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3 Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla—BUAP 72450 Puebla, PUE, Mexico

Correspondence should be addressed to B. B. Salmerón-Quiroz; bsalmeron@ipn.mx

Received 26 October 2012; Revised 20 December 2012; Accepted 3 January 2013

Academic Editor: Gualberto Soĺıs-Perales
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In this paper we focus on the human arm motion capture, which is motivated by the requirements in physical rehabilitation and
training of stroke patients in the same way as monitoring of elderly person activities.The proposed methodology uses a data fusion
of low-cost and low-weight MEMS sensors jointly to an a priori knowledge of the arm anatomy. The main goal is to estimate
the arm position, the anatomical movements of the shoulder and its accelerations. We propose a discrete optimization based-
approach which aims to search the optimal attitude ambiguity directly without decorrelation of ambiguity, and to computing the
baseline vector consequently. The originality of this paper is to apply the discrete optimization to track the desired trajectory of
a nonlinear system such as the Human Movement in the presence of uncertainties. The global asymptotic convergence of the
nonlinear observer is guaranteed. Extensive tests of the presented methodology with real world data illustrate the effectiveness of
the proposed procedure.

1. Introduction

Many different disciplines, such as computer character ani-
mation or virtual reality use motion capture systems to
capture movement and posture of human body. However, the
human motion capture can be used in the care of individuals
with physical recovery, rehabilitation, and training needs.The
study of human-robot interaction (HRI) for assistive robotics
applications is a new, growing, and increasingly popular
research area at the intersection of a number of fields, includ-
ing robotics, control, medicine, psychology, neuroscience,
and cognitive sciences. In contrast to interactive robotics,
which aims to entertain and create simple basic relationships
with human users, assistive robotics focuses on aiding human
users with special needs in their daily activities [1].

Robotic technology has great potential to benefit the lives
of people with disabilities [2]. Not only in the obvious role
as a manipulator, whether mounted on a desk, wheelchair,
mobile base, or body worn, but also as an aid to mobility,

education, and communication. Assistive robotics is the
bringing together of several technologies with the needs of
people with various disabilities; in this paper, we present our
research approach in assistive robots via motion capture.

During the rehabilitation process, themovement of stroke
patients needs to be localized and learned so that incorrect
movements can be instantly modified or tuned. Therefore,
tracking these movements becomes vital and necessary dur-
ing the course of rehabilitation. The most popular tracking
systems are the mechanical trackers, the active magnetic
trackers, and the optical tracking systems [3].

Mechanical trackers systems [4] utilize an exoskeleton
that is attached to the articulated structure to be tracked.
Goniometerswithin the skeletal linkagesmeasure joint angles
that are used with kinematics algorithms to determine body
posture. While mechanical trackers are precise, they are
worn; moreover, the alignment of the goniometers is diffi-
cult. Active magnetic tracking systems [5] determine both
position and orientation by using small magnetics sensors
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mounted on a rigid body to sense a set of generated magnetic
fields; this kind of systems have several weaknesses, namely,
field distortion and limited measured volume. Optical track-
ing systems [6] may be separated into two basic categories:
pattern recognition and image-based systems. Pattern recog-
nition systems sense an artificial pattern of lights and use
this information to determine position and/or orientation.
Image-based systems determine position by using multiple
cameras to track predesignated points on moving objects
within a working volume. Although optical tracking sys-
tems provide accurate orientation and position information,
they have some important limitations. Limitations include
occlusion (line of sight) problems whenever a required light
path is blocked, interference from other light sources, limited
measured volume and the most important, high cost.

The use of (microelectromechanical Systems) (MEMS)
sensors in human movement analysis has gained substantial
ground. Although accelerometers and rate gyros have been
used in applications such as seismic analysis, aerospace
navigation, and robotics, recently they are used in application
such as monitoring of human activities [7, 8] and measure-
ment of neurological disorders [9]. In other, the advent of
motion inertial capture systems offers a convenient means
for acquiring realistic motion data [10]. Due to the success
of such systems, realistic and highly detailed motion clips
are commercially available and widely used for producing
visually convincing animations of human-like 3D characters
in a variety of applications, such as animation films and video
games.

Research in human motion capture has concentrated on
the articulated-model based approach in order to produce
a general full-body tracker enough to handle realistic real-
world applications. However, the problem with using articu-
lated models is the high dimensionality of the configuration
space and the exponentially increasing computational cost
that results.

In order to circumvent the problem that represent the
use of mechanical, active magnetic, and the optical tracking
systems, a technique based on inertial tracking system can
be used. The technique consists of placing MEMS sensors
(rate gyros, accelerometers, and magnetometers) units on
each body segments to be tracked. The articulated structures
are describe as nonrigid objects. However, each structure
separately can be seen as rigid body [3]. The lengths of body
segments between rotational joints therefore remain constant
over time, connected by articulations having each one one
or more degrees of freedom (DOF). The measurements are
made in reference to the local axes roll, pitch, and yaw. The
clinical reference system provides anatomically meaningful
definitions of main segmental movements (e.g., flexion-
extension, abduction-adduction, or supination-pronation) in
the case of the arm, the reference point is the shoulder (see
Figure 1).

Consequently, using this technique, the human motion
capture is in the framework of the attitude estimation, from
three rate gyros, three accelerometers, and threemagnetome-
ters sensors, mounted orthogonally. This combination is also
known as an attitude and heading reference system (AHRS)
[11].

Abduction-adduction 
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rotation

Flexion-extension 
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𝑥𝑏 𝑧𝑏

Figure 1: Shoulder region with rotation axis.

In the last decade, the attitude estimation problem has
been applied to new fields such as, for example, ground and
aerial robotics [12, 13]. The attitude estimation is carried out
by means of data fusion from rate gyros, accelerometers,
and magnetometers. Actually, rate gyros provide continuous
attitude information with good short-term stability when
their measurements are numerically integrated. However,
since rate gyros measurements are affected by drifts, the
attitude estimation based on these sensors slowly diverges
from the real attitude. On the other hand, linear accelerom-
eters measure the vector sum of acceleration 𝑎⃗ and grav-
itational acceleration 𝑔⃗ in sensors coordinate. When the
gravitational acceleration component 𝑔⃗ is sensing dominant,
it provides inclination information. Thus, it can be used to
correct the drifted orientation estimate from rate gyros. Since
accelerometers cannot detect rotation about the vertical axis,
magnetic sensors can be added, which allows to sense the
earthmagnetic field, and they can thus be used to correct drift
of the rate gyro about the vertical axis, [14]. In general, the
idea has been to implement filters in which accelerometers
and magnetometers are used for low frequency components
of orientation and rate gyros for to measure faster changes
in orientation. In the above cited approaches, the data fusion
is carried out by means of the implementation of extended
Kalman filters (EKF). The major feature of EKF’s concerns
the ability to fuse signals acquired from different sensor
types. However, the linearization process renders difficult
to guarantee the global convergence at the truth attitude.
Moreover, since the sensorsmeasurements noise encountered
in practice is in general non-Gaussian the filter behavior
can become poor. Recently, nonlinear approaches for the
attitude estimation using accelerometer, magnetometers and
rate gyros have been proposed. In [15], the authors propose
a nonlinear observer, and they exploit the 𝑆𝑂(3) group in
order to estimate the attitudematrix. In the attitude nonlinear
observers approach, the convergence of the attitude error to
zero is proved in a Lyapunov sense.

For discrete element modeling (DEM), though, there are
typically no large angle displacements between time steps,
which relaxes many of the constraints of the algorithms just
discussed. In DEM and several other particle methods, the
time step must be chosen to be relatively small to accurately
resolve highly nonlinear, inter-body contact, and explicit
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integration schemes are often used to update the motion of
the discrete elements. Indeed, implicit time-stepping algo-
rithms have been shown by [16] to be often suboptimal in
discrete element applications.

In all these mentioned approaches, the acceleration com-
ponent 𝑎⃗ is modeled as a first-order low-pass filtered white
noise process, that is, the accelerometer is used as an incli-
nometer. Thus, a problem arises when the acceleration is not
small in comparison to the gravity. In fact, these approaches
do not consider the problem of attitude estimation which
takes the body nonweak accelerations into account. Few pub-
lications have treated this problem [17, 18], where the robot’s
Kinematic model is taken into account and ground-directed
rate sensors are added. In [19], a fuzzy logic expert rule-based
system is designed to identify the status of vehicle motion
and fuse the data from these different sensor modalities.
Unfortunately, these algorithms are a combination of linear
Kalman Filters and Extended Kalman filter, and as it has
beenmentioned, this fact renders difficult to guarantee global
convergence.

The goal of assistive technology is to develop advanced
technical aids for promoting independent living and improv-
ing quality of life of persons who have chronic or degenera-
tive impairment in motor, sensory, communication, and/or
cognitive abilities. The aim of this paper is to describe the
results of our research activities in robotics with applica-
tions to people affected by disability and by older people
with degenerative disorders due to the natural course of
aging.

In the present work, our typical capture configuration
relies primarily on the arm. The motivation arises of the
requirement in physical rehabilitation and training of stroke
patients in the same way as monitoring of elderly person
activities which may assist clinicians in the early recognition
of potential pathology. The objective is to estimate the arm
position and the movements of the shoulder (see Figure 4)
with respect to an inertial frame, represented by the human
body. Therefore, a module containing three rate gyros,
three accelerometers, and three magnetometers assembled
in tri-axis, is positioned in the extreme of the arm, in
the articulation proximal of the hand. The attitude for the
coordinate reference sensors is estimated. The combination
of this information jointly to a priori knowledge of the
anatomy of the arm makes possible to obtain information
on the posture of arm and the anatomical movements of the
shoulder. In this first stage, the elbow flexion-extension is not
considered.

The attitude estimator uses quaternion representation.
Two approaches are jointly used, namely, a nonlinear
observer and a discrete linear quadratic minimization tech-
nique. The nonlinear observer is performed in order to
produce an estimate of the gyro bias and of the attitude
quaternion. Thus, no assumptions of the weakness (or not)
of the accelerations are done, and no switching procedure
from one observer to another one is necessary. The main
advantage of the approach presented in this paper compared
to others approaches is that the estimated attitude remains
valid even in the presence of high accelerations over long
time periods. Moreover, the gyro bias is estimated online,
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Figure 2: Shoulder region and example of body and inertial
coordinate system.
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Figure 3: Position of the attitude trackers.

and the algorithms and methodology can be embedded in
micromechanic system or robotic systems.

In this paper, a discrete linear quadratic (DLQ) opti-
mization is proposed to track the desired trajectory. The
parameters are optimized such that the tracking error is
minimized since it is a model-free approach. However, the
particle swarm optimization requires a repeatable certain
model and the optimal control design is an off-line type.

The present paper is organized as follows. In Section 2,
a mathematical background is given. The problem statement
is formulated in Section 3. The nonlinear observer is pre-
sented in Section 4. The use of the discrete optimization
algorithm together with the nonlinear observer is explained
in Section 5. Experimental results are given in Section 6. The
paper ends with some concluding remarks given in Section 7.

2. Mathematical Background

Asmentioned in the introduction, the attitude of a rigid body
can be represented by an unit quaternion, consisting of an



4 Discrete Dynamics in Nature and Society

Shoulder flexion Shoulder extension

Shoulder abduction Shoulder adduction

(a) Anatomical movements of the shoulder

and 3 trans. 
DOF

3 rot. 
DOF

3 rot. 
DOF

3 rot. 
DOF

1 rot. 
DOF

1 rot. 
DOF

3 rot. 

3 rot. 

DOF

3 rot. 
DOF

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

(b) Model of the human body

Figure 4: Shoulder movements and human model.

unit vector ⃗𝑒, known as the Euler axis, and a rotation angle
𝛽 about this axis. The quaternion 𝑞 is then defined as follows:

𝑞 = (

cos
𝛽

2

⃗𝑒 sin
𝛽

2

) = (

𝑞
0

𝑞⃗

) ∈ H, (1)
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𝑞⃗ = [𝑞
1
𝑞
2
𝑞
3
]

𝑇, and 𝑞
0
are known as the vector and

scalar parts of the quaternion, respectively. In humanmotion
tracking applications, the unit quaternion represents the
rotation from an inertial coordinate system 𝑁(𝑥

𝑛
, 𝑦
𝑛
, 𝑧
𝑛
)

located at some point in the space (for instance, the earth
𝑁𝐸𝐷 frame) to the body coordinate system 𝐵(𝑥

𝑏
, 𝑦
𝑏
, 𝑧
𝑏
)

located on the center of the mass of a rigid body.
If ⃗𝑟 is a vector expressed in 𝑁, then its coordinates in 𝐵

are expressed by:
𝑏 = 𝑞 ⊗ 𝑟 ⊗ 𝑞, (3)
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⃗
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]
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𝑇
]

𝑇 are the quaternions
associated to vectors ⃗

𝑏 and ⃗𝑟, respectively, ⊗ denotes the
quaternion multiplication, and 𝑞 is the conjugate quaternion
of 𝑞 follows defined as:
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0
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𝑇
]

𝑇

.
(4)

The rotation matrix 𝐶(𝑞) corresponding to the attitude
quaternion 𝑞 is computed as follows:

𝐶 (𝑞) = (𝑞

2
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3
is the identity matrix and [𝜉

×
] is a skew symmetric

tensor associated with the axial vector 𝜉 as follows:
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Thus, the coordinate of vector ⃗𝑟 expressed in the 𝐵 frame is
given by:

⃗
𝑏 = 𝐶 (𝑞) ⃗𝑟. (7)

The quaternion attitude error used to quantify the mismatch
between two attitudes 𝑞

1
and 𝑞
2
is computed by:

𝑞
𝑒
= 𝑞
1
⊗ 𝑞

2
. (8)

Denoting by 𝜔⃗ = [𝜔
1
𝜔
2
𝜔
3
]

𝑇 the angular velocity vector of
the body frame 𝐵 relative to the inertial frame 𝑁, expressed
in 𝐵, the kinematics equation is given by:

(
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(9)
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2.1. Modeling Sensors

2.1.1. Rate Gyros. The angular velocity 𝜔⃗ = [𝜔
1

𝜔
2

𝜔
3
]

𝑇

is measured by the rate gyros, which are supposed to be
orthogonally mounted. The output signal of a rate gyro is
influenced by various factors, such as bias drift and noise. In
the absence of rotation, the output signal can be modeled as
the sum of a white Gaussian noise and of a slowly varying
function. Since an integration step is required in order to
obtain the current attitude quaternion (9), even the smallest
variation of the rate gyro measurement will produce a wrong
estimation of the attitude.The bias is denoted by 𝜈⃗, belonging
to spaceR3.The rate gyromeasurements aremodeled by [20]:

𝜔⃗
𝐺

= 𝜔⃗ + 𝜈⃗ + 𝜂⃗

𝐺
, (10)

.

𝜈⃗ = −𝑇

−1
𝜈⃗ + 𝜂⃗

𝜈
,

(11)

where 𝜂⃗

𝐺
and 𝜂⃗

𝜈
∈ R3 are supposed by Gaussian white noises

and 𝑇 = 𝜏𝐼
3
is a diagonal matrix of time constants. In this

case, the constant 𝜏 has been set to 𝜏 = 100 s. The bias vector
𝜈⃗will be estimated online, using the observer presented in the
following section.

2.1.2. Accelerometers. Since the 3-axis accelerometer is fixed
to the body, the measurements are expressed in the body
frame 𝐵. Thus, the accelerometer output can be written as
follows:

⃗
𝑏
𝐴

= 𝐶 (𝑞) (𝑎⃗ − 𝑔⃗) + 𝜂⃗

𝐴
, (12)

where 𝑔⃗ = [0 0 𝑔]

𝑇 and 𝑎⃗ ∈ R3 are the gravity vector
and the inertial accelerations of the body, respectively. Both
are expressed in frame 𝑁. 𝑔 = 9.81m/sec2 denotes the
gravitational constant, and 𝜂⃗

𝐴
∈ R3 is the vector of noises

that are supposed to be white Gaussian.

2.1.3. Magnetometers. The magnetic field vector ⃗
ℎ
𝑀

is
expressed in the 𝑁 frame; it is supposed to be ⃗

ℎ
𝑀

=

[ℎ
𝑀
𝑥

0 ℎ
𝑀
𝑧

]

𝑇. Since the measurements take place in the
body frame 𝐵, they are given by:

⃗
𝑏
𝑀

= 𝐶 (𝑞)
⃗

ℎ
𝑀

+ 𝜂⃗

𝑀
, (13)

where 𝜂⃗

𝑀
∈ R3 denotes the perturbing magnetic field. This

perturbation vector is supposed to be modeled by Gaussian
white noises.

3. Problem Statement

The objective is to estimate the arm attitude and the anatom-
ical movements of the shoulder, namely, extension-flexion,
abduction-adduction, and Internal-External rotations (see
Figures 2 and 4). The elbow Flexion-Extension is not consid-
ered.

A module containing three rate gyros, three accelerom-
eters, and three magnetometers assembled in tri-axis is
positioned in the shoulder and in the extreme of the arm,

Table 1: Shoulder rotations constraints.

Macrosegment Name Rotations allowed in ∘

𝜃 = −30 : 135
Arm Shoulder 𝜑 = −25 : 160

𝜓 = −35 : 95

in the articulation proximal of the hand (see Figure 3). The
problem becomes in the attitude estimation of the coordinate
reference module sensors (𝐵

1
).

The magnetometers sense the earth magnetic field in the
body frame 𝐵

1
. Their measurements are noted ⃗

𝑏
𝑀
(Figure 2).

The accelerometers measure the sum of all arm acceleration
and of the gravity field. Then, the influence of the arm
accelerations must be removed from the accelerometer mea-
surements. Their measurements are expressed in 𝐵

1
and are

denoted by ⃗
𝑏
𝐴
. The rate gyro measures the rotational motion.

The measurements 𝜔⃗
𝐺
present a good short-term stability

and a low noise level. However, rate gyro measurements are
affected by inherent drifts which result in slow divergence
of attitude over time, since an integration step is required.
Hence, the bias of the rate gyro must be estimated online and
will be subtracted to the rate gyro measurements.

Once that the attitude of the coordinate referencemodule
sensors is obtained, it will be combined with a priori knowl-
edge of the anatomy of the arm making possible to obtain
information on the posture of arm and the movements of the
shoulder (𝐵

2
).

The limitations in rotation of the shoulder are summa-
rized in the Table 1 [21].

3.1. Human Model. For the application and its model, this is
based on an articulated arm, because one seeks the motion
capture of the human movement. For this purpose, a model
is extracted from the robots denominated “light,” robots in
which all the actuators are attached within the robot’s armor
in order to limit the movement of the masses of the different
elements. Although the developed tools are valid for all the
parallel types of robots, the model is based on robots of
rotular type 3𝑅 (𝑅 for rotation) that offer a special interest
for this particular application, since the joints that one wants
to consider of the human body can be modeled (cf. Figure 4)
by pivots joints, and in the shoulder, it can be modeled via
prismatic-rotule articulations 2.

4. Nonlinear Attitude Observer

The attitude nonlinear observer that includes the bias and the
error update is given by:

.

𝑞̂ =

1

2

Ξ (𝑞̂) [𝜔⃗
𝐺
−

̂

𝜈⃗ + 𝐾
1

⃗𝜀] , (14)

.

̂

𝜈⃗ = −𝑇

−1
̂

𝜈⃗ − 𝐾
2

⃗𝜀,
(15)

where 𝑇 has been defined in (11) and 𝐾
𝑖
, 𝑖 = 1, 2 are positive

matrixes. 𝑞̂ is the prediction of the attitude at time 𝑡. It this
obtained via the integration of the kinematics equation (14)
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using the measured angular velocity 𝜔⃗
𝐺
, the bias estimate 𝜈̂,

and ⃗𝜀 = 𝑞⃗

𝑒
which is the vector part of the quaternion error

𝑞
𝑒
. Remember that 𝑞

𝑒
measures the discrepancy between

𝑞̂ and the pseudomeasured attitude 𝑞
𝑝𝑠

(16). In this paper,
𝑞
𝑝𝑠

is obtained thanks to an appropriate treatment of the
accelerometer and magnetometer measurements via a dis-
crete optimization, and it will be explained in the next section.

Combining (9), (11), and (14), the errormodel is expressed
as:

.

𝑞

𝑒
=

1

2

(

0 𝛾⃗

𝑇

−𝛾⃗ [2𝜔⃗

×
] + [𝛾⃗

×
]

)(

𝑞
𝑒
0

𝑞⃗

𝑒

) , (16)

.

𝜈̃ = −𝑇

−1
𝜈̃ + 𝐾

2
⃗𝜀,

(17)

where 𝛾⃗ = 𝜈̃ +𝐾
1

⃗𝜀 and 𝜈̃ = 𝜈⃗ −

̂

𝜈⃗. The system (16)-(17) admits
two equilibrium points (𝑞

𝑒
0

= 1, 𝑞⃗

𝑒
= 0, 𝜈̃ = 0) and (𝑞

𝑒
0

=

−1, 𝑞⃗

𝑒
= 0, 𝜈̃ = 0). This is due to the fact that quaternions 𝑞

and −𝑞 represent the same attitude. From (1), one obtains

𝑞
𝑒
0

= 1 󳨐⇒ 𝛽 = 0,

𝑞
𝑒
0

= −1 󳨐⇒ 𝛽 = 2𝜋 (generally 2𝑛𝜋) ,

(18)

that is, there is only one equilibrium point in the physical 3D
space. The almost global asymptotically convergence of the
error to zero (𝑞

𝑒
0

= 1 𝑞⃗

𝑒
= 0 𝜈̃ = 0) and consequently the

convergence of 𝑞̂ to the real 𝑞 is given by:

𝜂⃗

𝐺
= 𝜂⃗

𝜈
= 0, 𝑞̂

𝑝𝑠
≈ 𝑞, (19)

where 𝑞 is the “true” attitude quaternion of the rigid body.
Thus, the convergence is guaranteed if and only if

󵄨

󵄨

󵄨

󵄨

󵄨

𝑞
𝑒
0

󵄨

󵄨

󵄨

󵄨

󵄨

󳨀→ 1, 𝑞⃗

𝑒
󳨀→ 0, 𝜈̃ = 𝜈⃗ −

̂

𝜈⃗ 󳨀→ 0. (20)

Theorem 1. Consider the equilibrium states of the system (16)-
(17) and let 𝜔⃗

𝐺
be the measured angular velocity. Then, the

equilibrium point (𝑞
𝑒
0

= 1, 𝑞⃗

𝑒
= 0, 𝜈̃ = 0) is globally

asymptotically stable.

Proof. Consider the candidate Lyapunov function 𝑉, which
is positive definite, radially unbounded and which belongs to
the class 𝐶2:

𝑉 = 𝐾
2
((1 − 𝑞

𝑒
0

)

2

+ 𝑞⃗

𝑇

𝑒
𝑞⃗

𝑒
) +

1

2

𝜈̃

𝑇
𝜈̃. (21)

The derivative of (21), together with (17) and (16), is given by:
.

𝑉 = − 2𝐾
2

.

𝑞

𝑒
0

+ 𝜈̃

𝑇
.

𝜈̃

= − 𝐾
2
𝛾⃗

𝑇
𝑞⃗

𝑒
+ 𝜈̃

𝑇
(−𝑇

−1
𝜈̃ + 𝐾

2
⃗𝜀)

= − 𝐾
2
(𝜈̃

𝑇
+ 𝐾
1

⃗𝜀

𝑇
) 𝑞⃗

𝑒
− 𝜈̃

𝑇
𝑇

−1
𝜈̃ + 𝐾

2
𝜈̃

𝑇
⃗𝜀.

(22)

Since ⃗𝜀 = 𝑞⃗

𝑒
and 𝜈̃

𝑇
𝑞⃗

𝑒
= 𝑞⃗

𝑇

𝑒
𝜈̃, it comes that

𝑉 = −𝐾
2
𝐾
1
𝑞⃗

𝑇

𝑒
𝑞⃗

𝑒
− 𝜈̃

𝑇
𝑇

−1
𝜈̃ ≤ 0. (23)

Thus, 𝑞⃗

𝑒
→ 0. Consequently, 𝑞

𝑒
0

→ ±1. However,
if the initial conditions of the error model lie everywhere
except on the two equilibrium points, the observer error will
asymptotically converge to the point (𝑞

𝑒
0

= 1, 𝑞⃗

𝑒
= 0, 𝜈̃ = 0),

where𝑉 =

.

𝑉 = 0. In fact, this equilibriumpoint is considered
as an attractor point, whereas the point (𝑞

0
= −1, 𝑞⃗ =

0, 𝜔⃗ = 0) is considered as an repeller point. From (21), it
can be noticed that if the states of the error model are at
the repeller equilibrium point, they remain in this point for
𝑡 > 0. Nevertheless, if any small perturbation Δ𝑞

𝑒
0

is present
(maintaining the condition −1 ≤ 𝑞

0
≤ 1), it will produce a

decrease in the value of 𝑉, and since
.

𝑉 < 0 for any point
(except the equilibrium points where

.

𝑉 = 0), one obtains
𝑞
𝑒
0

→ 1, that concludes the proof.

Remark 2. In practice a zero physical attitude error (either
𝑞
𝑒

= [1 0 0 0]

𝑇 or 𝑞
𝑒

= [−1 0 0 0]

𝑇) is desired in
a minimum time and with minimum effort, starting from
any initial condition. In fact, the equilibrium point (𝑞

𝑒
0

=

−1, 𝑞⃗

𝑒
= 0, 𝜈̃ = 0) can be considered as an attractor

equilibrium point for the error model if the measurement
update ⃗𝜀 = −𝑞⃗

𝑒
is used. Thus, using

.

𝑞̂ =

1

2

Ξ (𝑞̂) [𝜔⃗
𝐺
−

̂

𝜈⃗ + 𝐾
1
sign (𝑞

0
) ⃗𝜀] , (24)

.

̂

𝜈⃗ = −𝑇

−1
̂

𝜈⃗ − 𝐾
2
sign (𝑞

0
) ⃗𝜀,

(25)

with ⃗𝜀 = 𝑞⃗

𝑒
instead of (14)–(25), it is possible to ensure that

the rotation with the smallest angle 𝛽 or 2𝜋 − 𝛽 is chosen.

5. Discrete Optimization of the
Pseudomeasurement Quaternion and
Acceleration Estimation

The attitude estimator uses quaternion representation. Two
approaches are jointly used, namely, an estimationwith a con-
straint least-square minimization technique and a prediction
of the estate at the instant 𝑘. The prediction is performed
in order to produce a pseudo-estimate of the accelerations
and the attitude quaternion. This prediction is driven by a
estate which is obtained from the quaternion propagated
through the kinematic equation and the one obtained via the
constraint minimization problem.

The pseudomeasurement quaternion 𝑞
𝑝𝑠

is computed
from the accelerometer and magnetometer measurements.
Actually, the accelerometers are sensitive not only to the
gravity vector but also to the body accelerations. In the
case when the accelerations 𝑎⃗ are not weak, the attitude
computed using these direct measurement sensors is far from
the true attitude vector. Therefore, an optimization problem
is formulated which is divided in three steps.

Firstly, one seeks to estimate the inertial body accelera-
tions from accelerometer measurements and the quaternion
𝑞̂ obtained from (14). In this way, the quaternion that is
obtained by the estimation with a constraint least square is
insensitive to the body accelerations. Thus, no assumptions
of the weakness (or not) of the accelerations are done, and
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no switching procedure from one model to another one is
necessary. Therefore, the main advantage of the approach
presented in this paper compared to others approaches is
that the estimated attitude remains valid even in the presence
of high accelerations over long time periods. The measures
obtained by the accelerometers and the magnetometers are
modeled by (12) and (13), respectively. Thus, the following
cost function is proposed

⃗
𝑎̂ = argmin

𝑎⃗

{𝑓 (𝑎)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

⃗
𝑏
𝐴

− 𝐶 (𝑞̂) (𝑎⃗ − 𝑔⃗)

⃗
𝑏
𝑀

− 𝐶 (𝑞̂)
⃗

ℎ
𝑀

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

2

} . (26)

In fact, this optimization problem has an explicit solution
which is obtained by the following:

⃗
𝑎̂ = 𝐶(𝑞̂)

𝑇
(

⃗
𝑏
𝐴

+ 𝐶 (𝑞̂) 𝑔⃗) . (27)

Once the acceleration vector ⃗
𝑎̂ is estimated, it is removed

from the accelerometer measurements in order to use only
the information of the field gravity vector projected in the
body frame 𝐵

1
. Therefore, an optimal attitude quaternion 𝑞

𝑝𝑠

is found by means of an optimization criteria that takes into
account the evolution of the attitude state via the determina-
tion of 𝑥 = [𝑞

0
, 𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑎
𝑥
, 𝑎
𝑦
, 𝑎
𝑧
]

𝑇 in the function 𝑓(𝑥).
The minimum error is chosen by taking into account the
prediction of the state 𝑥̂ and the coefficients weight for the
estate 𝜇 and the measures estimated (MesEstimated = MS) at
the instant 𝑘, that is,

𝑓 (𝑥) =

1

2

[

[

𝜇

𝑛

∑

𝑗=1

(MS − Vmes (𝑗))
2
+ (1 − 𝜇) ‖(𝑥̂ − 𝑥)‖

2

2
]

]

,

(28)

subject to the constraint

󵄩

󵄩

󵄩

󵄩

󵄩

𝑞
𝑝𝑠

󵄩

󵄩

󵄩

󵄩

󵄩

2

2
= 1. (29)

This nonlinear least-square problem can be easy solved
using a quasi-Newton’s method instead of classical Gauss-
Newton’s one. In fact, quasi-Newton’s method shows faster
and more stable local convergence properties than Gauss-
Newton’s one [22]. This method requires the knowledge
of the first and the second derivative of the function to
minimize with respect to each element (𝑞

0
, 𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑎
1
, 𝑎
2
,

and 𝑎
3
). The process of estimation and prediction needs the

determination of his gradient. In order to compute such a
gradient, the following definitions will be needed.

The gradient of the quaternion is determined via the
following:

𝑔
𝑞
= 2

6

∑

𝑗=1

[MS
𝑗
𝑞 (𝑞

𝑇MS
𝑗
𝑞 − Vmes (𝑗))] . (30)

For the acceleration, his gradient is given as follows:

𝑔
𝑎
= 𝑞

𝑇
[

[

3

∑

𝑗=1

[(MS
𝑗
𝑞 − Vmes (𝑗)) 𝑞

𝑇
𝜕MS
𝑗

𝜕𝑎

]
]

]

𝑞. (31)
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Figure 5: Comparison of the algorithm versus extended Kalman
Filter.

Finally, the gradient is given by:

𝑔 (𝑥) = [𝑔
𝑞
, 𝑔
𝑎
]

𝑇

.
(32)

This discrete optimization leads to a simplified calculation of
the Hessian:

𝐹 (𝑥) =

𝜕𝑔 (𝑥)

𝜕𝑥

=

𝜕

2
𝑓 (𝑥)

𝜕𝑥

2
.

(33)

Remark 3. For the prediction’s process of 𝑥̂, the cubic spline
method can be applied.

The minimization of (26) and (28) using numerical
software and a linear-quadratic regulator ad hoc function,
with the knowledge of the derivative (faster), will take amean
of 0.85 sec, which can be compared to the 0.025 sec that are
needed for the Newton’s algorithm.This result could be even
more improved with an optimization of the computation. All
computations were done on a PC at 1.6 GHz with 1Go Ram.

It can be proved that the problem (28) admits two global
solutions, namely, 𝑞

𝑝𝑠
and −𝑞

𝑝𝑠
[3]. Actually, both 𝑞

𝑝𝑠
and

−𝑞
𝑝𝑠

give the same orientation of the rigid body in the
physical space. The optimization routine is initialized by 𝑞̂

which is obtained by the integration of (14). Then, thanks to
an appropriate choice of the sampling period, the quaternion
obtained by solving (28) is always nearest to 𝑞̂. Therefore,
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Figure 6: Schema observer (⊗ denotes matrix multiplication and ⊗ denotes quaternion multiplication).

𝑞
𝑝𝑠

does not exhibit jumps as it is observed with others
techniques used to compute the quaternion attitude from
accelerometer and magnetometer measurements. Moreover,
the chosen algorithm guarantees the quaternion norm con-
straint.

The performances of the proposed method are similar
to those of the Extended Kalman Filter (multiplicative and
additive); the results are depicted in Figure 5. However, for
the extreme errors, the convergence rate for our estimation-
prediction is higher.

The schema describing the full estimator (𝑞̂, 𝑎⃗, 𝜈̂) is given
in Figure 6. The algorithm in the upper box attempts to find
the “best” quaternion that relates the gravity field and the
earth magnetic field measurements in the body coordinate
frame to well known values in the earth coordinate frame.
Remember that the inertial body accelerations have been
removed from the directs accelerometer measurements. This
pseudomeasured quaternion 𝑞

𝑝𝑠
is compared to 𝑞̂ obtained

by the integration of the dynamics equation of the observer
(24), in order to compute the error ⃗𝜀.

Remark 4. In general, a nonlinear observer is not robust to
measurement disturbance in the sense that arbitrarily small
disturbance may results in a blowup of error state.

Recently in [11] we have shown that the error dynamics
in the proposed attitude observer is passive. Motivated by
this fact, the robustness of the proposed observer can be
showed, considering that the proposed observer is input-to-
state stable when the measurement disturbance is seen as
input and the error state as the state [23].

5.1. Simulated Data. In this section, some simulation results
are presented in order to illustrate the performance of the
proposed method. A rigid body with low moment inertia is

taken as the experimental system; in our case the movement
of the shoulder is carried out. In fact, the low moment
of inertia makes the system vulnerable to high angular
accelerations which proves the importance of applying the
method.

In order to verify the performance of the proposed
discrete optimization, several simulation cases are carried
out. In this paper only one of them is shown.

The movement of the shoulder is oscillatory, for the
estimation and prediction algorithm, the conditions point
is “far” from the theoretical point in orden to observe the
convergence of the methodology proposed. The simulated
acceleration 𝑎⃗ is depicted in Figure 7. As can be seen, it
exhibits transients and steps values, and the discrete opti-
mization (estimation and prediction) is shown in Figure 7. It
is evident that 𝑎⃗ cannot be considered as weak.

For the case of the quaternion estimated and predicted,
the results of the methodology proposed are shown in
Figure 7, and as expected the attitude converges to the
movement simulated.

6. Application to Real Data

In this part of the work, some numerical implementations
of the observer are presented. Moreover, the estimation
methodology proposed in this work is implemented and
evaluated with real data, in order to assess its effectiveness.

The discrete-time model that describes the attitude kine-
matics is expressed by

𝑞⃗

𝑘+1
= 𝑒

𝜉⃗
𝑘
𝑇
𝑠

𝑞⃗

𝑘
,

𝑞⃗

0
= 𝑞⃗ (0) .

(34)

The vector 𝑞⃗

𝑘
is the quaternion at the time instant 𝑘𝑇

𝑠
,

where 𝑇
𝑠
is the system’s sampling period. Observe that (34)
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Figure 7: Shoulder movements: simulated data.

is valid provided that the angular velocity 𝜔⃗
𝑘
measured at

the time instant 𝑘𝑇
𝑠
is assumed to be constant in the time

interval [𝑘𝑇
𝑠
, (𝑘+1)𝑇

𝑠
]. The process of computing the initial

condition 𝑞⃗

0
is usually called alignment. Once (34) is solved,

the attitude matrix can be updated via (5).
The attitude estimate is used twice during position-

ing estimation. The accelerometer senses the body’s own
(nongravitational) acceleration and the projection of the
gravitational acceleration (12).

The next step requires integration of 𝑎⃗

𝑁
(𝑡) =

𝐶[𝑞⃗(𝑡)]

𝑇
⃗

𝑏
𝐴
(𝑡) to derive the position estimate

𝑝⃗

𝑁
(𝑡) = ∫

𝑡

0

𝑑𝑡

󸀠
∫

𝑡
󸀠

0

𝐶

𝑇
[𝑞⃗ (𝑡

󸀠󸀠
)]

⃗
𝑏
𝐴
(𝑡

󸀠󸀠
) 𝑑𝑡

󸀠󸀠
.

(35)

A numerical integration routine such as the trapezoidal rule
can be used to solve (35) numerically.

The normalized quaternion 𝑞⃗

𝑖
moves the unit sphere

along an arc connecting 𝑞⃗

0
to 𝑞⃗

𝑒
. Finally, the desired expres-

sion of the interpolated quaternion, which fulfils the initial
and end conditions for a stride, is as follows:

𝑞⃗

𝑢

𝑘
= 𝑞⃗

𝑖

𝑘
⊗ 𝑞⃗

𝑘
, 𝑘 = 0, . . . ,𝑀. (36)

The gravity-compensated acceleration is then single
time integrated; the initial and end conditions are
imposed to avoid drift (null velocity), before positioning
estimation.
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The angular velocity 𝜔⃗ is obtained by finite differences at
the instants 𝑘 and 𝑘 − 1 (𝑘 estimation instant) as follows:

𝜔⃗ = 2Ξ

𝑇
(𝑞)

.

𝑞,

𝜔⃗ = 2Ξ

𝑇
(𝑞) ∗ (

𝑞 (𝑘) − 𝑞 (𝑘 − 1)

𝑇𝑠

) .

(37)

A commercial attitude unit (CAU) is used to acquire the
sensor data described in Section 3.This CAUmay provide the
Euler’s angles. Remember that the attitude estimate is com-
puted using a unit quaternion formulation. For comparison
purpose, the estimated quaternion is converted into Euler’s
angles.

During this test, the CAU is placed in the hand and in
the shoulder (Figure 3). The Euler’s angles provided by the
CAU (namedCAU angles) together with the 9measurements
are recorded. The CAU angles are compared to the angles
corresponding to the attitude quaternion estimated with the
proposed methodology (named 𝑞 angles). The movement of
the hand is composed of circular movements in each axe
and the movement of the shoulder are Flexion-Extension,
Abduction-Adduction, and Internal-External. As can be seen
in Figure 8, the states provided by the algorithm in Figure 6
converge to their expected values. The roll angle remain
nearly constant which is consistent with the movement that
has been performed. Note that the comparison between
the CAU angles and the 𝑞 angles is difficult because the
CAU cannot be considered as a reference attitude measure-
ment system. Actually, no information about the algorithm
embedded in the CAU is available. Moreover, the CAU
system does not directly provide the body accelerations. In
Figure 8, the accelerations are given in the inertial frame 𝑁.
As expected, the components of 𝑎⃗ are consistent with the
circular movement.

The sensor module which combines three angular rate
gyros, three orthogonal DC accelerometers, and three
orthogonal magnetometers was designed and constructed;
the noise characteristic of the senors is show in Table 2.The 9
orthogonal sensors measurements are obtained at an sample
rate of 60Hz, and they are transmitted to the PC by means
of the serial port. In order to have a friendly interface, the
acquisition protocol is put in a dynamic-link library (DLL)
which can be used during off-line analysis or during real-
time application using anynumerical software and simulation
environment platform.

6.1. Trial Description. The analysis performance of the pro-
posed observer can be split into two stages. The ability of
the observer to estimate the rate gyro bias and the quality
of the attitude (orientation) estimation towards nonweak
accelerations. In order to show the effectiveness of the
observer, a trial was realized, the sensors data were recorded,
and an off-line analysis were carried out.The trial is described
as follows:

(1) The sensor module (SM) was placed to a well-known
orientation 𝑞

0
= [1 0 0 0]

𝑇 (the SM is still in
the horizontal, and it is headed toward the magnetic
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Figure 8: Euler’s angles estimated (NOL) and real data (CAU).

Table 2: Sensors noise characteristics.

Description (white noise) Parameter Value Units
Accelerometer 𝜂

𝐴
0.02 m/sec2 (RMS)

Magnetometer 𝜂
𝑀

0.7 mgauss (RMS)
Rate gyro 𝜂

𝐺
0.01 rad/sec (RMS)

Bias 𝜂
𝜈

0.001 rad/sec (RMS)

north) which correspond to shoulder angular posi-
tion (𝜙, 𝜃, 𝜓) = (0, 0, 0).

(2) The SM is still at 𝑞
0
for 10 sec.

(3) The SM is turned in all directions to different angu-
lar velocities for 20 sec. Shoulder Extension-Flexion,
Abduction-Adduction, and Internal-External rota-
tion 𝜃 = 90

∘.
(4) The SM is placed at its initial angular position such

that the final and initial orientations are identical.
(5) For all the simulation time span, the signal 𝑎⃗int =

[2 1.5 sin(2𝜋𝑓
𝑎
𝑡) 0]

𝑇m/sec2 is added to accelerom-
eters channels (that is done in order to show the ability
of the proposed approach to estimate the acceleration
and in the same way to depict the insensibility to
nonweak acceleration).

(6) For all the simulation time span, the vector 𝜈⃗int =

[0.1 0.5 sin(2𝜋𝑓
𝑏
𝑡) (1/𝜏)𝜈 + 𝜂

𝜈
]

𝑇 was added to the
vector of the rate gyro measurements, in order to test
the ability to estimate and compensate the rate gyro
bias.

The initial conditions for the observer state are: 𝑞̂(𝑡
0
) =

[0.47 0.19 0.38 0.76]

𝑇 and ⃗
𝜈̂(𝑡
0
) = [0 0 0]

𝑇.
In Figure 9, the estimated quaternion 𝑞̂ and the pseu-

domeasured quaternion 𝑞
𝑝𝑠
associates to the shoulder angu-

lar position are depicted. As expected, the attitude estimate
reaches the true attitude (which in this case it is well known
and represented by: 𝑞

0
= [1 0 0 0]

𝑇) in suitable time
for practical implementation. In this trial, after the shoulder
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Figure 9: Estimation of the quaternion and the gyro bias.
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movements the final shoulder angular position coincideswith
the initial ones. It can be noticed that despite the noise, drift
bias and nonweak acceleration introduced, the evolution of
the quaternion estimated reaches the values of the initial
attitude 𝑞

0
= 𝑞
𝑓

= [1 0 0 0]

𝑇.
The ability of the observer to estimate the bias is showed

in Figure 9, where the added bias vector 𝜈⃗int and its estimate
𝜈̂ are depicted.

The acceleration actuating in the sensor coordinate sys-
tem (the signal added to accelerometers channels), expressed
in the inertial coordinate system, is depicted in Figure 10.
That demonstrates the capabilities of the proposed observer
to estimate together the attitude and the acceleration. This
last fact allows to obtain an attitude quaternion insensitive to
nonweak accelerations.

Finally, the estimated movements of the shoulder:
Extension-Flexion, Abduction-Adduction, and Internal-
External rotation are showed in Figure 11. These results show
the effectiveness of the estimation schema.
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Figure 11: Anatomical movements of the shoulder: 𝐴
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internal-external rotation, 𝐴
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=

𝜃: extension-flexion.

The attitude estimation observer proposed in this paper
has been implemented in language 𝐶, where efficient meth-
ods have been applied for computing the quaternion-based
attitude. The implemented observer is also put in a dynamic-
link library (DLL) which can be used during real-time
application, as show in Figure 12, where we can see the
virtual human model tracks the movement of the person
and move the robot in the laboratory (remote assistive robot
Figure 12).

7. Conclusion and Future Works

In this paper, a new approach to estimate together attitude
and accelerations of a body is presented. The orientation of
the rigid body has been parameterized by unit quaternion
in order to avoid the singularities of the Euler’s angles. The
attitude estimation unit is made of nine sensors, namely, a
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(a) Anatomical movements of the shoulder: Real-time estimation
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Figure 12: Anatomical movements of the shoulder: real-time Validation.

triaxis accelerometer, three magnetometers and three rate
gyros that are orthogonally mounted. A nonlinear observer
is implemented, and its convergence is proved. A quaternion
pseudomeasurement is obtained from the accelerometer and
magnetometer measurements using a discrete optimization
technique with constraints. Note that the influence of the
body accelerations is removed from the accelerometer mea-
surements. Thus, the quaternion pseudomeasurement does
not depend on the acceleration values.Therefore, the classical
hypothesis “𝑎⃗ is weak”, is no more necessary. Moreover,
only one observer is used and it does not depend on the
acceleration amplitude.

The proposed nonlinear observer together with its pseu-
domeasurement computation is tested on simulated and real
data. The results obtained are really encouraging, because
the observer error is very small with a low computational
cost. Moreover, a version of the algorithm for attitude and
acceleration estimation is applied to interacts with a virtual
3D model of robot in the laboratory 6 that enable “touch” a
virtual world.

In further work, the results obtained with the proposed
methodology will be compared to those provided by a vision-
based human motion capture system that will be used as
a reference attitude estimation system and embedded in
robots to assist people and improve human performance in
daily and task-related activities, focusing in particular on
populations with special needs, including those convalescing
from trauma, rehabilitating from cognitive and/or physical
injury, aging in place or in managed care, and suffering
from developmental or other social, cognitive, or physical
disabilities. Robotics has the potential to both (1) serve as a
tool for principled, analytical study of human behavior and
(2) provide unique assistive technologies to improve quality
of life.
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