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Wilson-Cowan model of neuronal population with time-varying delays is considered in this paper. Some sufficient conditions
for the existence and delay-based exponential stability of a unique almost periodic solution are established. The approaches are
based on constructing Lyapunov functionals and the well-known Banach contractionmapping principle.The results are new, easily
checkable, and complement existing periodic ones.

1. Introduction

Consider a well-knownWilson-Cowan typemodel [1, 2] with
time-varying delays

𝑑𝑋
𝑃 (𝑡)

𝑑𝑡
= −𝑋
𝑃 (𝑡) + [𝑘𝑃 − 𝑟𝑃𝑋𝑃 (𝑡)]

× 𝐺 [𝑤
1

𝑃
𝑋
𝑃
(𝑡 − 𝜏
𝑃 (𝑡))

−𝑤
1

𝑁
𝑋
𝑁
(𝑡 − 𝜏
𝑁 (𝑡)) + 𝐼𝑃 (𝑡)] ,

𝑑𝑋
𝑁 (𝑡)

𝑑𝑡
= −𝑋
𝑁 (𝑡) + [𝑘𝑁 − 𝑟𝑁𝑋𝑁 (𝑡)]

× 𝐺 [𝑤
2

𝑃
𝑋
𝑃
(𝑡 − 𝜏
𝑃 (𝑡))

−𝑤
2

𝑁
𝑋
𝑁
(𝑡 − 𝜏
𝑁 (𝑡)) + 𝐼𝑁 (𝑡)] ,

(1)

where 𝑋
𝑃
(𝑡), 𝑋
𝑁
(𝑡) represent the proportion of excitatory

and inhibitory neurons firing per unit time at the instant
𝑡, respectively. 𝑟

𝑃
and 𝑟
𝑁
are related to the duration of the

refractory period, 𝑘
𝑃
and 𝑘

𝑁
are constants. 𝑤1

𝑃
, 𝑤1
𝑁
, 𝑤2
𝑃
, and

𝑤
2

𝑁
are the strengths of connections between the populations.

𝐼
𝑃
(𝑡), 𝐼
𝑁
(𝑡) are the external inputs to the excitatory and

the inhibitory populations. 𝐺(⋅) is the response function of
neuronal activity and it is always assumed to be sigmoid type.

𝜏
𝑃
(𝑡), 𝜏
𝑁
(𝑡) correspond to the transmission time-varying

delays.
It is interesting to revisit Wilson-Cowan system on the

following points.

(i) The Wilson-Cowan model has a realistic biological
background which describes interactions between
excitatory and inhibitory populations of neurons [1–
3]. It has extensive application such as pattern analysis
and image processing [4, 5].

(ii) There exists rich dynamical behavior in Wilson-
Cowan model. Theoretical results about stable limit
cycles, equilibria, chaos, and oscillatory activity have
been reported in [2, 3, 6–9]. Recently, Decker and
Noonburg [8] reported new results about the exis-
tence of three periodic solutions when each neuron
was stimulated by periodical inputs. However, under
time-varying (periodic or almost periodic) inputs,
Wilson-Cowan model can have more complex state
space and coexistence of divergent solutions and local
stable solutions which could not be easily estimated
by its boundary. To see this, we can refer to Figure 1
for the phase portrait of solutions of the following
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Figure 1: Coexistence of divergent and local stable solutions of (2)
with almost periodic inputs.

Wilson-Cowan type model with 𝐺(𝑧) = tanh(𝑧) and
almost periodic inputs [10–12]:

𝑑𝑋
𝑃 (𝑡)

𝑑𝑡
= −𝑋
𝑃 (𝑡) + [1 − 𝑋𝑃 (𝑡)]

× 𝐺 [𝑋
𝑃 (𝑡) − 𝑋𝑁 (𝑡) + 5 sin√2𝑡] ,

𝑑𝑋
𝑁 (𝑡)

𝑑𝑡
= −𝑋
𝑁 (𝑡) + [1 − 𝑋𝑁 (𝑡)]

× 𝐺 [𝑋
𝑃 (𝑡) − 𝑋𝑁 (𝑡) + 0.5 cos 𝑡 sin 𝑡] .

(2)

(iii) Few works reported almost periodicity of Wilson-
Cowan type model in the literature. Under almost
periodic inputs, whether there exists a unique almost
periodic solution of (1) which is stable? How to esti-
mate its located boundary?Revealing these results can
give a significant insight into the complex dynamical
structure of Wilson-Cowan type model.

Throughout this paper, we always assume that 𝑘
𝑃
, 𝑘
𝑁
, 𝑟
𝑃
,

𝑟
𝑁
, 𝑤1
𝑃
, 𝑤2
𝑃
, 𝑤1
𝑁
, and 𝑤2

𝑁
are positive constants, 𝜏

𝑃
(𝑡), 𝜏
𝑁
(𝑡),

𝐼
𝑃
(𝑡), and 𝐼

𝑁
(𝑡) are almost periodic functions [12], and set

𝜏
⊤

𝑃
= sup
𝑡∈R

𝜏
𝑃 (𝑡) , 𝜏

⊤

𝑁
= sup
𝑡∈R

𝜏
𝑁 (𝑡) ,

𝐼
⊤

𝑃
= sup
𝑡∈R

󵄨󵄨󵄨󵄨𝐼𝑃 (𝑡)
󵄨󵄨󵄨󵄨 , 𝐼

⊤

𝑁
= sup
𝑡∈R

󵄨󵄨󵄨󵄨𝐼𝑁 (𝑡)
󵄨󵄨󵄨󵄨 .

(3)

Moreover, we need some basic assumptions in this paper.

(𝐻
1
) 𝐺(0) = 0, sup

𝑣∈R|𝐺(𝑣)| ⩽ 𝐵𝑠 and there exists an 𝐿 >
0 such that

|𝐺 (𝑢) − 𝐺 (𝑣)| ⩽ 𝐿 |𝑢 − 𝑣| for ∀𝑢, 𝑣 ∈ R. (4)

(𝐻
2
)The quadratic equation (𝐾 + 𝑅𝑥)(𝐼 + 𝑊𝑥) = 𝑥 has a
positive solution 𝛿, where

𝑊 = max{𝐿 (𝑤1
𝑃
+ 𝑤
1

𝑁
) , 𝐿 (𝑤

2

𝑃
+ 𝑤
2

𝑁
)} ,

𝐾 = max{𝑘
𝑃
, 𝑘
𝑁
} , 𝑅 = max{𝑟

𝑃
, 𝑟
𝑁
} ,

𝐼 = max {𝐿𝐼⊤
𝑃
, 𝐿𝐼
⊤

𝑁
} .

(5)

(𝐻
3
) 𝜏
𝑃
(𝑡), 𝜏
𝑁
(𝑡) are bounded and continuously differen-

tiable with 0 ≤ 𝜏
𝑃
(𝑡) ≤ 𝜏

⊤

𝑃
,

0 ≤ 𝜏
𝑁 (𝑡) ≤ 𝜏

⊤

𝑁
, 1 − ̇𝜏

𝑃 (𝑡) > 0,

1 − ̇𝜏
𝑁 (𝑡) > 0 for 𝑡 ∈ 𝑅.

(6)

For for all 𝑢 = (𝑢
1
, 𝑢
2
) ∈ R2, we define the norm ‖𝑢‖ =

max{|𝑢
1
|, |𝑢
2
|}. Let 𝐵 := {𝜓 | 𝜓 = (𝜓

1
, 𝜓
1
)}, where 𝜓 is an

almost periodic function on R2. For all 𝜓 ∈ 𝐵, if we define
induced nodule ‖𝜓‖

𝐵
= sup

𝑡∈R‖𝜓(𝑡)‖, then 𝐵 is a Banach
space. The initial conditions of system (1) are of the form

𝑋
𝑃 (𝑠) = 𝜓𝑃 (𝑠) , 𝑋

𝑁 (𝑠) = 𝜓𝑁 (𝑠) , 𝑠 ∈ [−𝜏, 0] , (7)

where 𝜏 = max{𝜏⊤
𝑃
, 𝜏
⊤

𝑁
} and 𝜓 = (𝜓

𝑃
, 𝜓
𝑁
) ∈ 𝐵.

Definition 1 (see [12]). Let 𝑢(𝑡) : R → R𝑛 be continuous.
𝑢(𝑡) is said to be almost periodic on R if, for any 𝜀 > 0, it
is possible to find a real number 𝑙 = 𝑙(𝜀) > 0, and for any
interval with length 𝑙(𝜀), there exists a number 𝛿 = 𝛿(𝜀) in
this interval such that |𝑢(𝑡 + 𝛿) − 𝑢(𝑡)| < 𝜀, for all 𝑡 ∈ R.

The remaining part of this paper is organized as follows.
In Section 2, we will derive sufficient conditions for checking
the existence of almost periodic solutions. In Section 3,
we present delay-based exponential stability of the unique
almost periodic solution of system (1). In Section 4, we
will give an example to illustrate our results obtained in
the preceding sections. Concluding remarks are given in
Section 5.

2. Existence of Almost Periodic Solutions

Theorem 2. Suppose that (𝐻
1
) and (𝐻

2
) hold. If𝐾𝑊+𝑅(𝐵

𝑠
+

𝛿𝑊) < 1, then there exists a unique almost periodic solution of
system (1) in the region

𝐵
∗
= {𝜓 | 𝜓 ∈ 𝐵,

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐵 ≤ 𝛿} . (8)
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Proof. For for all 𝜓 = (𝜓
𝑃
, 𝜓
𝑁
) ∈ 𝐵
∗, we consider the almost

periodic solution 𝑋𝜓(𝑡) = (𝑋𝜓
𝑃
(𝑡), 𝑋
𝜓

𝑁
(𝑡)) of the following

almost periodic differential equations:

𝑑𝑋
𝑃 (𝑡)

𝑑𝑡
= −𝑋
𝑃 (𝑡) + [𝑘𝑃 − 𝑟𝑃𝜓𝑃 (𝑡)]

× 𝐺 [𝑤
1

𝑃
𝜓
𝑃
(𝑡 − 𝜏
𝑃 (𝑡))

−𝑤
1

𝑁
𝜓
𝑁
(𝑡 − 𝜏
𝑁 (𝑡)) + 𝐼𝑃 (𝑡)] ,

𝑑𝑋
𝑁 (𝑡)

𝑑𝑡
= −𝑋
𝑁 (𝑡) + [𝑘𝑁 − 𝑟𝑁𝜓𝑁 (𝑡)]

× 𝐺 [𝑤
2

𝑃
𝜓
𝑃
(𝑡 − 𝜏
𝑃 (𝑡))

−𝑤
2

𝑁
𝜓
𝑁
(𝑡 − 𝜏
𝑁 (𝑡)) + 𝐼𝑁 (𝑡)] .

(9)

By almost periodicity of 𝜏
𝑃
(𝑡), 𝜏
𝑁
(𝑡), 𝐼
𝑃
(𝑡), and 𝐼

𝑁
(𝑡) and

Theorem 3.4 in [12] or [10], (9) has a unique almost periodic
solution

𝑋
𝜓

𝑃
(𝑡)

= ∫

𝑡

−∞

exp(− (𝑡 − 𝑠)) [𝑘𝑃 − 𝑟𝑃𝜓𝑃 (𝑠)]

× 𝐺 [𝑤
1

𝑃
𝜓
𝑃
(𝑠 − 𝜏
𝑃 (𝑠))

−𝑤
1

𝑁
𝜓
𝑁
(𝑠 − 𝜏
𝑁 (𝑠)) + 𝐼𝑃 (𝑠)] 𝑑𝑠,

𝑋
𝜓

𝑁
(𝑡) = ∫

𝑡

−∞

exp(− (𝑡 − 𝑠)) [𝑘𝑁 − 𝑟𝑁𝜓𝑁 (𝑠)]

× 𝐺 [𝑤
2

𝑃
𝜓
𝑃
(𝑠 − 𝜏
𝑃 (𝑠))

−𝑤
2

𝑁
𝜓
𝑁
(𝑠 − 𝜏
𝑁 (𝑠)) + 𝐼𝑁 (𝑠)] 𝑑𝑠.

(10)

Define a mapping 𝐹 : 𝐵∗ → 𝐵 by setting 𝐹(𝜓)(𝑡) =
(𝐹
𝑃
(𝜓)(𝑡), 𝐹

𝑁
(𝜓)(𝑡)) = 𝑋

𝜓
(𝑡), for all 𝜓 ∈ 𝐵∗. Now, we prove

that 𝐹 is a self-mapping from 𝐵∗ to 𝐵∗. From (10) and (𝐻
1
),

we obtain

󵄨󵄨󵄨󵄨𝐹𝑃 (𝜓) (𝑡)
󵄨󵄨󵄨󵄨

≤ sup
𝑡∈R

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

−∞

exp (− (𝑡 − 𝑠)) [𝑘𝑃 − 𝑟𝑃𝜓𝑃 (𝑠)]

× 𝐺 [𝑤
1

𝑃
𝜓
𝑃
(𝑠 − 𝜏
𝑃 (𝑠))

−𝑤
1

𝑁
𝜓
𝑁
(𝑠 − 𝜏
𝑁 (𝑠)) + 𝐼𝑃 (𝑠)] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ sup
𝑡∈R

[𝑘
𝑃
+ 𝑟
𝑃

󵄨󵄨󵄨󵄨𝜓𝑃 (𝑡)
󵄨󵄨󵄨󵄨]

× 𝐺
󵄨󵄨󵄨󵄨󵄨
[𝑤
1

𝑃
𝜓
𝑃
(𝑡 − 𝜏
𝑃 (𝑡))

−𝑤
1

𝑁
𝜓
𝑁
(𝑡 − 𝜏
𝑁 (𝑡)) + 𝐼𝑃 (𝑡)]

󵄨󵄨󵄨󵄨󵄨

≤ (𝑘
𝑃
+ 𝑟
𝑃

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐵)

× 𝐿 (𝑤
1

𝑃

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐵 + 𝑤

1

𝑁

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐵 + 𝐼

⊤

𝑃
)

≤ (𝑘
𝑃
+ 𝑟
𝑃

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐵)

× (𝐿 (𝑤
1

𝑃
+ 𝑤
1

𝑁
)
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐵 + 𝐿𝐼

⊤

𝑃
) .

(11)

By similar estimation, we can get

󵄨󵄨󵄨󵄨𝐹𝑁 (𝜓)
󵄨󵄨󵄨󵄨 ≤ (𝑘𝑁 + 𝑟𝑁

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐵)

× (𝐿 (𝑤
2

𝑃
+ 𝑤
2

𝑁
)
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐵 + 𝐿𝐼

⊤

𝑁
) .

(12)

Therefore, by the above estimations and (𝐻
2
), we get

󵄩󵄩󵄩󵄩𝐹 (𝜓)
󵄩󵄩󵄩󵄩𝐵 = sup
𝑡∈R

{
󵄨󵄨󵄨󵄨𝐹𝑃 (𝜓)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝐹𝑁 (𝜓)

󵄨󵄨󵄨󵄨}

≤ (𝐾 + 𝑅
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐵) (𝑊

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐵 + 𝐼)

≤ (𝐾 + 𝑅𝛿) (𝑊𝛿 + 𝐼) = 𝛿,

(13)

which implies that 𝐹(𝜓) ∈ 𝐵∗. So, the mapping 𝐹 is self-
mapping from𝐵∗ to𝐵∗. Next, we prove that𝐹 is a contraction
mapping in the region 𝐵∗. For all 𝜓, 𝜙 ∈ 𝐵∗, by (10), we have

󵄨󵄨󵄨󵄨𝐹𝑃 (𝜓) (𝑡) − 𝐹𝑃 (𝜙) (𝑡)
󵄨󵄨󵄨󵄨

≤ sup
𝑡∈R

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

−∞

exp (− (𝑡 − 𝑠)) [𝑘𝑃 − 𝑟𝑃𝜓𝑃 (𝑠)]

× 𝐺 [𝑤
1

𝑃
𝜓
𝑃
(𝑠 − 𝜏
𝑃 (𝑠))

−𝑤
1

𝑁
𝜓
𝑁
(𝑠 − 𝜏
𝑁 (𝑠)) + 𝐼𝑃 (𝑠)] 𝑑𝑠

− ∫

𝑡

−∞

exp (− (𝑡 − 𝑠)) [𝑘𝑃 − 𝑟𝑃𝜙𝑃 (𝑠)]

× 𝐺 [𝑤
1

𝑃
𝜙
𝑃
(𝑠 − 𝜏
𝑃 (𝑠))

−𝑤
1

𝑁
𝜙
𝑁
(𝑠 − 𝜏
𝑁 (𝑠)) + 𝐼𝑃 (𝑠)] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

(14)
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which leads to

󵄨󵄨󵄨󵄨𝐹𝑃 (𝜓) (𝑡) − 𝐹𝑃 (𝜙) (𝑡)
󵄨󵄨󵄨󵄨

≤ sup
𝑡∈R

∫

𝑡

−∞

exp (− (𝑡 − 𝑠))

× [𝑘
𝑃
𝐿
󵄨󵄨󵄨󵄨󵄨
𝑤
1

𝑃
𝜓
𝑃
(𝑠 − 𝜏
𝑃 (𝑠)) − 𝑤

1

𝑁
𝜓
𝑁
(𝑠 − 𝜏
𝑁 (𝑠))

−𝑤
1

𝑃
𝜙
𝑃
(𝑠 − 𝜏
𝑃 (𝑠))+𝑤

1

𝑁
𝜙
𝑁
(𝑠 − 𝜏
𝑁 (𝑠))

󵄨󵄨󵄨󵄨󵄨

+ 𝑟
𝑃

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑃 (𝑠) 𝐺 [𝑤

1

𝑃
𝜓
𝑃
(𝑠 − 𝜏
𝑃 (𝑠))

− 𝑤
1

𝑁
𝜓
𝑁
(𝑠 − 𝜏
𝑁 (𝑠))

+𝐼
𝑃 (𝑠)]

− 𝜙
𝑃 (𝑠) 𝐺 [𝑤

1

𝑃
𝜙
𝑃
(𝑠 − 𝜏
𝑃 (𝑠))

− 𝑤
1

𝑁
𝜙
𝑁
(𝑠 − 𝜏
𝑁 (𝑠))

+𝐼
𝑃 (𝑠) ]

󵄨󵄨󵄨󵄨󵄨
] 𝑑𝑠

≤ 𝑘
𝑃
𝐿(𝑤
1

𝑃
sup
𝑡∈R

󵄨󵄨󵄨󵄨𝜓𝑃 (𝑡) − 𝜙𝑃 (𝑡)
󵄨󵄨󵄨󵄨 + 𝑤
1

𝑁
sup
𝑡∈R

󵄨󵄨󵄨󵄨𝜓𝑁 (𝑡) − 𝜙𝑁 (𝑡)
󵄨󵄨󵄨󵄨)

+ sup
𝑡∈R

∫

𝑡

−∞

exp (− (𝑡 − 𝑠)) 𝑟𝑃

× [
󵄨󵄨󵄨󵄨󵄨
𝜓
𝑃 (𝑠) 𝐺 (𝑤

1

𝑃
𝜓
𝑃
(𝑠 − 𝜏
𝑃 (𝑠))

−𝑤
1

𝑁
𝜓
𝑁
(𝑠 − 𝜏
𝑁 (𝑠)) + 𝐼𝑃 (𝑠))

− 𝜓
𝑃 (𝑠) 𝐺 (𝑤

1

𝑃
𝜙
𝑃
(𝑠 − 𝜏
𝑃 (𝑠))

− 𝑤
1

𝑁
𝜙
𝑁
(𝑠 − 𝜏
𝑁 (𝑠))

+𝐼
𝑃 (𝑠))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝜓
𝑃 (𝑠) 𝐺 (𝑤

1

𝑃
𝜙
𝑃
(𝑠 − 𝜏
𝑃 (𝑠))

− 𝑤
1

𝑁
𝜙
𝑁
(𝑠 − 𝜏
𝑁 (𝑠)) + 𝐼𝑃 (𝑠))

− 𝜙
𝑃 (𝑠) 𝐺 (𝑤

1

𝑃
𝜙
𝑃
(𝑠 − 𝜏
𝑃 (𝑠))

− 𝑤
1

𝑁
𝜙
𝑁 (𝑠) + 𝐼𝑃 (𝑠))

󵄨󵄨󵄨󵄨󵄨
]|𝑑𝑠

≤ 𝑘
𝑃
𝐿 (𝑤
1

𝑃
+ 𝑤
1

𝑁
)
󵄩󵄩󵄩󵄩𝜓 − 𝜙

󵄩󵄩󵄩󵄩𝐵

+ 𝑟
𝑃
(𝐵
𝑠

󵄩󵄩󵄩󵄩𝜓 − 𝜙
󵄩󵄩󵄩󵄩𝐵 + 𝛿𝐿 (𝑤

1

𝑃
+ 𝑤
1

𝑁
)
󵄩󵄩󵄩󵄩𝜓 − 𝜙

󵄩󵄩󵄩󵄩𝐵) .

(15)

By similar argument, we can get

󵄨󵄨󵄨󵄨𝐹𝑁 (𝜓) (𝑡) − 𝐹𝑁 (𝜓) (𝑡)
󵄨󵄨󵄨󵄨

≤ 𝑘
𝑁
𝐿 (𝑤
2

𝑃
+ 𝑤
2

𝑁
)
󵄩󵄩󵄩󵄩𝜓 − 𝜙

󵄩󵄩󵄩󵄩𝐵

+ 𝑟
𝑁
(𝐵
𝑠

󵄩󵄩󵄩󵄩𝜓 − 𝜙
󵄩󵄩󵄩󵄩𝐵 + 𝛿𝐿 (𝑤

2

𝑃
+ 𝑤
2

𝑁
)
󵄩󵄩󵄩󵄩𝜓 − 𝜙

󵄩󵄩󵄩󵄩𝐵) .

(16)

From (15) and (16), we have
󵄩󵄩󵄩󵄩𝐹 (𝜓) − 𝐹 (𝜓)

󵄩󵄩󵄩󵄩𝐵

= sup
𝑡∈R

{
󵄨󵄨󵄨󵄨𝐹𝑃 (𝜓) − 𝐹𝑃 (𝜓)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝐹𝑁 (𝜓) − 𝐹𝑁 (𝜓)

󵄨󵄨󵄨󵄨}

≤ 𝐾𝑊
󵄩󵄩󵄩󵄩𝜓 − 𝜙

󵄩󵄩󵄩󵄩

+ 𝑅 (𝐵
𝑠

󵄩󵄩󵄩󵄩𝜓 − 𝜙
󵄩󵄩󵄩󵄩 + 𝛿𝑊

󵄩󵄩󵄩󵄩𝜓 − 𝜙
󵄩󵄩󵄩󵄩)

= (𝐾𝑊 + 𝑅𝐵
𝑠
+ 𝑅𝛿𝑊)

󵄩󵄩󵄩󵄩𝜓 − 𝜙
󵄩󵄩󵄩󵄩 .

(17)

Since𝐾𝑊+𝑅𝐵
𝑠
+𝑅𝛿𝑊 ∈ (0, 1), it is clear that the mapping 𝐹

is a contraction.Therefore the mapping 𝐹 possesses a unique
fixed point 𝑋∗ ∈ 𝐵∗ such that 𝐹𝑋∗ = 𝑋∗. By (9), 𝑋∗ is
an almost periodic solution of system (1) in 𝐵∗. The proof is
complete.

Remark 3. Obviously, quadratic curveC(𝑣) := 𝑅𝑊𝑣2+(𝐾𝑊+
𝑅𝐼 − 1)𝑣 + 𝐾𝐼 satisfies with C(0) ≥ 0. So, Δ := (𝐾𝑊 + 𝑅𝐼 −
1)
2
− 4𝑅𝑊𝐾𝐼 > 0 and𝐾𝑊+𝑅𝐼 < 1 guarantees the existence

of 𝛿 in (𝐻
2
) and 𝛿 lies in the following interval:

[
1 − 𝐾𝑊 − 𝑅𝐼 − √Δ

2𝑅𝑊
,
1 − 𝐾𝑊 − 𝑅𝐼 + √Δ

2𝑅𝑊
] . (18)

By Theorem 2, we know that the unique almost periodic
solution depends on 𝐾𝑊 + 𝑅(𝐵

𝑠
+ 𝛿𝑊) < 1. Choosing

𝛿 = (1 − (𝐾𝑊 + 𝑅𝐼))/2𝑅𝑊, we get a simple assumption as
follows:

(𝐻̂
2
) 𝐾𝑊 + 𝑅𝐼 < 1 − 2√𝐾𝑊𝑅𝐼,𝑅𝐵

𝑠
< (1 − (𝐾𝑊 − 𝑅𝐼))/2,

and hence it leads to a parameter-based result.

Corollary 4. Suppose that (𝐻
1
) and (𝐻̂

2
) hold. Then there

exists a unique almost periodic solution of system (1) in the
region 𝐵∗ = {𝜓 | 𝜓 ∈ 𝐵, ‖𝜓‖

𝐵
≤ (1 − (𝐾𝑊 + 𝑅𝐼))/2𝑅𝑊}.

3. Delay-Based Stability of
the Almost Periodic Solution

In this section, we establish locally exponential stability of the
unique almost periodic solution of system (1) in the region
𝐵
∗, which is delay dependent.

Theorem 5. Suppose that (𝐻
1
)–(𝐻
3
) hold. If 𝐾𝑊 + 𝑅(𝐵

𝑠
+

𝛿𝑊) < 1 and there exist constants ℓ
1
> 0, ℓ
2
> 0 such that

(1 − 𝑟
𝑃
𝐵
𝑠
) ℓ
1
> sup
𝑡∈R

𝐶
𝑃

1 − ̇𝜏
𝑃
(𝜐
−1

𝑃
(𝑡))
,

(1 − 𝑟
𝑁
𝐵
𝑠
) ℓ
2
> sup
𝑡∈R

𝐶
𝑁

1 − ̇𝜏
𝑁
(𝜐
−1

𝑁
(𝑡))
,

(19)

where 𝐶
𝑃
:= 𝐿[(𝑘

𝑃
+ 𝑟
𝑃
𝛿)ℓ
1
𝑤
1

𝑃
+ (𝑘
𝑁
+ 𝑟
𝑁
𝛿)ℓ
2
𝑤
2

𝑃
] and 𝐶

𝑁
:=

𝐿[(𝑘
𝑃
+ 𝑟
𝑃
𝛿)ℓ
1
𝑤
1

𝑁
+ (𝑘
𝑁
+ 𝑟
𝑁
𝛿)ℓ
2
𝑤
2

𝑁
], 𝜐−1
𝑃
(𝑡) and 𝜐−1

𝑁
(𝑡) are

the inverse functions of 𝜐
𝑃
(𝑡) = 𝑡 − 𝜏

𝑃
(𝑡) and 𝜐

𝑁
(𝑡) = 𝑡 − 𝜏

𝑁
(𝑡),

then system (1) has exactly one almost periodic solution 𝑋∗(𝑡)
in the region 𝐵∗ which is locally exponentially stable.
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Proof. From Theorem 2, system (1) has a unique almost
periodic solution 𝑋∗(𝑡) ∈ 𝐵∗. Let 𝑋(𝑡) = (𝑋

𝑃
(𝑡), 𝑋
𝑁
(𝑡))

be an arbitrary solution of system (1) with initial value 𝜓 =
(𝜓
𝑃
, 𝜓
𝑁
) ∈ 𝐵

∗. Set 𝑋(𝑡) = 𝑋
𝑃
(𝑡) − 𝑋

∗

𝑃
(𝑡), 𝑌(𝑡) = 𝑋

𝑁
(𝑡) −

𝑋
∗

𝑁
(𝑡). By system (1), we get

𝑑𝑋 (𝑡)

𝑑𝑡
= −𝑋 (𝑡)

+ [𝑘
𝑃
− 𝑟
𝑃
(𝑋 (𝑡) + 𝑋

∗

𝑃
(𝑡))]

× 𝐺 [𝑤
1

𝑃
(𝑋 (𝑡 − 𝜏

𝑃 (𝑡)) + 𝑋
∗

𝑃
(𝑡 − 𝜏
𝑃 (𝑡)))

−𝑤
1

𝑁
(𝑌 (𝑡 − 𝜏

𝑁 (𝑡)) + 𝑋
∗

𝑁
(𝑡 − 𝜏
𝑁 (𝑡))) 𝐼𝑃 (𝑡)]

− [𝑘
𝑃
− 𝑟
𝑃
𝑋
∗

𝑃
(𝑡)]

× 𝐺 [𝑤
1

𝑃
𝑋
∗

𝑃
(𝑡 − 𝜏
𝑃 (𝑡))

−𝑤
1

𝑁
𝑋
∗

𝑁
(𝑡 − 𝜏
𝑁 (𝑡)) + 𝐼𝑃 (𝑡)] ,

𝑑𝑌 (𝑡)

𝑑𝑡
= −𝑌 (𝑡)

+ [𝑘
𝑁
− 𝑟
𝑁
(𝑌 (𝑡) + 𝑋

∗

𝑁
(𝑡))]

× 𝐺 [𝑤
2

𝑃
(𝑋 (𝑡 − 𝜏

𝑃 (𝑡)) + 𝑋
∗

𝑃
(𝑡 − 𝜏
𝑃 (𝑡)))

−𝑤
2

𝑁
(𝑌 (𝑡−𝜏

𝑁 (𝑡))+𝑋
∗

𝑁
(𝑡 − 𝜏
𝑁 (𝑡)))+𝐼𝑁 (𝑡)]

− [𝑘
𝑁
− 𝑟
𝑁
𝑋
∗

𝑁
(𝑡)]

× 𝐺 [𝑤
2

𝑃
𝑋
∗

𝑃
(𝑡 − 𝜏
𝑃 (𝑡))

−𝑤
2

𝑁
𝑋
∗

𝑁
(𝑡 − 𝜏
𝑁 (𝑡)) + 𝐼𝑁 (𝑡)] .

(20)

Construct the auxiliary functions 𝐹
𝑃
(𝑢), 𝐹

𝑁
(𝑢) defined on

[0, +∞) as follows:

𝐹
𝑃 (𝑢) := (𝑢 − 1 + 𝑟𝑃𝐵𝑠) ℓ1 + sup

𝑡∈R

𝐶
𝑃
𝑒
𝑢𝜏
⊤

𝑃

1 − ̇𝜏
𝑃
(𝜐
−1

𝑃
(𝑡))
,

𝐹
𝑁 (𝑢) := (𝑢 − 1 + 𝑟𝑁𝐵𝑠) ℓ2 + sup

𝑡∈R

𝐶
𝑁
𝑒
𝑢𝜏
⊤

𝑁

1 − ̇𝜏
𝑁
(𝜐
−1

𝑁
(𝑡))
.

(21)

One can easily show that 𝐹
𝑃
(𝑢), 𝐹

𝑁
(𝑢) are well defined

and continuous. Assumption (19) implies that 𝐹
𝑃
(0) < 0,

𝐹
𝑃
(𝑢) → +∞ as 𝑢 → +∞ and 𝐹

𝑁
(0) < 0, 𝐹

𝑁
(𝑢) → +∞ as

𝑢 → +∞. It follows that there exists a common 𝜆 > 0 such
that 𝐹

𝑃
(𝜆) < 0 and 𝐹

𝑁
(𝜆) < 0.

Consider the Lyapunov functional

𝑉 (𝑡) = [ℓ1 |𝑋 (𝑡)| + ℓ2 |𝑌 (𝑡)|] 𝑒
𝜆𝑡

+ ∫

𝑡

𝑡−𝜏
𝑃
(𝑡)

𝐶
𝑃

1 − ̇𝜏
𝑃
(𝜐
−1

𝑃
(𝑠))
|𝑋 (𝑠)| 𝑒

𝜆(𝑠+𝜏
⊤

𝑃
)
𝑑𝑠

+ ∫

𝑡

𝑡−𝜏
𝑁
(𝑡)

𝐶
𝑁

1 − ̇𝜏
𝑁
(𝜐
−1

𝑁
(𝑠))
|𝑌 (𝑠)| 𝑒

𝜆(𝑠+𝜏
⊤

𝑁
)
𝑑𝑠.

(22)

Calculating the upper right derivative of 𝑉(𝑡) along system
(1), one has
𝐷
+
𝑉 (𝑡)

≤ 𝜆 [ℓ
1 |𝑋 (𝑡)| + ℓ2 |𝑌 (𝑡)|] 𝑒

𝜆𝑡

+ 𝑒
𝜆𝑡
ℓ
1
[− |𝑋 (𝑡)|

+
󵄨󵄨󵄨󵄨[𝑘𝑃 − 𝑟𝑃 (𝑋 (𝑡) + 𝑋

∗

𝑃
(𝑡))]

× 𝐺 [𝑤
1

𝑃
(𝑋 (𝑡 − 𝜏

𝑃 (𝑡)) + 𝑋
∗

𝑃
(𝑡 − 𝜏
𝑃 (𝑡)))

− 𝑤
1

𝑁
(𝑌 (𝑡−𝜏

𝑁 (𝑡)) + 𝑋
∗

𝑁
(𝑡−𝜏
𝑁 (𝑡)))

+𝐼
𝑃 (𝑡)]

− [𝑘
𝑃
− 𝑟
𝑃
𝑋
∗

𝑃
(𝑡)]

× 𝐺 [𝑤
1

𝑃
𝑋
∗

𝑃
(𝑡 − 𝜏
𝑃 (𝑡))

−𝑤
1

𝑁
𝑋
∗

𝑁
(𝑡 − 𝜏
𝑁 (𝑡)) + 𝐼𝑃 (𝑡)]

󵄨󵄨󵄨󵄨󵄨
]

+ 𝑒
𝜆𝑡
ℓ
2
[− |𝑌 (𝑡)|

+
󵄨󵄨󵄨󵄨󵄨
[𝑘
𝑁
− 𝑟
𝑁
(𝑌 (𝑡) + 𝑋

∗

𝑁
(𝑡))]

× 𝐺 [𝑤
2

𝑃
(𝑋 (𝑡 − 𝜏

𝑃 (𝑡)) + 𝑋
∗

𝑃
(𝑡 − 𝜏
𝑃 (𝑡)))

− 𝑤
2

𝑁
(𝑌 (𝑡 − 𝜏

𝑁 (𝑡)) + 𝑋
∗

𝑁
(𝑡 − 𝜏
𝑁 (𝑡)))

+𝐼
𝑁 (𝑡)]

− [𝑘
𝑁
− 𝑟
𝑁
𝑋
∗

𝑁
(𝑡)]

× 𝐺 [𝑤
2

𝑃
𝑋
∗

𝑃
(𝑡 − 𝜏
𝑃 (𝑡))

−𝑤
2

𝑁
𝑋
∗

𝑁
(𝑡 − 𝜏
𝑁 (𝑡)) + 𝐼𝑁 (𝑡)]

󵄨󵄨󵄨󵄨󵄨
]

+
𝐶
𝑃

1 − ̇𝜏
𝑃
(𝜐
−1

𝑃
(𝑡))
|𝑋 (𝑡)| 𝑒

𝜆(𝑡+𝜏
⊤

𝑃
)

− 𝐶
𝑃

󵄨󵄨󵄨󵄨𝑋 (𝑡 − 𝜏𝑃 (𝑡))
󵄨󵄨󵄨󵄨 exp [𝜆 (𝑡 − 𝜏𝑃 (𝑡) + 𝜏

⊤

𝑃
)]

+
𝐶
𝑁

1 − ̇𝜏
𝑁
(𝜐
−1

𝑁
(𝑡))
|𝑌 (𝑡)| 𝑒

𝜆(𝑡+𝜏
⊤

𝑁
)

− 𝐶
𝑁

󵄨󵄨󵄨󵄨𝑌 (𝑡 − 𝜏𝑁 (𝑡))
󵄨󵄨󵄨󵄨 exp [𝜆 (𝑡 − 𝜏𝑁 (𝑡) + 𝜏

⊤

𝑁
)] ,

(23)
which leads to
𝐷
+
𝑉 (𝑡)

≤ [(𝜆 − 1) ℓ1𝑒
𝜆𝑡
|𝑋 (𝑡)| + (𝜆 − 1) ℓ2𝑒

𝜆𝑡
|𝑌 (𝑡)|]

+ 𝑒
𝜆𝑡
ℓ
1
[𝑘
𝑃
𝐿 (𝑤
1

𝑃

󵄨󵄨󵄨󵄨𝑋 (𝑡 − 𝜏𝑃 (𝑡))
󵄨󵄨󵄨󵄨

+ 𝑤
1

𝑁

󵄨󵄨󵄨󵄨𝑌 (𝑡 − 𝜏𝑁 (𝑡))
󵄨󵄨󵄨󵄨) + 𝑟𝑃 |𝑋 (𝑡)| 𝐵𝑠

+ 𝑟
𝑃
𝛿𝐿 (𝑤

1

𝑃

󵄨󵄨󵄨󵄨𝑋 (𝑡 − 𝜏𝑃 (𝑡))
󵄨󵄨󵄨󵄨

+𝑤
1

𝑁

󵄨󵄨󵄨󵄨𝑌 (𝑡 − 𝜏𝑁 (𝑡))
󵄨󵄨󵄨󵄨)]
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+ 𝑒
𝜆𝑡
ℓ
2
[𝑘
𝑁
𝐿 (𝑤
2

𝑃

󵄨󵄨󵄨󵄨𝑋 (𝑡 − 𝜏𝑃 (𝑡))
󵄨󵄨󵄨󵄨

+ 𝑤
2

𝑁

󵄨󵄨󵄨󵄨𝑌 (𝑡 − 𝜏𝑁 (𝑡))
󵄨󵄨󵄨󵄨)

+ 𝑟
𝑁 |𝑌 (𝑡)| 𝐵𝑠 + 𝑟𝑁𝛿𝐿 (𝑤

2

𝑃

󵄨󵄨󵄨󵄨𝑋 (𝑡 − 𝜏𝑃 (𝑡))
󵄨󵄨󵄨󵄨

+𝑤
2

𝑁

󵄨󵄨󵄨󵄨𝑌 (𝑡−𝜏𝑁 (𝑡))
󵄨󵄨󵄨󵄨)]

+
𝐶
𝑃

1 − ̇𝜏
𝑃
(𝜐
−1

𝑃
(𝑡))
|𝑋 (𝑡)| 𝑒

𝜆(𝑡+𝜏
⊤

𝑃
)

− 𝐶
𝑃

󵄨󵄨󵄨󵄨𝑋 (𝑡 − 𝜏𝑃 (𝑡))
󵄨󵄨󵄨󵄨 𝑒
𝜆𝑡

+
𝐶
𝑁

1 − ̇𝜏
𝑁
(𝜐
−1

𝑁
(𝑡))
|𝑌 (𝑡)| 𝑒

𝜆(𝑡+𝜏
⊤

𝑁
)

− 𝐶
𝑁

󵄨󵄨󵄨󵄨𝑌 (𝑡 − 𝜏𝑁 (𝑡))
󵄨󵄨󵄨󵄨 𝑒
𝜆𝑡

≤ [(𝜆 − 1 + 𝑟
𝑃
𝐵
𝑠
) ℓ
1
+ sup
𝑡∈R

𝐶
𝑃
𝑒
𝜆𝜏
⊤

𝑃

1 − ̇𝜏
𝑃
(𝜐
−1

𝑃
(𝑡))
]

× 𝑒
𝜆𝑡
|𝑋 (𝑡)|

+ [(𝜆 − 1 + 𝑟
𝑁
𝐵
𝑠
) ℓ
2
+ sup
𝑡∈R

𝐶
𝑁
𝑒
𝜆𝜏
⊤

𝑁

1 − ̇𝜏
𝑁
(𝜐
−1

𝑁
(𝑡))
]

× 𝑒
𝜆𝑡
|𝑌 (𝑡)|

≤ −𝑐
1 [|𝑋 (𝑡)| + |𝑌 (𝑡)|] 𝑒

𝜆𝑡
,

(24)

where 𝑐
1
:= −(1/2)max{𝐹

𝑃
(𝜆), 𝐹
𝑁
(𝜆)} > 0. We have from the

above that 𝑉(𝑡) ≤ 𝑉(𝑡
0
) and

min {ℓ
1
, ℓ
2
} 𝑒
𝜆𝑡
(|𝑋 (𝑡)| + |𝑌 (𝑡)|) ≤ 𝑉 (𝑡) ≤ 𝑉 (0) , 𝑡 ≥ 0.

(25)

Note that

𝑉 (0) = [

[

(ℓ
1
+ ℓ
2
) + 𝜏
⊤

𝑃
sup
𝑠∈[−𝜏⊤𝑃 ,0]

𝐶
𝑃

1 − ̇𝜏
𝑃
(𝜐
−1

𝑃
(𝑠))
𝑒
𝜆𝜏
⊤

𝑃

+𝜏
⊤

𝑁
sup
𝑠∈[−𝜏⊤𝑁,0]

𝐶
𝑁

1 − ̇𝜏
𝑁
(𝜐
−1

𝑁
(𝑠))
𝑒
𝜆𝜏
⊤

𝑁]

]

󵄩󵄩󵄩󵄩𝜓 − 𝜓
∗󵄩󵄩󵄩󵄩 ,

(26)

where 𝜓∗(𝑠) = 𝑋∗(𝑠), 𝑠 ∈ [−𝜏, 0]. Then there exists a positive
constant𝑀 > 1 such that

󵄨󵄨󵄨󵄨𝑋𝑃 (𝑡) − 𝑋
∗

𝑃
(𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑀

󵄩󵄩󵄩󵄩𝜓 − 𝜓
∗󵄩󵄩󵄩󵄩 𝑒
−𝜆𝑡
,

󵄨󵄨󵄨󵄨𝑋𝑁 (𝑡) − 𝑋
∗

𝑁
(𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑀

󵄩󵄩󵄩󵄩𝜓 − 𝜓
∗󵄩󵄩󵄩󵄩 𝑒
−𝜆𝑡
.

(27)

The proof is complete.

Set 𝛿 = (1−(𝐾𝑊+𝑅𝐼))/2𝑅𝑊. It follows fromCorollary 4
andTheorem 5 the following.

Corollary 6. Suppose that (𝐻
1
), (𝐻̂
2
), and (𝐻

3
) hold. If there

exist constants ℓ
1
> 0, ℓ
2
> 0 such that

(1 − 𝑟
𝑃
𝐵
𝑠
) ℓ
1
> sup
𝑡∈R

𝐿 (𝛼
𝑃
ℓ
1
𝑤
1

𝑃
+ 𝛼
𝑁
ℓ
2
𝑤
2

𝑃
)

1 − ̇𝜏
𝑃
(𝜐
−1

𝑃
(𝑡))

,

(1 − 𝑟
𝑁
𝐵
𝑠
) ℓ
2
> sup
𝑡∈R

𝐿 (𝛼
𝑃
ℓ
1
𝑤
1

𝑁
+ 𝛼
𝑁
ℓ
2
𝑤
2

𝑁
)

1 − ̇𝜏
𝑁
(𝜐
−1

𝑁
(𝑡))

,

(28)

where

𝛼
𝑃
:= 𝑘
𝑃
+ 𝑟
𝑃

1 − (𝐾𝑊 + 𝑅𝐼)

2𝑅𝑊
,

𝛼
𝑁
:= 𝑘
𝑁
+ 𝑟
𝑁

1 − (𝐾𝑊 + 𝑅𝐼)

2𝑅𝑊
,

(29)

𝜐
−1

𝑃
(𝑡) and 𝜐−1

𝑁
(𝑡) are defined asTheorem 5, then system (1) has

exactly one almost periodic solution𝑋∗(𝑡) in the region

𝐵
∗
= {𝜓 | 𝜓 ∈ 𝐵,

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐵 ≤

1 − (𝐾𝑊 + 𝑅𝐼)

2𝑅𝑊
} , (30)

which is locally exponentially stable.

4. An Example

In this section, we give an example to demonstrate the results
obtained in previous sections. Consider a Wilson-Cowan
type model with time-varying delays as follows:

𝑑𝑋
𝑃 (𝑡)

𝑑𝑡
= −𝑋
𝑃 (𝑡) + [𝑘𝑃 − 𝑟𝑃𝑋𝑃 (𝑡)]

× 𝐺 [𝑤
1

𝑃
𝑋
𝑃
(𝑡 − 𝜏
𝑃 (𝑡))

−𝑤
1

𝑁
𝑋
𝑁
(𝑡 − 𝜏
𝑁 (𝑡)) + 𝐼𝑃 (𝑡)] ,

𝑑𝑋
𝑁 (𝑡)

𝑑𝑡
= −𝑋
𝑁 (𝑡) + [𝑘𝑁 − 𝑟𝑁𝑋𝑁 (𝑡)]

× 𝐺 [𝑤
2

𝑃
𝑋
𝑃
(𝑡 − 𝜏
𝑃 (𝑡))

−𝑤
2

𝑁
𝑋
𝑁
(𝑡 − 𝜏
𝑁 (𝑡)) + 𝐼𝑁 (𝑡)] ,

(31)

where 𝑘
𝑃
= 𝑘
𝑁
= 1, 𝑟

𝑃
= 𝑟
𝑁
= 0.01, 𝑤1

𝑃
= 𝑤
2

𝑃
= 𝑤
1

𝑁
=

𝑤
2

𝑁
= 0.1, 𝜏

𝑃
(𝑡) = 𝜏

𝑁
(𝑡) = 0.1𝑡 + 10, 𝐼

𝑃
(𝑡) = 7 sin√7𝑡, 𝐺(𝑣) =

tanh(𝑣), and 𝐼
𝑁
(𝑡) = 7 cos√2𝑡. It is easy to calculate that

𝐾 = 1, 𝑊 = 0.2, 𝑅 = 0.01, 𝐼 = 7,

𝜐
−1

𝑃
(𝑡) = 𝜐

−1

𝑁
(𝑡) =

(𝑡 + 10)

0.9
,

𝐿 = 𝐵
𝑠
= 1, 𝛿 = 182.5.

(32)

It is easy to check that (𝐻
1
) and (𝐻̂

2
) hold. ByCorollary 4, (31)

has a unique almost periodic solution 𝑋∗(𝑡) in region 𝐵∗ =
{𝜓 | 𝜓 ∈ 𝐵, ‖𝜓‖

𝐵
≤ 182.5}. Setting ℓ

1
= ℓ
2
= 0.5, we can

check that (𝐻
3
) and (28) hold and hence 𝑋∗(𝑡) is exponen-

tially stable in𝐵∗. Figure 2 shows the transient behavior of the
unique almost periodic solution (𝑋

𝑃
(𝑡), 𝑋
𝑁
(𝑡)) in 𝐵∗. Phase

portrait of attractivity of𝑋
𝑃
and𝑋

𝑁
is illustrated in Figure 3.
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Figure 2: Transient behavior of the almost periodic solution of (31)
located in 𝐵∗.
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Figure 3: Phase portrait of attractivity of the unique almost periodic
solution of (31) located in 𝐵∗.

5. Concluding Remarks

In this paper, we investigate Wilson-Cowan type model and
obtain the existence of a unique almost periodic solution and
its delay-based local stability in a convex subset. Our results
are new and can reduce to periodic case, hence, complement
existing periodic ones [7, 8].We point out that there will exist
multiple periodic (almost periodic) solution for system (1)
under suitable parameter configuration. However, it is diffi-
cult to analyze itsmultistability of almost periodic solution by
the existing method [10, 11, 13, 14]. We leave it for interested
readers.
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