 𝑎 + 𝑏. (22)

The proof is complete.

3. Boundedness of the Solutions of (9)
Here, we study the boundedness nature of the solutions of (9).

Theorem 2. Every solution of (9) is bounded if 𝑐 > 𝑎 + 𝑏.

Proof. Let {𝑥
𝑛
}
∞

𝑛=−𝑡
be a solution of (9). It follows from (9) that

𝑥
𝑛+1

=

𝑎𝑥
𝑛−𝑙

+ 𝑏𝑥
𝑛−𝑘

𝑐 + 𝑑𝑥
𝑛−𝑙

𝑥
𝑛−𝑘

≤

𝑎𝑥
𝑛−𝑙

+ 𝑏𝑥
𝑛−𝑘

𝑐

. (23)

By using a comparison, we can write the right-hand side as
follows:

𝑦
𝑛+1

=

𝑎𝑦
𝑛−𝑙

𝑐

+

𝑏𝑦
𝑛−𝑘

𝑐

, (24)

and this equation is locally asymptotically stable if 𝑎 + 𝑏 < 𝑐

and converges to the equilibrium point 𝑦 = 0.
Therefore,

lim sup
𝑛→∞

𝑥
𝑛

= 0. (25)

Thus, the solution is bounded.
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4. Existence of Periodic Solutions

In this section, we study the existence of periodic solutions of
(9).The following theorem states the necessary and sufficient
conditions that this equation has periodic solutions of prime
period two.

Theorem 3. Equation (9) has a prime period two solutions if
and only if one of the following statements holds:

(1) 𝑎 + 𝑏 − 𝑐 > 0, and l, k—odd,
(2) 𝑎 + 𝑐 − 𝑏 > 0, and k—odd, l—even,
(3) 𝑏 + 𝑐 − 𝑎 > 0, and l—odd, k—even.

Proof. We will prove the theorem when condition (1) is true,
and the proof of the other cases is similar and so we will be
omit it.

First suppose that there exists a prime period two solution

. . . , 𝑝, 𝑞, 𝑝, 𝑞, . . . , (26)

of (9). We will prove that Condition (1) holds.
We see from (9) that

𝑝 =

(𝑎 + 𝑏) 𝑝

𝑐 + 𝑑𝑝
2

, 𝑞 =

(𝑎 + 𝑏) 𝑞

𝑐 + 𝑑𝑞
2

. (27)

Then,

𝑐 + 𝑑𝑝
2

= 𝑎 + 𝑏, (28)

𝑐 + 𝑑𝑞
2

= 𝑎 + 𝑏. (29)

Subtracting (28) from (29) gives

𝑑 (𝑝
2

− 𝑞
2

) = 0. (30)

Since 𝑝 ̸= 𝑞, it follows that

𝑝 = −𝑞. (31)

Again, from (28) and (29)

𝑝
2

= 𝑞
2

=

𝑎 + 𝑏 − 𝑐

𝑑

, (32)

and so

𝑎 + 𝑏 − 𝑐 > 0. (33)

Therefore, inequality (1) holds.
Second, suppose that inequality (1) is true. We will show

that (9) has a prime period two solution.
Assume that

𝑝 = +√
𝑎 + 𝑏 − 𝑐

𝑑

, 𝑞 = −√
𝑎 + 𝑏 − 𝑐

𝑑

. (34)

We see from inequality (1) that

𝑎 + 𝑏 − 𝑐 > 0. (35)

Therefore, 𝑝 and 𝑞 are distinct real numbers.

Set

𝑥
−𝑙

= 𝑥
−𝑘

= 𝑝, 𝑥
−2

= 𝑞, 𝑥
−1

= 𝑝, 𝑥
0

= 𝑞.

(36)

We wish to show that

𝑥
1

= 𝑥
−1

= 𝑝, 𝑥
2

= 𝑥
0

= 𝑞. (37)

It follows from (9) that

𝑥
1

=

(𝑎 + 𝑏) 𝑝

𝑐 + 𝑑𝑝
2

=

(𝑎 + 𝑏) √(𝑎 + 𝑏 − 𝑐) /𝑑

𝑐 + 𝑑 ((𝑎 + 𝑏 − 𝑐) /𝑑)

= √
𝑎 + 𝑏 − 𝑐

𝑑

= 𝑝.

(38)

Similarly, we see that

𝑥
2

=

(𝑎 + 𝑏) 𝑞

𝑐 + 𝑑𝑞
2

=

− (𝑎 + 𝑏) √(𝑎 + 𝑏 − 𝑐) /𝑑

𝑐 + 𝑑 ((𝑎 + 𝑏 − 𝑐) /𝑑)

= −√
𝑎 + 𝑏 − 𝑐

𝑑

= 𝑞.

(39)

Then, it follows by induction that

𝑥
2𝑛

= 𝑞, 𝑥
2𝑛+1

= 𝑝, ∀𝑛 ≥ −1. (40)

Thus, (9) has the prime period two solution

. . . , 𝑝, 𝑞, 𝑝, 𝑞, . . . , (41)

where 𝑝 and 𝑞 are distinct roots of a quadratic equation, and
the proof is complete.

5. Global Attractor of the Equilibrium
Point of (9)

In this section, we investigate the global asymptotic stability
of (9). If we take the function𝑓(𝑢, V) defined by (16), then we
have four cases of themonotonicity behavior in its arguments
(all of these cases we suppose that 𝑎 + 𝑏 > 𝑐).

Theorem 4. If the function 𝑓(𝑢, V) defined by (16) is nonde-
creasing (or nonincreasing) in 𝑢, V, then the positive equilib-
rium point 𝑥 = √(𝑎 + 𝑏 − 𝑐)/𝑑 is a global attractor of (9).

Proof. Let {𝑥
𝑛
}
∞

𝑛=−𝑡
be a solution of (9) and again let 𝑓 be a

function defined by (16).
We will prove the theoremwhen 𝑓(𝑢, V) is nondecreasing

and the proof of the other cases is similar, and so we will omit
it.

Suppose that (𝑚, 𝑀) is a solution of the systems 𝑀 =

𝑓(𝑀, 𝑀) and 𝑚 = 𝑔(𝑚, 𝑚). Then, from (9), we see that

𝑀 =

𝑎𝑀 + 𝑏𝑀

𝑐 + 𝑑𝑀
2

, 𝑚 =

𝑎𝑚 + 𝑏𝑚

𝑐 + 𝑑𝑚
2

, (42)

or

𝑐 + 𝑑𝑀
2

= 𝑎 + 𝑏, 𝑐 + 𝑑𝑚
2

= 𝑎 + 𝑏. (43)
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Subtracting these two equations, we obtain

𝑑 (𝑀 − 𝑚) (𝑀 + 𝑚) = 0. (44)

Under the condition 𝑑 > 0, we see that

𝑀 = 𝑚. (45)

It follows byTheorem 2 that 𝑥 is a global attractor of (9), and
then the proof is complete.

Theorem 5. If the function 𝑓(𝑢, V) defined by (16) is non-
decreasing in 𝑢 and nonincreasing in V, then the positive
equilibrium point 𝑥 = √(𝑎 + 𝑏 − 𝑐)/𝑑 is a global attractor of
(9) if 𝑐 + 𝑏 > 𝑎.

Proof. Let {𝑥
𝑛
}
∞

𝑛=−𝑡
be a solution of (9) and again let 𝑓 be a

function defined by (16).
Suppose that (𝑚, 𝑀) is a solution of the systems 𝑀 =

𝑓(𝑀, 𝑚) and 𝑚 = 𝑔(𝑚, 𝑀). Then, from (9), we see that

𝑀 =

𝑎𝑀 + 𝑏𝑚

𝑐 + 𝑑𝑚𝑀

, 𝑚 =

𝑎𝑚 + 𝑏𝑀

𝑐 + 𝑑𝑚𝑀

, (46)

or

𝑐𝑀 + 𝑑𝑚𝑀
2

= 𝑎𝑀 + 𝑏𝑚,

𝑐𝑚 + 𝑑𝑀𝑚
2

= 𝑎𝑚 + 𝑏𝑀.

(47)

Subtracting these two equations, we obtain

𝑐 (𝑀 − 𝑚) + 𝑑𝑀𝑚 (𝑀 − 𝑚) = (𝑎 − 𝑏) (𝑀 − 𝑚) ,

(𝑀 − 𝑚) {𝑐 + 𝑏 − 𝑎 + 𝑑𝑀𝑚} = 0.

(48)

Under the condition 𝑐 + 𝑏 > 𝑎, we see that

𝑀 = 𝑚. (49)

It follows by Theorem 2 that 𝑥 is a global attractor of (9),
and then the proof is complete.

Theorem 6. If the function 𝑓(𝑢, V) defined by (16) is nonde-
creasing in V, nonincreasing in 𝑢. Then the positive equilibrium
point 𝑥 = √(𝑎 + 𝑏 − 𝑐)/𝑑 is a global attractor of (9) if 𝑐+𝑎 > 𝑏.

Proof. The proof is similar to the previous Theorem and so
we will be omit it.

Lemma 7. When 𝑐 ≥ 𝑎+𝑏 then the equilibrium point 𝑥 = 0 of
(9) is global attractor.

Proof. If 𝑐 ≥ 𝑎 + 𝑏, then the proof follows byTheorem 2.

6. Numerical Examples

For confirming the results of this paper, we consider numer-
ical examples which represent different types of solutions to
(9).

Example 1. We assume that 𝑙 = 1, 𝑘 = 2, 𝑥
−2

= 3, 𝑥
−1

=

2, 𝑥
0

= 6, 𝑎 = 2, 𝑏 = 5, 𝑐 = 8, and 𝑑 = 6. See Figure 1.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

𝑥
(
𝑛
)

𝑛

Figure 1: It shows the solution of (9) with 𝑙 = 1, 𝑘 = 2, 𝑥
−2

=

3, 𝑥
−1

= 2, 𝑥
0

= 6, 𝑎 = 2, 𝑏 = 5, 𝑐 = 8, and 𝑑 = 6.

0 5 10 15 20 25 30 35 40
1

2

3

4

5

6
𝑥
(
𝑛
)

𝑛

Figure 2: It shows the behavior of the solution of (9) with 𝑙 = 1, 𝑘 =

3, 𝑥
−3

= 3, 𝑥
−2

= 1, 𝑥
−1

= 6, 𝑥
0

= 5, 𝑎 = 9, 𝑏 = 13, 𝑐 =

0.1, and 𝑑 = 2.

0 2 4 6 8 10 12 14 16 18 20

0

2

4

𝑛

−2

−4

𝑥
(
𝑛
)

Figure 3: It shows the periodicity of the solution of (9) when 𝑙 =

3, 𝑘 = 1, 𝑥
−3

= 𝑥
−1

= 𝑝, 𝑥
−2

= 𝑥
0

= 𝑞, 𝑎 = 9, 𝑏 = 13, 𝑐 =

0.1, and 𝑑 = 2.
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0 2 4 6 8 10 12 14 16 18 20

0

1

2

𝑥
(
𝑛
)

𝑛

−2

−1

Figure 4: It shows the periodicity of the solution of (9) when 𝑙 =

4, 𝑘 = 3, 𝑥
−3

= 𝑥
−1

= 𝑞, 𝑥
−4

= 𝑥
−2

= 𝑥
0

= 𝑝, 𝑎 = 9, 𝑏 = 5, 𝑐 =

3, and 𝑑 = 2.

Example 2. See Figure 2, since 𝑙 = 1, 𝑘 = 3, 𝑥
−3

= 3, 𝑥
−2

=

1, 𝑥
−1

= 6, 𝑥
0

= 5, 𝑎 = 9, 𝑏 = 13, 𝑐 = 0.1, 𝑑 = 2.

Example 3. Figure 3 shows the solutions when 𝑙 = 3, 𝑘 =

1, 𝑥
−3

= 𝑥
−1

= 𝑝, 𝑥
−2

= 𝑥
0

= 𝑞, 𝑎 = 9, 𝑏 = 13, 𝑐 =

0.1, and 𝑑 = 2. (Since 𝑝, 𝑞 = ±√(𝑎 + 𝑏 − 𝑐)/𝑑).

Example 4. Figure 4 shows the solutions when 𝑙 = 4, 𝑘 =

3, 𝑥
−3

= 𝑥
−1

= 𝑞, 𝑥
−4

= 𝑥
−2

= 𝑥
0

= 𝑝, 𝑎 = 9, 𝑏 = 5, 𝑐 =

3, and 𝑑 = 2. (Since 𝑝, 𝑞 = ±√(𝑎 + 𝑏 − 𝑐)/𝑑).
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[26] I. Yalçinkaya, “On the difference equation 𝑥
𝑛+1

= 𝛼+(𝑥
𝑛−𝑚

/𝑥
𝑘

𝑛
),”

Discrete Dynamics in Nature and Society, vol. 2008, Article ID
805460, 8 pages, 2008.

[27] E. M. E. Zayed and M. A. El-Moneam, “On the rational
recursive sequence,” Communications on Applied Nonlinear
Analysis, vol. 15, no. 2, pp. 47–57, 2008.

[28] E. M. E. Zayed and M. A. EL-Moneam, “On the rational
recursive sequence 𝑥

𝑛+1
= 𝛼 + 𝛽𝑥

𝑛
+ 𝛾𝑥
𝑛−1

/(𝐴 + 𝐵𝑥
𝑛

+ 𝐶𝑥
𝑛−1

),”
Communications on Applied Nonlinear Analysis, vol. 12, no. 4,
pp. 15–28, 2005.

[29] E. M. Elsayed and M. M. El-Dessoky, “Dynamics and behavior
of a higher order rational recursive sequence,” Advances in
Difference Equations, pp. 2012–69, 2012.

[30] D. Simsek, B. Demir, and C. Cinar, “On the solutions of the
system of difference equations 𝑥

𝑛+1
= max{𝐴/𝑥

𝑛
, 𝑦
𝑛
/𝑥
𝑛
}, 𝑦
𝑛+1

=

max{𝐴/𝑦
𝑛
, 𝑥
𝑛
/𝑦
𝑛
},” Discrete Dynamics in Nature and Society,

vol. 2011, Article ID 325296, 11 pages, 2009.
[31] M. Mansour, M. M. El-Dessoky, and E. M. Elsayed, “The form

of the solutions and periodicity of some systems of difference
equations,” Discrete Dynamics in Nature and Society, vol. 2012,
Article ID 406821, 17 pages, 2012.

[32] B. D. Iričanin and S. Stević, “Some systems of nonlinear
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