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The paper is dedicated to study of the Cauchy problem for the magneto-micropolar fluid equations in three-dimensional spaces. A
new logarithmically improved regularity criterion for the magneto-micropolar fluid equations is established in terms of the pressure
1

in the homogeneous Besov space B .

1. Introduction

This paper concerns with the regularity of weak solutions to
the magneto-micropolar fluid equations in three dimensions
as

atv—(M+X)Av+v-Vv—b~Vb+V(p+b2)
-xVxw=0,
0w —YAw —kVdivw + 2xyw+v- Vo - yV xv =0,
0,b—vAb+v-Vb-b-Vv =0, @
divv = divb =0,
v(0,x) = vy (x),

b(0,x) = by (x),

w (0,x) = wy (x),

where v(t,x) = (v,(t, x), v,(t, x), v5(t, x)) € R® denotes the
velocity of the fluid at a point x € R3 t e [0,T), w(t,x) €
R3, b(t,x) € R?, and p(t,x) € R denote, respectively, the
microrotational velocity, the magnetic field, and the hydro-
static pressure. i, X, K, Y, vare positive numbers associated
to properties of the material: y is the kinematic viscosity, y is
the vortex viscosity, x and y are spin viscosities, and 1/v is the
magnetic Reynold. 1, w,, b, are initial data for the velocity,

the angular velocity, and the magnetic field with properties
divu, = 0 and divh, = 0. For more detailed background,
we refer the readers to [1-3].

As we know, the problem of global regularity or finite
time singularity for the weak solutions of the magneto-micro-
polar fluid equations model with large initial data still
remains unsolved since (1) includes the 3D Navier-Stokes
equations. It is of interest that the regularity of the weak solu-
tions is under preassumption of certain growth conditions.
There are a lot of lectures to study the regularity of weak
solutions of the magneto-micropolar fluid equations (see, [4-
6]). The purpose of this paper is to establish a new logarith-
mically improved regularity criterion for the micropolar fluid
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equations in terms of the pressure in Besov space B . Now
we state the main results as follows.

Theorem1. Let (v,(x), wy(x), by(x)) € HYR®). LetT > 0 and
(v, w, b) be a weak solution to the system (1). If the pressure filed
P satisfies the following condition:

2
JT "P (t: )”B;,oo

dt < oo, (2)
0 1+1n<e+||P(t,-)||B;w)

then the weak solution (v, w, b) is regular on [0, T'.



Remark 2. Since the space B « is wider than ., 3, so our
result resolves the limit case » = 1 in [7], which greatly
improves the result in [7].

Remark 3. Since the space B o 1s wider than L*/™* hence
our result extends and 1mproves the recent results given by
(4].

2. Preliminaries and Lemmas

Throughout this paper, we introduce some function spaces,
notations, and important inequalities.
4t

Let ¢™ denote the heat semigroup defined by
fort > 0and x € R>, where * denotes the convolution of
functions defined on R’

We now recall the deﬁnition of the homogeneous Besov

emf =K, = f, = (4mt) ™" exp(

space with negative indices B_. _ on R" and the homoge-

00,00
neous Sobolev space H q of exponent > 0. It is known (p.

192 of [8]) that f € S'(R?) belongs to B;ZOO if and only if
e € L forallt > 0 and t*?|e®||, € L™(0,00; L). The
norm of B;ZOO is defined, up to equivalence, by

Az, = sup (<]

(4)
We introduce now the homogeneous Sobolev space FH Z(IR3),

which is defined by the set of functions f € L'(R®), 1/r =
(1/g) — (s/3) such that (—A)S/Zf e LYR®). This space is
endowed with the norm

(] P (SN 5)

and when g = 2, we just let H‘;(IR3) = H*(R®). Additionally,
we have the following inclusion relations (see, e.g., [9]):

" (R?) c P (R®) ¢ 1> (R®) ¢ B, ., (R?),

00,00 (6)
(R € 1 (RY) ¢ it; (RP) € B, (RP)

with continuous injection.

Lemma 4 (see [10]). Let 1 < p < g < coand s = «((q/p) —
1) > 0. Then there exists a constant C depending only on «, p,

and q such that for all f € H?([Rf) n B;ZOO([R3),

71, = -0y #1511 7)

In particular, fors = 1, p = 2,and g = 4, we get« = 1 and

I < CUAIAL ®)
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Lemma 5 (see [11]). Let f € W™(R’) (s = 1), and r > 1,
then there exists a positive constant C independent of f such
that

171 < ChA"1vr I ©)

where

(1/r) = (1/y)

- : (10)
(1/3) = (1/s) = (1/7)

3. Proof of Theorem 1

For given initial data (vy, w,, b,) € H'(R?), the weak solution
is the same as the local strong solution (v, w,b) in a local
interval (0, T') as in the discussion of Navier-Stokes equations.
For the uniqueness and existence of local strong solution,
we refer to [1]. Thus, it proves that Theorem1 is reduced
to establish a priori estimates uniformly in (0, T') for strong
solutions. With the use of the a priori estimates, the local
strong solution (v, w, b) can be continuously extended to t =
T by a standard process to obtain global regularity of the weak
solution. Therefore, we assume that the solution (v, w, b) is
sufficiently smooth on (0, T').

Proof of Theorem 1. We show that Theorem 1 holds under
condition (1). To prove the theorem, we need the L*-estimate.
For this purpose, taking the inner product of the first equa-
tion of (1) with |u|*u and integrating by parts, it can be dedu-
ced that

d
3 Il G+ ) 19l

(1)
<2 J |P| |ul* |Vu| dx + 3XJ lw| [ul* |Vul dx
R3 R3

- [, 119 (1) o i,

where we used the following relations by the divergence-free
condition divu = 0:

1
J u-Vu - lulfudx = - J u-Vu|*dx =0,
Rr? 2 Jps
J Au - |ulPudx = —J |Vl |u|*dx — J 'Vlul | dx,
[R3
J. VX w- |ul*udx
R3

:—J |u|2w-qudx—J w - Vul* X udx,
R? R?

|V xu| <|Vuyl, [V |u|] < |Vul.

(12)
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Similarly, taking the inner product of the second equation of
(1) with |w|*w and integrating by parts, it can be inferred that

4 dt"w”y +ylIVol o[} + yilvw I, + I div ol
(13)

+2xllwlzs < 3y sz lul o] Ve dix.

Using an argument similar to that used in deriving the esti-
mate (11)-(13), it can be obtained for the third equation of (1)
that

1d
£ 771015 + 11VBBII: + 21V [b] I
(14)
< | 1011Y ()l dx.

Adding up (11), (13), and (14), then we obtain

ld

7 Ul + Tl + 1BIL) + (g + ) 11Vl Ll

1 2
5 () VIl + Vel lollz + 2

+ kIl div @l72 + 2xllwllzs + 1VB] [BllI72 + 211V (8] 1B 172

szj |P||u|2|Vu|dx+3xj |w| [u]* |Vu| dx

R3 R3

+3XJ |u||w|2|Vw|dx—J b1 [V (Jul*u)| Ib] dx
R3 R3

o [ w7 ()|l ax

2L+ L+ L+ + 1.
(15)

Applying the Holder inequality and the Young inequality for
L,, it follows that

< XTE 5 A28Vl [l 22 + € (Julls + wl2s). 16)
Arguing similarly to above, it can be derived for I; that
I < gmw wllz + C (lullgs + lwlz) . (7)

Considering the term I;, by virtue of the Cauchy inequality,
we have

1 2 1
I <= I VIV dox + 5 J |P)|v|*dx. (18)
2 Jr3 2 Jr3

Let us bound the integral (1/2) IRs |P]|v|*dx. Applying the
divergence operator div to the first equation of (1), one form-

ally has P = Zz].:I R
jth Riesz operator. By the Calderon-Zygmund inequality, we

have

Rj(u;u; — bb;), where R; denotes the

IVPIz < C (v Vil + 1Bl VO]l 2) - (19)

With the help of (8) and (19), by the Holder inequality and
the Young inequality, we deduce that

1
—j \P2Iv2dx
2 Jr3

1
EIIPIIUxIIVIILA < ClIVPI 1Pl 5 IIV||L4

< C IV 19¥l;2 + 16 9]l,2) "P"B;;OOHV”i‘*

1/2
= (VI 1Vl + 161 1VBlL:) (NI ol )

1
< - (VT I9VIIE: + MBI IVBIIE:) + CIPIL vl
(20)
So the term I, can be estimated as
L<s|, [VI[ dx + - (U9 + 11b] VB )
+ClIPI vl
(1)
Next we have the following estimate for the term I,:
I, < J b1 Jua] | V124 | dx. (22)
R}

Since u € L*(R?) N L°(R?) and using Cauchy inequality, gen-
eralized Holder inequality, Gagliardo-Nirenberg inequality,
and Sobolev imbedding theorem, we obtain

L2_

2 2
< C|[bl| ol + ==

22 X
el Vel 2 +

< Clibl vV Ibllz. + 25

(23)
The last term of (15) can be treated in the same way as
2 2 2 2 1 2
L<C [ 1o ul|[vieP] dx < Clle wil}, + 5[V
< Cll1b| V [bll7:.
(24)
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Inserting the estimates (15) and (21) into (14), it follows that second equation of (1) by (~Aw), and the third equation of (1)
by (~Ab), by integration by parts over R’, we get
d 4 4 4
—; (VI + ol + 1) .
1 2 2
= —IVvliz: + AV
< CIPIG- IWlge +C (I3 + ol + l113) e’ " r

= -V)v-Avd
<CIPIE (I + wl) +C (I + folld + 1) JRS (v-V)v-Avdx

I1P (¢, )] +J (b‘V)b-Avdx—J curl wAvdx
B R? R?
<C| 1+ >
oin(e+ 1P (), ) < Wl IVl Avi 2
+ 1B IVl AV + IVl 2 AV 2
[1tn (e 1P )] (I + ol + 1015) pI e CR (29)
< Wl v naviZZe 1avi:
1P (6,9l S
o L P A TN A P
1+ln e+||P(t )|| " )

1
s + eIVl + ClIVal:
x [1+1n (e + 1P (6 ))] (V13 + leolly + l1B115)

1 2 1 2 1 2
< —||AV|52 + =||Aw]72 + =||Ab
"P (t )” . 8" ”LZ 8" "LZ 8” "L2
1+1n (e+ ||p( )uB,l ) + CIBIEIBIE + CIvIEIVIE: + Clwl,
1d
< [1+1In(e+ v (& )5)] (V5 + llwolly + 1b13) ST — Vol + lAwll7: + [V div wll7: + 2] Vel
2
1P (2, )l = J v-V)w-Awdx - J.curl vAw dx
<C| 1+ o

Ll (e+ Pt )

< WllslVell s lAwl 2 + VY] 2 [ Aw]l 2

< [1+1In(e+y®)] (I3 + Il + 1615) »

< Wl lleol 22 1 A0l 722 [ Acll 2
(25)
_ + ClvIMZ 1AV Al 2
where y(t) is defined by
1 2 1 2 16, 112 2
< ~[IavIE: + <lAwl?: + ClvIS ol + Clviz.,
y(t) = sup ( ) 26) g2Vl 2 L liwlly L
T,< (30)
Applying Gronwall’s inequality on (25) for the interval [T}, t], 1d
one has 5 7 1Vbl: + 18l
4 4 4
sup (IV1§ + lwll§ + 1813) < Coexp (Ce (1 +1n (e + y (1)) _ J (v Vb) Abdx - I (b Vv) Abdx
0= R R
< Cyexp (2Celn (e + y (1)) < Wl IVBI | Ab] 2 + 1Bl IV Vil < | Ab] 2
2Ce
<Cole+y®) S P AN AT N

27

) + 160 M2 A2 [ AbI 2
provided that

1
1P (&) < guAvniz + L1avlz, + cIviSIBlZ + oSV
ds<e<1, (28) (31

t
Lﬂ 1+1n (e+ 1P (5, )
) . ) where we have used the Gagliardo-Nirenberg inequality:
where C,, is a positive constant depending on T,.

Next we will estimate the L*-norm of Vv, Vw, and Vb. We 18

7/8
multiply both sides of the first equation of (1) by (-Av), the VAl < ClAlL2 NAfL: (32)
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Combining (29), (30), and (31) and using the definition of the
weak solution, we deduce that

19V + IVelzs + VB
< CCyle+y (1) (t-T) (33)
+[vv (s To)"iz +[Veo (- To)"iz'
Finally we go to the estimate for H>-norm of v, w, and b. In the

following calculations, we will use the following commutator
estimate due to Kato and Ponce [12]:

|A° (f9) - gl

(34)
< (Il A" gl + 18 Al gl )

with s > 0, A = (-A)"*and (1/p) = (1/p,) + (1/q,) =
(1/p,) + (1/g,). Taking the operation A® on both sides of (1),
then multiplying them by A*v, A’w, and Ab, and integrating
by parts over R*, we have

%% j 3 |A3V|2 W + A% dx
R

| | ‘e ax
R3 R3

+ J |A div v| dx + 2J . |A3w|2dx

+

[A (v-Vv)—v-VA V]A vdx
R3

+J A curlw - APvdx

3

=l

J A (v-Vw) —v-VAaw] Nwdx (35)
R?

+J Al curlv- Awdx
R3

v | (W @-vo-b-vab] A
R%

L.

v | W@V -bva| N
R3

[A* (v-Vb) —v- VA’D| A’bdx

3

=l

SA+A+AHALFASHAGHA
Hence A, can be estimated as

1/4 5/3

A, < CIVY||5 ||A3v v

< CIvvl A%,

L~

3/2

P e I

(36)

5
where we used (33) withs = 3, p =3/2, p, =q, = p, =
q, = 3 and the following inequalities:

IVl < cnwn”“l]As ||L2 :
) (37)
5/6

A%, < cIvviie|aty],. -

If we use the existing estimate (31) for T, < t < T, (36) reduces
to

1
A <
6

iz +CCy(e + y (1), (38)
Using (37) again, we have

As+As;+Ag+ A, <—(|

+CCyle+ y (t)

)(3/4)+ 39/2)C£

)

(39)

For A, and A ,, we have

Ay +A, <= (|
1
<5 (v

Inserting the above estimates (38)-(40) into (35), we obtain

d 2 2
= J'R3 "+ |A3w| dx @

)(3/4)+ 39/2)Ce

w)re(la

iz) +CCy(e+y(1)).

2)

(40)

< CCyle+ y(t) +CCy(e+y(t)).

Gronwall’s inequality implies the boundness of H>-norm of
v, w, and b provided that 39Ce < (1/2), which can be
achieved by the absolute continuous property of integral (2).
This completes the proof of Theorem 1.
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