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Two classes of periodic 𝑁-species Lotka-Volterra facultative mutualism systems with distributed delays are discussed. Based on
the continuation theorem of the coincidence degree theory developed by Gaines and Mawhin and the Lyapunov function method,
some new sufficient conditions on the existence and global attractivity of positive periodic solutions are established.

1. Introduction

Mutualism is the interaction of two species of organisms
that benefits both [1]. In general, mutualism may be either
obligate or facultative. Obligatemutualistmay survive only by
association, and facultative mutualist, while benefiting from
the presence of each other, may also survive in the absence
of any of them [2]. As it is well known, in recent years the
nonautonomous and periodic population dynamical systems
are extensively studied. The basic and important studied
questions for these systems are the persistence, permanence,
and extinction of species, global stability of systems and
the existence of positive periodic solutions, positive almost
periodic solutions and strictly positive solutions, and so forth.
Many important and influential results have been established
and can be found in many articles and books. Particularly,
the existence of positive periodic solutions for various type
population dynamical systems has been extensively studied
in [1–16] and the references cited therein.

In [7], the authors studied the following delayed two-
species model of facultative mutualism:
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(1)

By using the technique of coincidence degree and the Lya-
punov functionals method, the sufficient conditions for the
existence and globally asymptotic stability of positive peri-
odic solutions are obtained for system (1). In [2], the authors
considered the following periodic delayed two-species model
of facultative mutualism:
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(2)

By means of the methods of coincidence degree and the
Lyapunov functional, the sufficient conditions for the exis-
tence and globally asymptotic stability of positive periodic
solutions are established for system (2). In [12], the following
𝑛-species periodic Lotka-Volterra type competitive systems
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with feedback controls and finite and infinite distributed
delays are discussed:
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where 𝑖 = 1, 2, . . . , 𝑛. By using the technique of coincidence
degree and the Lyapunov functionals method, the sufficient
conditions for the existence and global stability of positive
periodic solutions are obtained for system (3).

Motivated by the above works, in this paper, we investi-
gate the following two classes of 𝑛 species periodic model of
facultative mutualism with finite distributed delays:
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By using the technique of coincidence degree developed
by Gaines and Mawhin in [17] and the Lyapunov functional
method, we will establish some new sufficient conditions
which guarantee that the system has at least one positive
periodic solution and is globally attractive.

The organization of this paper is as follows. In the next
section we will present some basic assumptions and main
definitions and lemmas. In Section 3, conditions for the
existence and global attractivity of positive periodic solution.
In Section 4, two examples are given to illustrate that our
main results are applicable. In the final section, wewill discuss
what we study in this paper and what we had in this paper.

2. Preliminaries

In systems (4) and (5), we have that 𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . 𝑛)
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𝑖
(𝑖 = 1, 2, . . . 𝑛) at

time 𝑡, respectively, while 𝜏 ≥ 0 is a constant and 𝜏 may be
+∞. System (4) involves positive feedback terms
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which are due to gestation. In this paper, we always assume
the following:
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From the viewpoint ofmathematical biology, in this paper
for systems (4) and (5) we only consider the solution with the
following initial condition:

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑠) , ∀𝑠 ∈ [−𝜏, 0] , 𝑖 = 1, 2, . . . , 𝑛, (8)

where𝜙
𝑖
(𝑠) (𝑖 = 1, 2, . . . , 𝑛) are nonnegative continuous func-

tions defined on [−𝜏, 0] satisfying 𝜙
𝑖
(0) > 0 (𝑖 = 1, 2, . . . , 𝑛).

In this paper, for any𝜔-periodic continuous function𝑓(𝑡)
we denote the following:

𝑓
𝐿
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𝑀
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In order to obtain the existence of positive 𝜔-periodic
solutions of systems (4) and (5), we will use the continuation
theorem developed by Gaines and Mawhin in [17]. For the
reader’s convenience, we will introduce the continuation
theorem in the following.

Let𝑋 and𝑍 be two normed vetor spaces. Let 𝐿 : Dom𝐿 ⊂

𝑋 → 𝑍 be a linear operator and 𝑁 : 𝑋 → 𝑍 be a
continuous operator. The operator 𝐿 is called a Fredholm
operator of index zero, if dim Ker 𝐿 = codim Im 𝐿 < ∞ and
Im 𝐿 is a closed set in 𝑍. If 𝐿 is a Fredholm operator of index
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zero, then there exist continuous projectors 𝑃 : 𝑋 → 𝑋

and 𝑄 : 𝑍 → 𝑍 such that Im𝑃 = Ker 𝐿 and Im 𝐿 =

Ker𝑄 = Im(𝐼 − 𝑄). It follows that 𝐿 | Dom𝐿 ∩ Ker𝑃 :

Dom𝐿∩Ker𝑃 → Im 𝐿 is invertible and its inverse is denoted
by 𝐾
𝑃
and denote by 𝐽 : Im𝑄 → Ker 𝐿 an isomorphism of

Im𝑄 onto Ker 𝐿. Let Ω be a bounded open subset of 𝑋, we
say that the operator𝑁 is 𝐿-compact onΩ, whereΩ denotes
the closure ofΩ in𝑋, if𝑄𝑁(Ω) is bounded and𝐾

𝑃
(𝐼−𝑄)𝑁 :

Ω → 𝑋 is compact.

Lemma 1 (see [17]). Let𝐿 be a Fredholm operator of index zero
and let𝑁 be 𝐿-compact on Ω. If

(a) for each 𝜆 ∈ (0, 1) and 𝑥 ∈ 𝜕Ω ∩ Dom𝐿, 𝐿𝑥 ̸= 𝜆𝑁𝑥;

(b) for each 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿, 𝑄𝑁𝑥 ̸= 0;

(c) deg{𝐽𝑄𝑁,Ω ∩ Ker 𝐿, 0} ̸= 0,

then the operator equation 𝐿𝑥 = 𝑁𝑥 has at least one solution
lying in Dom𝐿 ∩ Ω.

3. Main Results

Now, for the convenience of statements, we denote the
function

𝑎
𝑖𝑗
(𝑡) =

𝑚

∑
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𝑎
𝑖𝑗𝑙
(𝑡) , 𝑖, 𝑗 = 1, 2, . . . , 𝑛. (10)

The following theorem is about the existence and global
attractivity of positive periodic solutions of system (4).

Theorem 2. Suppose that assumption (H1) holds and there
exists a constant 𝜇

𝑖
> 0 (𝑖 = 1, 2, . . . , 𝑛) such that
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{

{
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𝑖
𝛼
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}

}

=: 𝛿
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛,

(11)

and the algebraic equation

𝑟
𝑖
− 𝛼
𝑖
V
𝑖
+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
V
𝑗
= 0, 𝑖 = 1, 2, . . . , 𝑛 (12)

has a unique positive solution.Then, system (4) has a positive
𝜔-periodic solution which is globally attractive.

Proof. We firstly consider the existence of positive periodic
solutions of system (4). For system (4), we introduce new
variables 𝑢

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) such that

𝑥
𝑖
(𝑡) = exp {𝑢

𝑖
(𝑡)} , 𝑖 = 1, 2, . . . , 𝑛. (13)

Then, system (4) is rewritten in the following form:

𝑢̇
𝑖
(𝑡) = 𝑟

𝑖
(𝑡) − 𝛼

𝑖
(𝑡) exp {𝑢

𝑖
(𝑡)}

+

𝑚

∑

𝑙=1

𝑎
𝑖𝑖𝑙
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0

−𝜏

𝑘
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𝑛

∑
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𝑚

∑
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𝑎
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𝑗
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𝑖 = 1, 2, . . . , 𝑛.

(14)

In order to apply Lemma 1 to system (14), we intro-
duce the normed vector spaces 𝑋 and 𝑍 as follows. Let
𝐶(𝑅, 𝑅

𝑛
) denote the space of all continuous function 𝑢(𝑡) =

(𝑢
1
(𝑡), 𝑢
2
(𝑡), . . . , 𝑢

𝑛
(𝑡)) : 𝑅 → 𝑅

𝑛. We take

𝑋 = 𝑍 = {𝑢 (𝑡) ∈ 𝐶 (𝑅, 𝑅
𝑛
) : 𝑢 (𝑡)

is an 𝜔-periodic function}
(15)

with norm

‖𝑢‖ =

𝑛

∑

𝑖=1

max
𝑡∈[0,𝜔]

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)
󵄨󵄨󵄨󵄨 . (16)

It is obvious that𝑋 and 𝑍 are the Banach spaces.
We define a linear operator 𝐿 : Dom𝐿 ⊂ 𝑋 → 𝑍 and a

continuous operator𝑁 : 𝑋 → 𝑍 as follows:

𝐿𝑢 (𝑡) = 𝑢̇ (𝑡) ,

𝑁𝑢 (𝑡) = (𝑁𝑢
1
(𝑡) ,𝑁𝑢

2
(𝑡) , . . . , 𝑁𝑢

𝑛
(𝑡)) ,

(17)

where

𝑁𝑢
𝑖
(𝑡) = 𝑟

𝑖
(𝑡) − 𝛼

𝑖
(𝑡) exp {𝑢

𝑖
(𝑡)}

+

𝑚

∑

𝑙=1

𝑎
𝑖𝑖𝑙
(𝑡) ∫

0

−𝜏

𝑘
𝑖𝑖𝑙
(𝑠) exp {𝑢

𝑖
(𝑡 + 𝑠)} 𝑑𝑠

+

𝑛

∑

𝑗 ̸= 𝑖

𝑚

∑

𝑙=1

𝑎
𝑖𝑗𝑙
(𝑡) ∫

0

−𝜏

𝑘
𝑖𝑗𝑙
(𝑠) exp {𝑢

𝑗
(𝑡 + 𝑠)} 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛.

(18)

Further, we define continuous projectors 𝑃 : 𝑋 → 𝑋 and
𝑄 : 𝑍 → 𝑍 as follows:

𝑃𝑢 (𝑡) =
1

𝜔
∫

𝜔

0

𝑢 (𝑡) 𝑑𝑡, 𝑄V (𝑡) =
1

𝜔
∫

𝜔

0

V (𝑡) 𝑑𝑡. (19)

We easily see that Im 𝐿 = {V ∈ 𝑍 : ∫
𝜔

0
V(𝑡)𝑑𝑡 = 0} and Ker 𝐿 =

𝑅
𝑛. It is obvious that Im 𝐿 is closed in 𝑍 and dimKer𝐿 = 𝑛.

Since for any V ∈ 𝑍 there are unique V
1
∈ 𝑅
𝑛 and V

2
∈ Im 𝐿

with

V
1
=

1

𝜔
∫

𝜔

0

V (𝑡) 𝑑𝑡, V
2
(𝑡) = V (𝑡) − V

1
, (20)

such that V(𝑡) = V
1
+V
2
(𝑡), we have co dim Im 𝐿 = 𝑛.Therefore,

𝐿 is a Fredholm mapping of index zero. Furthermore, the
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generalized inverse (to 𝐿) 𝐾
𝑝
: Im 𝐿 → Ker𝑃 ∩ Dom𝐿 is

given in the following form:

𝐾
𝑝
V (𝑡) = ∫

𝑡

0

V (𝑠) 𝑑𝑠 −
1

𝜔
∫

𝜔

0

∫

𝑡

0

V (𝑠) 𝑑𝑠 𝑑𝑡. (21)

For convenience, we denote 𝐹(𝑡) = (𝐹
1
(𝑡), 𝐹
2
(𝑡), . . . , 𝐹

𝑛
(𝑡)) as

follows:

𝐹
𝑖
(𝑡) = 𝑟

𝑖
(𝑡) − 𝛼

𝑖
(𝑡) exp {𝑢

𝑖
(𝑡)}

+

𝑚

∑

𝑙=1

𝑎
𝑖𝑖𝑙
(𝑡) ∫

0

−𝜏

𝑘
𝑖𝑖𝑙
(𝑠) exp {𝑢

𝑖
(𝑡 + 𝑠)} 𝑑𝑠

+

𝑛

∑

𝑗 ̸= 𝑖

𝑚

∑

𝑙=1

𝑎
𝑖𝑗𝑙
(𝑡) ∫

0

−𝜏

𝑘
𝑖𝑗𝑙
(𝑠) exp {𝑢

𝑗
(𝑡 + 𝑠)} 𝑑𝑠,

𝑖 = 1, 2, . . . 𝑛.

(22)

Thus, we have

𝑄𝑁𝑢 (𝑡) =
1

𝜔
∫

𝜔

0

𝐹 (𝑡) 𝑑𝑡,

𝐾
𝑝
(𝐼 − 𝑄)𝑁𝑢 (𝑡) = 𝐾

𝑝
𝐼𝑁𝑢 (𝑡) − 𝐾

𝑝
𝑄𝑁𝑢 (𝑡)

= ∫

𝑡

0

𝐹 (𝑠) 𝑑𝑠 −
1

𝜔
∫

𝜔

0

∫

𝑡

0

𝐹 (𝑠) 𝑑𝑠 𝑑𝑡

+ (
1

2
−

𝑡

𝜔
)∫

𝜔

0

𝐹 (𝑠) 𝑑𝑠.

(23)

From formulas (23), we easily see that 𝑄𝑁 and 𝐾
𝑝
(𝐼 − 𝑄)𝑁

are continuous operators. Furthermore, it can be verified that
𝐾
𝑝
(𝐼 − 𝑄)𝑁(Ω) is compact for any open bounded set Ω ⊂

𝑋 by using Arzela-Ascoli theorem and 𝑄𝑁(Ω) is bounded.
Therefore,𝑁 is 𝐿-compact onΩ for any open bounded subset
Ω ⊂ 𝑋.

Now, we reach the position to search for an appropriate
open bounded subset Ω for the application of the continua-
tion theorem (Lemma 1) to system (4).

Corresponding to the operator equation 𝐿𝑢(𝑡) = 𝜆𝑁𝑢(𝑡)

with parameter 𝜆 ∈ (0, 1), we have

𝑢̇
𝑖
(𝑡) = 𝜆𝐹

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛, (24)

where 𝐹
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) is given in (22).

Assume that 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢
2
(𝑡), . . . , 𝑢

𝑛
(𝑡)) ∈ 𝑋 is a

solution of system (24) for some parameter 𝜆 ∈ (0, 1). By

integrating system (24) with the interval [0, 𝜔], we obtain the
following:

∫

𝜔

0

[

[

𝑟
𝑖
(𝑡) − 𝛼

𝑖
(𝑡) exp {𝑢

𝑖
(𝑡)}

+

𝑚

∑

𝑙=1

𝑎
𝑖𝑖𝑙
(𝑡) ∫

0

−𝜏

𝑘
𝑖𝑖𝑙
(𝑠) exp {𝑢

𝑖
(𝑡 + 𝑠)} 𝑑𝑠

+

𝑛

∑

𝑗 ̸= 𝑖

𝑚

∑

𝑙=1

𝑎
𝑖𝑗𝑙
(𝑡) ∫

0

−𝜏

𝑘
𝑖𝑗𝑙
(𝑠) exp {𝑢

𝑗
(𝑡 + 𝑠)} 𝑑𝑠]

]

𝑑𝑡 = 0,

𝑖 = 1, 2, . . . 𝑛.

(25)

Consequently,

∫

𝜔

0

[

[

𝛼
𝑖
(𝑡) exp {𝑢

𝑖
(𝑡)}

−

𝑚

∑

𝑙=1

𝑎
𝑖𝑖𝑙
(𝑡) ∫

0

−𝜏

𝑘
𝑖𝑖𝑙
(𝑠) exp {𝑢

𝑖
(𝑡 + 𝑠)} 𝑑𝑠

−

𝑛

∑

𝑗 ̸= 𝑖

𝑚

∑

𝑙=1

𝑎
𝑖𝑗𝑙
(𝑡) ∫

0

−𝜏

𝑘
𝑖𝑗𝑙
(𝑠) exp {𝑢

𝑗
(𝑡 + 𝑠)} 𝑑𝑠]

]

𝑑𝑡

= 𝑟
𝑖
𝜔, 𝑖 = 1, 2, . . . 𝑛.

(26)

From the continuity of 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢
2
(𝑡), . . . , 𝑢

𝑛
(𝑡)), there

exist constants 𝜉
𝑖
, 𝜂
𝑖
∈ [0, 𝜔] (𝑖 = 1, 2, . . . , 𝑛) such that

𝑢
𝑖
(𝜉
𝑖
) = max
𝑡∈[0,𝜔]

𝑢
𝑖
(𝑡) , 𝑢

𝑖
(𝜂
𝑖
) = min
𝑡∈[0,𝜔]

𝑢
𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑛.

(27)

From (26) and (27), we obtain

∫

𝜔

0

𝛼
𝑖
(𝑡) exp {𝑢

𝑖
(𝜉
𝑖
)} 𝑑𝑡 ≥ 𝑟

𝑖
𝜔, 𝑖 = 1, 2, . . . , 𝑛. (28)

Therefore, we further have

𝑢
𝑖
(𝜉
𝑖
) ≥ ln(

𝑟
𝑖

𝛼
𝑖

) , 𝑖 = 1, 2, . . . , 𝑛. (29)
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For each 𝑖, 𝑗 = 1, 2, . . . , 𝑛 and 𝑙 = 1, 2, . . . , 𝑚, we have

∫

𝜔

0

𝑎
𝑖𝑗𝑙
(𝑡) ∫

0

−𝜏

𝑘
𝑖𝑗𝑙
(𝑠) exp {𝑢

𝑗
(𝑡 + 𝑠)} 𝑑𝑠 𝑑𝑡

= ∫

0

−𝜏

∫

𝜔

0

𝑎
𝑖𝑗𝑙
(𝑡) 𝑘
𝑖𝑗𝑙
(𝑠) exp {𝑢

𝑗
(𝑡 + 𝑠)} 𝑑𝑡 𝑑𝑠

= ∫

0

−𝜏

∫

𝑠+𝜔

𝑠

𝑎
𝑖𝑗𝑙
(V − 𝑠) 𝑘

𝑖𝑗𝑙
(𝑠) exp {𝑢

𝑗
(V)} 𝑑V 𝑑𝑠

= ∫

0

−𝜏

∫

𝜔

0

𝑎
𝑖𝑗𝑙
(V − 𝑠) 𝑘

𝑖𝑗𝑙
(𝑠) exp {𝑢

𝑗
(V)} 𝑑V 𝑑𝑠

= ∫

𝜔

0

∫

0

−𝜏

𝑎
𝑖𝑗𝑙
(V − 𝑠) 𝑘

𝑖𝑗𝑙
(𝑠) exp {𝑢

𝑗
(V)} 𝑑𝑠 𝑑V

= ∫

𝜔

0

(∫

0

−𝜏

𝑎
𝑖𝑗𝑙
(𝑡 − 𝑠) 𝑘

𝑖𝑗𝑙
(𝑠) 𝑑𝑠) exp {𝑢

𝑗
(𝑡)} 𝑑𝑡.

(30)

Hence, from (26) we further obtain

∫

𝜔

0

[

[

(𝛼
𝑖
(𝑡) −

𝑚

∑

𝑙=1

(∫

0

−𝜏

𝑎
𝑖𝑖𝑙
(𝑡 − 𝑠) 𝑘

𝑖𝑖𝑙
(𝑠) 𝑑𝑠)) exp {𝑢

𝑖
(𝑡)}

−

𝑛

∑

𝑗 ̸= 𝑖

𝑚

∑

𝑙=1

(∫

0

−𝜏

𝑎
𝑖𝑗𝑙
(𝑡 − 𝑠) 𝑘

𝑖𝑗𝑙
(𝑠) 𝑑𝑠) exp {𝑢

𝑗
(𝑡)}]

]

𝑑𝑡

= 𝑟
𝑖
𝜔, 𝑖 = 1, 2, . . . , 𝑛.

(31)

Consequently,

∫

𝜔

0

[

[

(𝛼
1
(𝑡) −

𝑚

∑

𝑙=1

(∫

0

−𝜏

𝑎
11𝑙

(𝑡 − 𝑠) 𝑘
11𝑙

(𝑠) 𝑑𝑠)) exp {𝑢
1
(𝑡)}

−

𝑛

∑

𝑗 ̸= 1

𝑚

∑

𝑙=1

(∫

0

−𝜏

𝑎
1𝑗𝑙

(𝑡 − 𝑠) 𝑘
1𝑗𝑙

(𝑠) 𝑑𝑠) exp {𝑢
𝑗
(𝑡)}]

]

𝑑𝑡

+ ∫

𝜔

0

[(𝛼
2
(𝑡) −

𝑚

∑

𝑙=1

(∫

0

−𝜏

𝑎
22𝑙

(𝑡 − 𝑠) 𝑘
22𝑙

(𝑠) 𝑑𝑠))

×exp {𝑢
2
(𝑡)}−

𝑛

∑

𝑗 ̸= 2

𝑚

∑

𝑙=1

(∫

0

−𝜏

𝑎
2𝑗𝑙

(𝑡−𝑠) 𝑘
2𝑗𝑙

(𝑠) 𝑑𝑠)

× exp {𝑢
𝑗
(𝑡)}] 𝑑𝑡

+ ⋅ ⋅ ⋅ + ∫

𝜔

0

[(𝛼
𝑛
(𝑡)

−

𝑚

∑

𝑙=1

(∫

0

−𝜏

𝑎
𝑛𝑛𝑙

(𝑡 − 𝑠) 𝑘
𝑛𝑛𝑙

(𝑠)) 𝑑𝑠)

× exp {𝑢
𝑛
(𝑡)}

−

𝑛

∑

𝑗 ̸= 𝑛

𝑚

∑

𝑙=1

(∫

0

−𝜏

𝑎
𝑛𝑗𝑙

(𝑡 − 𝑠) 𝑘
𝑛𝑗𝑙

(𝑠) 𝑑𝑠)

× exp {𝑢
𝑗
(𝑡)}] 𝑑𝑡

= ∫

𝜔

0

[

[

𝛼
1
(𝑡) −

𝑚

∑

𝑙=1

(∫

0

−𝜏

𝑎
11𝑙

(𝑡 − 𝑠) 𝑘
11𝑙

(𝑠) 𝑑𝑠

+

𝑛

∑

𝑗 ̸= 1

∫

0

−𝜏

𝑎
𝑗1𝑙

(𝑡 − 𝑠) 𝑘
𝑗1𝑙

(𝑠) 𝑑𝑠)]

]

× exp {𝑢
1
(𝑡)} 𝑑𝑡

+ ∫

𝜔

0

[𝛼
2
(𝑡) −

𝑚

∑

𝑙=1

(∫

0

−𝜏

𝑎
22𝑙

(𝑡 − 𝑠) 𝑘
22𝑙

(𝑠) 𝑑𝑠

+

𝑛

∑

𝑗 ̸= 2

∫

0

−𝜏

𝑎
𝑗2𝑙

(𝑡 − 𝑠)

× 𝑘
𝑗2𝑙

(𝑠) 𝑑𝑠)]

× exp {𝑢
2
(𝑡)} 𝑑𝑡

+ ⋅ ⋅ ⋅ + ∫

𝜔

0

[𝛼
𝑛
(𝑡)

−

𝑚

∑

𝑙=1

(∫

0

−𝜏

𝑎
𝑛𝑛𝑙

(𝑡 − 𝑠) 𝑘
𝑛𝑛𝑙

(𝑠) 𝑑𝑠

+

𝑛

∑

𝑗 ̸= 𝑛

∫

0

−𝜏

𝑎
𝑗𝑛𝑙

(𝑡 − 𝑠)

× 𝑘
𝑗𝑛𝑙

(𝑠) 𝑑𝑠)]

× exp {𝑢
𝑛
(𝑡)} 𝑑𝑡

= ∫

𝜔

0

[

[

𝛼
1
(𝑡)

−

𝑚

∑

𝑙=1

(∫

0

−𝜏

[

[

𝑎
11𝑙

(𝑡 − 𝑠) 𝑘
11𝑙

(𝑠)+

𝑛

∑

𝑗 ̸= 1

𝑎
𝑗1𝑙

(𝑡 − 𝑠)

× 𝑘
𝑗1𝑙

(𝑠) ]

]

𝑑𝑠)]

]
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× exp {𝑢
1
(𝑡)} 𝑑𝑡

+ ∫

𝜔

0

[𝛼
2
(𝑡) −

𝑚

∑

𝑙=1

(∫

0

−𝜏

[𝑎
22𝑙

(𝑡 − 𝑠) 𝑘
22𝑙

(𝑠)

+

𝑛

∑

𝑗 ̸= 2

𝑎
𝑗2𝑙

(𝑡 − 𝑠)

× 𝑘
𝑗2𝑙

(𝑠)] 𝑑𝑠)]

× exp {𝑢
2
(𝑡)} 𝑑𝑡

+ ⋅ ⋅ ⋅ + ∫

𝜔

0

[

[

𝛼
𝑛
(𝑡)

−

𝑚

∑

𝑙=1

(∫

0

−𝜏

[

[

𝑎
𝑛𝑛𝑙

(𝑡 − 𝑠) 𝑘
𝑛𝑛𝑙

(𝑠)

+

𝑛

∑

𝑗 ̸= 𝑛

𝑎
𝑗𝑛𝑙

(𝑡 − 𝑠)

× 𝑘
𝑗𝑛𝑙

(𝑠)]

]

𝑑𝑠)]

]

× exp {𝑢
𝑛
(𝑡)} 𝑑𝑡 =

𝑛

∑

𝑖=1

𝑟
𝑖
𝜔.

(32)

From the assumptions of Theorem 2, we can obtain

∫

𝜔

0

[

[

𝛼
𝑖
(𝑡) −

𝑚

∑

𝑙=1

(∫

0

−𝜏

[𝑎
𝑖𝑖𝑙
(𝑡 − 𝑠) 𝑘

𝑖𝑖𝑙
(𝑠)

+

𝑛

∑

𝑗 ̸= 𝑖

𝑎
𝑗𝑖𝑙
(𝑡 − 𝑠)

× 𝑘
𝑗𝑖𝑙
(𝑠)] 𝑑𝑠)]

]

× exp {𝑢
𝑖
(𝑡)} 𝑑𝑡

≤

𝑛

∑

𝑖=1

𝑟
𝑖
𝜔, 𝑖 = 1, 2, . . . , 𝑛.

(33)

Hence,

𝛿
𝑖
∫

𝜔

0

exp {𝑢
𝑖
(𝑡)} 𝑑𝑡 ≤

𝑛

∑

𝑖=1

𝑟
𝑖
𝜔, 𝑖 = 1, 2, . . . , 𝑛. (34)

Consequently,

∫

𝜔

0

exp {𝑢
𝑖
(𝑡)} 𝑑𝑡 ≤

∑
𝑛

𝑖=1
𝑟
𝑖
𝜔

𝛿
𝑖

, 𝑖 = 1, 2, . . . , 𝑛. (35)

From (35), we further obtain

𝑢
𝑖
(𝜂
𝑖
) ≤ ln(

∑
𝑛

𝑖=1
𝑟
𝑖

𝛿
𝑖

) , 𝑖 = 1, 2, . . . , 𝑛. (36)

On the other hand, directly from system (14) we have

∫

𝜔

0

󵄨󵄨󵄨󵄨𝑢̇𝑖 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡

≤ ∫

𝜔

0

[

[

󵄨󵄨󵄨󵄨𝑟𝑖 (𝑡)
󵄨󵄨󵄨󵄨 + 𝛼
𝑖
(𝑡) exp {𝑢

𝑖
(𝑡)}

+

𝑚

∑

𝑙=1

𝑎
𝑖𝑖𝑙
(𝑡) ∫

0

−𝜏

𝑘
𝑖𝑖𝑙
(𝑠) exp {𝑢

𝑖
(𝑡 + 𝑠)} 𝑑𝑠

+

𝑛

∑

𝑗 ̸= 1

𝑚

∑

𝑙=1

𝑎
𝑖𝑗𝑙
(𝑡) ∫

0

−𝜏

𝑘
𝑖𝑗𝑙
(𝑠)

× exp {𝑢
𝑗
(𝑡 + 𝑠)} 𝑑𝑠]

]

𝑑𝑡

= ∫

𝜔

0

󵄨󵄨󵄨󵄨𝑟𝑖 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡

+ ∫

𝜔

0

[𝛼
𝑖
(𝑡) +

𝑚

∑

𝑙=1

∫

0

−𝜏

𝑎
𝑖𝑖𝑙
(𝑡 − 𝑠) 𝑘

𝑖𝑖𝑙
(𝑠) 𝑑𝑠]

× exp {𝑢
𝑖
(𝑡)} 𝑑𝑡

+ ∫

𝜔

0

(

𝑛

∑

𝑗 ̸= 𝑖

𝑚

∑

𝑙=1

∫

0

−𝜏

𝑎
𝑖𝑗𝑙
(𝑡 − 𝑠) 𝑘

𝑖𝑗𝑙
(𝑠) 𝑑𝑠)

× exp {𝑢
𝑗
(𝑡)} 𝑑𝑡

≤ ∫

𝜔

0

󵄨󵄨󵄨󵄨𝑟𝑖 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡 + ∫

𝜔

0

𝛼
𝑖
(𝑡) exp {𝑢

𝑖
(𝑡)} 𝑑𝑡

+

𝑚

∑

𝑙=1

𝑎
𝑀

𝑖𝑖𝑙
∫

𝜔

0

exp {𝑢
𝑖
(𝑡)} 𝑑𝑡

+

𝑛

∑

𝑗 ̸= 𝑖

𝑚

∑

𝑙=1

𝑎
𝑀

𝑖𝑗𝑙
∫

𝜔

0

exp {𝑢
𝑗
(𝑡)} 𝑑𝑡

≤
󵄨󵄨󵄨󵄨𝑟𝑖
󵄨󵄨󵄨󵄨𝜔 +

𝑛

∑

𝑗=1

𝑚

∑

𝑙=1

𝑎
𝑀

𝑖𝑗𝑙

∑
𝑛

𝑖=1
𝑟
𝑖
𝜔

𝛿
𝑖

+ 𝛼
𝑀

𝑖

∑
𝑛

𝑖=1
𝑟
𝑖
𝜔

𝛿
𝑖

, 𝑖 = 1, 2, . . . , 𝑛.

(37)
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From (36) and (37), we have, for any 𝑡 ∈ [0, 𝜔],

𝑢
𝑖
(𝑡) ≤ 𝑢

𝑖
(𝜂
𝑖
) + ∫

𝜔

0

󵄨󵄨󵄨󵄨𝑢̇𝑖 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡 ≤ ln(

∑
𝑛

𝑖=1
𝑟
𝑖

𝛿
𝑖

) +
󵄨󵄨󵄨󵄨𝑟𝑖
󵄨󵄨󵄨󵄨𝜔

+

𝑛

∑

𝑗=1

𝑚

∑

𝑙=1

𝑎
𝑀

𝑖𝑗𝑙

∑
𝑛

𝑖=1
𝑟
𝑖
𝜔

𝛿
𝑖

+ 𝛼
𝑀

𝑖

∑
𝑛

𝑖=1
𝑟
𝑖
𝜔

𝛿
𝑖

=: 𝑀
𝑖
,

𝑖 = 1, 2, . . . , 𝑛.

(38)

Further, from (29) and (37), we have, for any 𝑡 ∈ [0, 𝜔],

𝑢
𝑖
(𝑡) ≥ 𝑢

𝑖
(𝜉
𝑖
) − ∫

𝜔

0

󵄨󵄨󵄨󵄨𝑢̇𝑖 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡

≥ ln(
𝑟
𝑖

𝛼
𝑖

) −
󵄨󵄨󵄨󵄨𝑟𝑖
󵄨󵄨󵄨󵄨𝜔 −

𝑛

∑

𝑗=1

𝑚

∑

𝑙=1

𝑎
𝑀

𝑖𝑗𝑙

∑
𝑛

𝑖=1
𝑟
𝑖
𝜔

𝛿
𝑖

− 𝛼
𝑀

𝑖

∑
𝑛

𝑖=1
𝑟
𝑖
𝜔

𝛿
𝑖

=: 𝑁
𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(39)

Therefore, from (38) and (39) we have
max
𝑡∈[0,𝜔]

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)
󵄨󵄨󵄨󵄨 ≤ max {󵄨󵄨󵄨󵄨𝑀𝑖

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑁𝑖

󵄨󵄨󵄨󵄨} =: 𝐵𝑖,

𝑖 = 1, 2, . . . , 𝑛.

(40)

It can be seen that the constants 𝐵
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are

independent of parameter 𝜆 ∈ (0, 1).
For any 𝑢 = (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
) ∈ 𝑅
𝑛, from (18) we can obtain

𝑄𝑁𝑢 = (𝑄𝑁𝑢
1
, 𝑄𝑁𝑢

2
, . . . , 𝑄𝑁𝑢

𝑛
) , (41)

where

𝑄𝑁𝑢 = 𝑟
𝑖
− (𝛼
𝑖
− 𝑎
𝑖𝑖
) exp {𝑢

𝑖
} +

𝑛

∑

𝑗 ̸= 𝑖

𝑎
𝑖𝑗
exp {𝑢

𝑗
} ,

𝑖 = 1, 2, . . . , 𝑛.

(42)

We consider the following algebraic equation:

𝑟
𝑖
− (𝛼
𝑖
− 𝑎
𝑖𝑖
) V
𝑖
+

𝑛

∑

𝑗 ̸= 𝑖

𝑎
𝑖𝑗
V
𝑗
= 0, 𝑖 = 1, 2, . . . , 𝑛. (43)

From the assumption of Theorem 2, the equation has a
unique positive solution V

∗
= (V

∗

1
, V
∗

2
, . . . , V

∗

𝑛
). Hence,

the equation 𝑄𝑁𝑢 = 0 has a unique solution 𝑢
∗

=

(𝑢
∗

1
, 𝑢
∗

2
, . . . , 𝑢

∗

𝑛
) = (ln V∗

1
, ln V∗
2
, . . . , ln V∗

𝑛
) ∈ 𝑅
𝑛.

Choosing constant 𝐵 > 0 large enough such that |𝑢∗
1
| +

|𝑢
∗

2
| + ⋅ ⋅ ⋅ + |𝑢

∗

𝑛
| < 𝐵 and 𝐵 > 𝐵

1
+ 𝐵
2
+ ⋅ ⋅ ⋅ + 𝐵

𝑛
, we define a

bounded open set Ω ⊂ 𝑋 as follows:
Ω = {𝑢 ∈ 𝑋 : ‖𝑢‖ < 𝐵} . (44)

It is clear that Ω satisfies conditions (a) and (b) of Lemma 1.
On the other hand, by direct calculating we can obtain

deg {𝐽𝑄𝑁,Ω ∩ Ker 𝐿, (0, 0, . . . , 0)}

= sgn

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
1

𝑢
1

𝑓
1

𝑢
2

⋅ ⋅ ⋅ 𝑓
1

𝑢
𝑛

𝑓
2

𝑢
1

𝑓
2

𝑢
2

⋅ ⋅ ⋅ 𝑓
2

𝑢
𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑓
𝑛

𝑢
1

𝑓
𝑛

𝑢
2

⋅ ⋅ ⋅ 𝑓
𝑛

𝑢
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(45)

where

𝑓
𝑖

𝑢
𝑗

= − (𝛼
𝑖
− 𝑎
𝑖𝑗
) exp {𝑢∗

𝑗
} , 𝑖 = 𝑗,

𝑓
𝑖

𝑢
𝑗

= 𝑎
𝑖𝑗
exp {𝑢∗

𝑗
} , 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

(46)

From the assumption of Theorem 2, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
1

𝑢
1

𝑓
1

𝑢
2

⋅ ⋅ ⋅ 𝑓
1

𝑢
𝑛

𝑓
2

𝑢
1

𝑓
2

𝑢
2

⋅ ⋅ ⋅ 𝑓
2

𝑢
𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑓
𝑛

𝑢
1

𝑓
𝑛

𝑢
2

⋅ ⋅ ⋅ 𝑓
𝑛

𝑢
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

̸= 0. (47)

From this, we finally have

deg {𝐽𝑄𝑁,Ω ∩ Ker 𝐿, (0, 0, . . . , 0)} ̸= 0. (48)

This shows that Ω satisfies condition (c) of Lemma 1.
Therefore, system (14) has a 𝜔-periodic solution 𝑢

∗
(𝑡) =

(𝑢
∗

1
(𝑡), 𝑢
∗

2
(𝑡), . . . , 𝑢

∗

𝑛
(𝑡)) ∈ Ω. Further, from (13), system (4)

has a positive 𝜔-periodic solution 𝑥
∗
(𝑡) = (𝑥

∗

1
(𝑡), 𝑥
∗

2
(𝑡), . . . ,

𝑥
∗

𝑛
(𝑡)).
Next, we will consider the global attractivity of positive

periodic solutions 𝑥∗(𝑡) = (𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡), . . . , 𝑥

∗

𝑛
(𝑡)) of system

(4). Choose positive constants𝑚
𝑖
> 0,𝑀

𝑖
> 0 such that

𝑚
𝑖
≤ 𝑥
∗

𝑖
(𝑡) ≤ 𝑀

𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (49)

From the assumption ofTheorem 2, there exists constant 𝛽 >

0 such that for all 𝑡 ≥ 0 we have

𝛿
𝑖
≥ 𝛽 > 0, 𝑖 = 1, 2, . . . , 𝑛. (50)

Let (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)) be any solution of system (4), we

define Lyapunov function as follows:

𝑉
𝑖
(𝑡) = 𝜇

𝑖

󵄨󵄨󵄨󵄨ln𝑥
∗

𝑖
(𝑡) − ln𝑥

𝑖
(𝑡)

󵄨󵄨󵄨󵄨

+

𝑛

∑

𝑗=1

𝑚

∑

𝑙=1

𝜇
𝑗
∫

0

−𝜏

𝑘
𝑖𝑗𝑙
(𝑠) ∫

𝑡

𝑡+𝑠

𝑎
𝑖𝑗𝑙
(𝜃 − 𝑠)

×
󵄨󵄨󵄨󵄨󵄨
𝑥
∗

𝑗
(𝜃) − 𝑥

𝑗
(𝜃)

󵄨󵄨󵄨󵄨󵄨
𝑑𝜃 𝑑𝑠.

(51)
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Calculating the upper right derivation of 𝑉
𝑖
(𝑡) along system

(4) for 𝑖 = 1, 2, . . . , 𝑛, we have

𝐷
+
𝑉
𝑖
(𝑡) = sign (𝑥∗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡))

× [−𝜇
𝑖
𝛼
𝑖
(𝑡) (𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡))

+

𝑛

∑

𝑗=1

𝑚

∑

𝑙=1

𝜇
𝑗
𝑎
𝑖𝑗𝑙
(𝑡) ∫

0

−𝜏

𝑘
𝑖𝑗𝑙
(𝑠)

× (𝑥
∗

𝑗
(𝑡 + 𝜃) − 𝑥

𝑗
(𝑡 + 𝜃)) 𝑑𝑠]

+

𝑛

∑

𝑗=1

𝑚

∑

𝑙=1

𝜇
𝑗
∫

0

−𝜏

𝑎
𝑖𝑗𝑙
(𝑡 − 𝑠) 𝑘

𝑖𝑗𝑙
(𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨
𝑥
∗

𝑗
(𝑡) − 𝑥

𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨

−

𝑛

∑

𝑗=1

𝑚

∑

𝑙=1

𝜇
𝑗
𝑎
𝑖𝑗𝑙
(𝑡) ∫

0

−𝜏

𝑘
𝑖𝑗𝑙
(𝑠)

×
󵄨󵄨󵄨󵄨󵄨
𝑥
∗

𝑗
(𝑡 + 𝜃) − 𝑥

𝑗
(𝑡 + 𝜃)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤ −𝜇
𝑖
𝛼
𝑖
(𝑡)

󵄨󵄨󵄨󵄨𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡)

󵄨󵄨󵄨󵄨

+

𝑛

∑

𝑗=1

𝑚

∑

𝑙=1

𝜇
𝑗
∫

0

−𝜏

𝑎
𝑖𝑗𝑙
(𝑡 − 𝑠) 𝑘

𝑖𝑗𝑙
(𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨
𝑥
∗

𝑗
(𝑡) − 𝑥

𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨
.

(52)

Further, we define a Lyapunov function as follows:

𝑉 (𝑡) =

𝑛

∑

𝑖=1

𝑉
𝑖
(𝑡) . (53)

Calculating the upper right derivation of 𝑉(𝑡), from (52) we
finally can obtain, for all 𝑡 ≥ 0,

𝐷
+
𝑉 (𝑡) ≤ −

𝑛

∑

𝑖=1

𝛿
𝑖

󵄨󵄨󵄨󵄨𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡)

󵄨󵄨󵄨󵄨 . (54)

Integrating from 0 to 𝑡 on both sides of (54) and by (50)
produces

𝑉 (𝑡) + 𝛽∫

𝑡

0

(

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥
∗

𝑖
(𝑠) − 𝑥

𝑖
(𝑠)

󵄨󵄨󵄨󵄨) 𝑑𝑠 ≤ 𝑉 (0) , 𝑡 ≥ 0,

(55)

then

∫

𝑡

0

(

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥
∗

𝑖
(𝑠) − 𝑥

𝑖
(𝑠)

󵄨󵄨󵄨󵄨) 𝑑𝑠 ≤
𝑉 (0)

𝛽
, 𝑡 ≥ 0. (56)

By the definition of 𝑉(𝑡) and (53), we have

𝑛

∑

𝑖=1

𝜇
𝑖

󵄨󵄨󵄨󵄨ln𝑥
∗

𝑖
(𝑡) − ln𝑥

𝑖
(𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝑉 (𝑡) ≤ 𝑉 (0) , 𝑡 ≥ 0. (57)

Therefore, for 𝑖 = 1, 2, . . . , 𝑛 we have

𝜇
𝑖

󵄨󵄨󵄨󵄨ln𝑥
∗

𝑖
(𝑡) − ln𝑥

𝑖
(𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝑉 (0) , 𝑡 ≥ 0, (58)

which, together with (49), leads to

𝑚
𝑖
exp{−𝑉 (0)

𝜇
𝑖

} ≤ 𝑥
𝑖
(𝑡)

≤ 𝑀
𝑖
exp{𝑉 (0)

𝜇
𝑖

} , 𝑖 = 1, 2, . . . , 𝑛,

(59)

and, hence, ∑𝑛
𝑖=1

|𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡)| ∈ 𝐿

1
[0, +∞). From the

boundedness of 𝑥∗
𝑖
(𝑡) and (58), it follows that 𝑥

𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑛) are bounded for 𝑡 ≥ 0. It is obvious that both 𝑥
𝑖
(𝑡)

and 𝑥
∗

𝑖
(𝑡) satisfy the equations of system (4), then by system

(4) and the boundedness of 𝑥
𝑖
(𝑡) and 𝑥∗

𝑖
(𝑡), we know that the

derivatives 𝑥̇
𝑖
(𝑡) and 𝑥̇∗

𝑖
(𝑡) are bounded. Furthermore, we can

obtain that 𝑥̇∗
𝑖
(𝑡) − 𝑥̇

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) and their derivatives

remain bounded on [0, +∞). Therefore ∑𝑛
𝑖=1

|𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡)| is

uniformly continuous on [0, +∞). Thus, from (56), we have

lim
𝑡→+∞

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡)

󵄨󵄨󵄨󵄨 = 0. (60)

Therefor,

lim
𝑡→+∞

(𝑥
∗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡)) = 0, 𝑖 = 1, 2, . . . , 𝑛. (61)

This completes the proof of Theorem 2.

From the proof ofTheorem 2, on the existence and global
attractivity of positive periodic solutions of system (5), we
have the following result.

Corollary 3. Suppose that assumption (H1) holds and there
exists a constant 𝜌

𝑖
> 0 (𝑖 = 1, 2, . . . , 𝑛) such that

min
𝑡∈[0,𝜔]

{

{

{

𝜌
𝑖
𝛼
𝑖
(𝑡) −

𝑛

∑

𝑗=1

𝑚

∑

𝑙=1

𝜌
𝑗
∫

0

−𝜏

𝑎
𝑗𝑖𝑙
(𝑡 − 𝑠) 𝑘

𝑗𝑖𝑙
(𝑠) 𝑑𝑠

}

}

}

=: 𝜆
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛,

(62)

and the algebraic equation

𝑟
𝑖
− (𝛼
𝑖
+ 𝑎
𝑖𝑖
) V
𝑖
+

𝑛

∑

𝑗 ̸= 𝑖

𝑎
𝑖𝑗
V
𝑗
= 0, 𝑖 = 1, 2, . . . , 𝑛, (63)

has a unique positive solution.Then, system (5) has a positive
𝜔-periodic solution which is globally attractive.
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4. Two Examples

Example 4. First, we consider the following delayed system:

𝑥̇
1
(𝑡) = 𝑥

1
(𝑡) [2 + cos (𝑡) − (6 + cos (𝑡)) 𝑥

1
(𝑡)

+
2 + cos (𝑡)

3
∫

0

−𝜏

𝑘
111

(𝑠) 𝑥
1
(𝑡 + 𝑠) 𝑑𝑠

+
2 + cos (𝑡)

3
∫

0

−𝜏

𝑘
121

(𝑠) 𝑥
2
(𝑡 + 𝑠) 𝑑𝑠

+
2 + cos (𝑡)

3
∫

0

−𝜏

𝑘
131

(𝑠) 𝑥
3
(𝑡 + 𝑠) 𝑑𝑠] ,

𝑥̇
2
(𝑡) = 𝑥

2
(𝑡) [2 + cos (𝑡) − (5 + cos (𝑡)) 𝑥

2
(𝑡)

+
2 + cos (𝑡)

7
∫

0

−𝜏

𝑘
221

(𝑠) 𝑥
2
(𝑡 + 𝑠) 𝑑𝑠

+
3 + cos (𝑡)

4
∫

0

−𝜏

𝑘
211

(𝑠) 𝑥
1
(𝑡 + 𝑠) 𝑑𝑠

+
3 + cos (𝑡)

4
∫

0

−𝜏

𝑘
231

(𝑠) 𝑥
3
(𝑡 + 𝑠) 𝑑𝑠] ,

𝑥̇
3
(𝑡) = 𝑥

3
(𝑡) [2 + cos (𝑡) − (6 + cos (𝑡)) 𝑥

3
(𝑡)

+
3 + cos (𝑡)

4
∫

0

−𝜏

𝑘
331

(𝑠) 𝑥
3
(𝑡 + 𝑠) 𝑑𝑠

+
4 + cos (𝑡)

5
∫

0

−𝜏

𝑘
311

(𝑠) 𝑥
1
(𝑡 + 𝑠) 𝑑𝑠

+
3 + cos (𝑡)

5
∫

0

−𝜏

𝑘
321

(𝑠) 𝑥
2
(𝑡 + 𝑠) 𝑑𝑠] .

(64)

Corresponding to system (4), 𝑛 = 3, 𝑚 = 1, 𝜔 = 2𝜋, by direct
calculation, we can get

𝜎
1
≈ 2, 𝜎

2
≈ 1.6, 𝜎

3
≈ 2.2, (65)

and the following equations have unique positive solutions:

𝑎
11
V
1
− 𝑎
12
V
2
− 𝑎
13
V
3
= 𝑟
1
,

𝑎
22
V
1
− 𝑎
21
V
2
− 𝑎
23
V
3
= 𝑟
2
,

𝑎
33
V
1
− 𝑎
31
V
2
− 𝑎
32
V
3
= 𝑟
3
,

(66)

where

V
1
≈ 0.1944, V

2
≈ 0.5625, V

3
≈ 0.8819. (67)

It is clear that all the conditions of Theorem 2 hold. Hence,
system (64) has a positive periodic solution which is globally
attractive.

Example 5. Next, we consider the following delayed system:

𝑥̇
1
(𝑡) = 𝑥

1
(𝑡) [2 + cos (𝑡) − 5 + 4 cos (𝑡)

20
𝑥
1
(𝑡)

+
3 + 2 cos (𝑡)

2
∫

0

−𝜏

𝑘
111

(𝑠) 𝑥
1
(𝑡 + 𝑠) 𝑑𝑠

+
3 + 2 cos (𝑡)

4
∫

0

−𝜏

𝑘
121

(𝑠) 𝑥
2
(𝑡 + 𝑠) 𝑑𝑠

+
2 + cos (𝑡)

2
∫

0

−𝜏

𝑘
131

(𝑠) 𝑥
3
(𝑡 + 𝑠) 𝑑𝑠] ,

𝑥̇
2
(𝑡) = 𝑥

2
(𝑡) [2 + cos (𝑡) − 41 + 40 cos (𝑡)

100
𝑥
2
(𝑡)

+ (2 + cos (𝑡)) ∫
0

−𝜏

𝑘
221

(𝑠) 𝑥
2
(𝑡 + 𝑠) 𝑑𝑠

+
9 + 6 cos (𝑡)

8
∫

0

−𝜏

𝑘
211

(𝑠) 𝑥
1
(𝑡 + 𝑠) 𝑑𝑠

+
3 + 2 cos (𝑡)

4
∫

0

−𝜏

𝑘
231

(𝑠) 𝑥
3
(𝑡 + 𝑠) 𝑑𝑠] ,

𝑥̇
3
(𝑡) = 𝑥

3
(𝑡) [2 + cos (𝑡) − 5 + 4 cos (𝑡)

20
𝑥
3
(𝑡)

+ (4 + cos (𝑡)) ∫
0

−𝜏

𝑘
331

(𝑠) 𝑥
3
(𝑡 + 𝑠) 𝑑𝑠

+
5 + 4 cos (𝑡)

8
∫

0

−𝜏

𝑘
311

(𝑠) 𝑥
1
(𝑡 + 𝑠) 𝑑𝑠

+
6 + 3 cos (𝑡)

8
∫

0

−𝜏

𝑘
321

(𝑠) 𝑥
2
(𝑡 + 𝑠) 𝑑𝑠] .

(68)

Corresponding to system (4), 𝑛 = 3, 𝑚 = 1, 𝜔 = 2𝜋, by direct
calculation we can get

𝜎
1
≈ −5.2, 𝜎

2
≈ −6.1, 𝜎

3
≈ −7.2, (69)

and the following equations have a unique positive solutions:

𝑎
11
V
1
− 𝑎
12
V
2
− 𝑎
13
V
3
= 𝑟
1
,

𝑎
22
V
1
− 𝑎
21
V
2
− 𝑎
23
V
3
= 𝑟
2
,

𝑎
33
V
1
− 𝑎
31
V
2
− 𝑎
32
V
3
= 𝑟
3
,

(70)

where

V
1
= −0.1622, V

2
= 0.7007, V

3
= 1.2717. (71)

Clearly, the conditions of Theorem 2 do not hold.
From Figure 1 we can see that system (68) has no globally

attractive positive periodic solution.

Remark 6. From these two examples, we can see that if
the conditions of Theorem 2 hold, then the system has a
globally attractive positive periodic solution. If the conditions
of Theorem 2 do not hold, then the system has no globally
attractive positive periodic solution.
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Figure 1: Numerical simulation for system (68). Here, we take the
initial value 𝑥

0
= (𝑥
10
, 𝑥
20
, 𝑥
30
) = (1, 1.5, 2).

5. Conclusions

Mawhin’s continuation theorem is a powerful tool for study-
ing the existence of periodic solutions of periodic high-
dimensional time-delayed problems. When dealing with
time-delayed problem, it is very convenient and the result is

relatively simple. The most critical thing in the using of the
theorem is the calculation of topological degree, that is, the
condition (c) of the theorem.

In this paper, motivated by [2, 7] of Liu et al. we propose
two classes of periodic 𝑁-species Lotka-Volterra facultative
mutualism systems with distributed delays. By applying
the continuation theorem of the coincidence degree theory
developed by Gaines and Mawhin and the Lyapunov func-
tion method, we easily obtain sufficient conditions for the
existence and global attractivity of positive periodic solutions
of the system. From Theorem 2 and Corollary 3, we can see
that the distributed time delays have effect on the existence
and global attractivity of positive periodic solutions, and
conditions (11) and (62) are very crucial to find the criteria
for globally attractive positive periodic solutions. Further,
the conditions (11) and (62) indicate that the undelayed
intraspecific competition dominates the delayed intraspecific
reproduction, and the intraspecific competition is more
significant than the interspecific cooperation.
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