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This paper investigates the existence and nonexistence of positive solutions for a class of fourth-order nonlinear differential equation
with integral boundary conditions. The associated Green’s function for the fourth-order boundary value problems is first given, and
the arguments are based on Krasnoselskii’s fixed point theorem for operators on a cone.

1. Introduction

In this paper, we consider the following fourth-order bound-
ary value problems (BVPs) with integral boundary conditions

Xty =w® f(Lx®),x" 1), te©1),

1

x(0) = J hy (s) x (s)ds,

0

—

x(1) =j ki (s) x (s)ds, M

0

—_

x"(0) j h, (s) x" (s)ds,

X" (1) J k, (s) x" (s)ds,

R

o

where w may be singular at t = 0 and(or) t = 1, f :
[0,1] x [0,+400) X (—00,0] — [0,+00) is continuous, and
hy,hy, ky, k, € L'[0, 1] are nonnegative.

The existence of solutions for nonlinear higher-order
nonlocal BVPs has been studied by several authors, for exam-
ple, see [1-9] and the references therein. However, there are
a few papers dealing with the existence of positive solu-
tions for the fourth-order boundary value problems with
integral boundary conditions, see [7-15]. For the case of

hy, h,, ky, k, = 0, BVP (1) reduces to the following two-point
BVP

e =w®) f(tx@),x"®), te(1),

_ _n —on _ (2)
x(0)=x(1)=x"(0)=x"(1)=0.

A great deal of research has been devoted to the existence
of solutions for problem (2) by using the Leray-Schauder
continuation method, topological degree, and the method of
lower and upper solutions.

For the case of h; = g, h, = h, k; = 0, k, = 0or h; =
0, h, =0, k; = g, and k, = h, BVP (1) reduces to the follow-
ing BVP with integral boundary conditions

O=we) f(Lx®),x"®), te©1),
1

x0) = | 9©x s

. X (1) =0, (3)
1
x"(0) = L hs)x"(s)ds, x"(1)=0,

or

Xty =w® f(Lx®),x"®), te(1),

1
x(0) =0, x(1) = J g (s) x (s)ds, (4)

0

x"(0) =0, X" (1) = Ll h(s)x" (s)ds.



By using the fixed point theorem of cone expansion and
compression of norm type, Zhang and Ge [11] have obtained
the existence and multiplicity of positive solutions for BVP
(3) and (4).
The following assumptions will stand throughout this

paper:

(Al) wis nonnegative, and w € L'[0,1] may have singular-

itiesatt = 0 and(or) t = 1;
(A2) f € C([0,1] x [0, +00) x (=00,0], [0, +00));

(A3) hy, hy, ky, k, € L'[0, 1] are nonnegative and

1
h=1- I hy(s)ds > 0,
0

1
vp=1- L ki(s)ds > 0,

(5)
1
=1 JO hy(s)ds > 0,

1
v, =1- J ky(s)ds > 0.
0

The paper is organized as follows. In Section 2, we provide
some necessary background material such as the Krasnosel-
skii’s fixed point theorem in cones. The associated Green’s
function for the fourth-order boundary value problem is first
given, and we also look at some properties of the Green’s
function associated with the problem (1). In Section 3, the
main results of problem (1) will be stated and proved. In
Section 4, we give an example to illustrate how the main
results can be used in practice.

2. Preliminary Results
In our main results, we will make use of the following lemmas.

Lemma 1 (in [16]). Let Q; and Q, be two bounded open sets
in a real Banach space E, such that 0 € Q, and Q, c Q,. Let
operator A : Pﬂ(Q_z\Ql) — P be continuous, where 0 denotes
the zero element of E and P is a cone in E. Suppose that one of
the two conditions

(1) |Ax]l < |lx]l, Vx € P noQy and |Ax|| > ||x|, Vx €
PnoQ, or

(2) IAx]l = llx|l, Vx € PnoQ; and |Ax| < |x|, Vx €
PNoQ, is satisfied. Then, A has at least one fixed point
inPn(Q,\Q).

Lemma 2. If h,k € L'[0,1] are nonnegative, and u = 1 —

_[01 h(s)ds >0, v=1- Jol k(s)ds > 0, then for any y € C(0, 1),
the BVP

") =y(), te(01),
1
x(0) = L h(s) x (s)ds, 6)

1
x(1) = Jo k (s) x (s)ds,
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has a unique solution x which is given by

1
x(t) = L H(t,s) y (s)ds, (7)

where

— t (!
Hts)=Gt,s)+ -t J k(1) G (s, 7)dr
mv +nu Jo

1 ®)
novt J h(1)G (s, 7)dr,
mv +nu Jo
C[s(-p, 0ss<t<],
G(t’s)_{t(l—s), 0<t<s<l, ©)

1 1
m = J sh(s)ds, n=1- J sk (s)ds. (10)
0

0

Proof. The general solution of ") = y(t) can be written
as

x(t)=- Lt (t—s)y(s)ds+ At + B. 1)

Now, we solve for A, B by x(0) = J: h(s)x(s)ds and x(1) =
[} k(s)x(s)ds, it follows that

B=- Ll h(1) JT (t—s)y(s)dsdr

0

1 1
+ A J th(r)dr + B J h(1)dr,
0 0

—Jl(l—s)y(s)d5+A+B (12)
0

= —Jlk(T) JT(T—S)y(S)deT
0

0

1 1
+ A J 7k ()dT + B J k (7)dt,
0

0

that is,
1 1
AJO Th(T)dT—B<1 - .[o h(T)dT>

= Jl h(t) r (t—s) y(s)dsdr,

0 0

A <1 - Ll ok (T)dT) +B (1 - Ll k (T)dr)

1 1 T
= J (I-s)y(s)ds— J k(T)J (t—s)y(s)dsdr.
0 0 0 1)
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Solving the above equations, we get

1 T
A= mv + ny [v JO h(1) L (T -9)y(s)dsdr
1
Ty <L (1 =s)y(s)ds
1 T
—J k(ﬂj (T—S)y(S)dsdr>],
0 0
1 1
B +ny [m<L (1=s)y(s)ds

_ Ll k(1) J: (t—3$)y(s)ds dT>

-n JOI h(7) JOT (T —s)y(s)ds dr] .
(14)

Therefore, (6) has a unique solution

x(t)= — L (t—s)y(s)ds+ p——
X [vt J: h(1) JOT (t—s)y(s)dsdr
1 1
+‘1,n‘<J0 (I-s)y(s)ds— L k(1)
x JT (- 5)y(s)ds dT> (15)
0
1 1
+m (L (1- 8)p(s)ds - JO k(7)

X J: (t—s)y(s)ds d‘r>

-n Jol h(7) JOT (t—s)y(s)ds dr] .

The unique solution of (6) be expressed as

t 1
x(t) = Jos(l—t)y(s)ds+Jt t(1—s)y(s)ds+ pv—

1 1
X [ﬂtj Tk (T)dTJ (1—s)y(s)ds—put
0 0
1
xj (I-s)y(s)ds—vt
0

X Ll th(t)dr Ll (I =s)y(s)ds

1 T
+ vtj h(7) J (T —s)y(s)dsdr + ut
0 0

1
X J (I =s)y(s)ds — ut
0

x jol k@ [ - 9podsdr
+ Ll oh (r)dr Ll (1= $)y(s)ds - Ll h (r)dr
x j ko [ - 9ydsar - j h(o)

« LT (7 = $)y(s)ds dr + Ll ok (1)dr

« Ll h(z) LT (7 = $)y(s)ds dr - Ll ok (1)dr

1 1
X L th (1)dr L (I =s)y(s)ds

1 1 1
+ L th(1)dr L 7k (1)dT L 1- s)y(s)ds]

- jots(l ~ Hy(s)ds + jtl -9yl
x [//tt (Ll k() LTS (1-7)y(s)dsdr
-
+ JO k() j = —s)y(s)dsdT)
vt (Jol h(z) JOT s (1= 1)y(s)ds dr
-
. L h(z) J (1 —s)y(s)dsdr)
+ (Ll h() JOT s(1 - )y(s)ds dr
. Ll h(z) f (1= 5)y(s)ds d-r)
—ﬂwmm
< (Jol h(z) JOT s (1= 1)y(s)ds dr
-
. L h() J = —s)y(s)dsdr)
+ Ll th(z)dr

y <Ll k(7) JOT s (1= 1)y(s)ds dr

+ Ll k(1) Ll T(1-3s)y(s)ds d‘r>]



1

= J G(t,s) y(s)ds
0

1 1
+ X [ptt L k(1) L G (s,7)y(s)dsdr

mv +ny

1 1
— vt J h(1) J G (s, 7)y(s)dsdr
0 0

1 1
+ J h(1) J G(s,7)y(s)dsdr
0 0

1

1
Tk (1)dt J h(1)
0

—_

x | G(s,7)y(s)dsdr

I
I

+ Jl th (1)dr Ll k(1)

0

—_

X J G (s, 7)y(s)ds dr]
0

= Jl G(t,s) y(s)ds
0

+ m+ pt le(S)Jlk(T)G(S,T)deS

mv + np Jo 0

n—vt
+

1 1
J y(s) J h(t)G (s,7)drds.
0 0

mv + ny
(16)
Therefore, the unique solution of (6) is x(f) =

[} H(t,9)y(s)ds.

Lemma 3 (in [11]). Ifh,k € L'[0, 1] are nonnegative, then,

1) n>wv,
(2) G(t,s) > 0, forallt,s € (0,1), G(t,s) = 0, forall
t,s € [0,1],

(3) Letting e(t) = t(1 —t), forallt,s € [0,1], one has
e(t)e(s) < G(t,s) < G(t,t) = e(t) < 1/4,

(4) Letting § = (0,1/2),J5 = [8,1 — 6], forallt €
Js»s € [0,1], we have G(t, s) > 8G(s, s), where G(t, s)
is defined by (9).

Lemma 4. If h,k € L'[0,1] are nonnegative, and u = 1 —
_[01 h(s)ds > 0,v =1 - Iol k(s)ds > 0, for function H(t,s), we
have the following properties:

(1) H(t,s) > 0, forallt,s ¢
0, for all t,s € [0,1],

(2) pe(t)e(s) < H(t,s) < ne(s), for all t,s € [0,1],
(3) H(t,s) > 8H(s,s), t € Js>»s € [0,1],

0,1), Ht,s) =

where p = (1/(mv + np))(u Iol e()k(t)dr +v Jol e(t)h(t)dr),
n=m+n+u(l-v))/(mv+ny).
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Proof.
(1) From (8) and Lemma 3, we get (1).
(2) Forallt,s € [0, 1], by (8) and Lemma 3, we have

F(ts)=Gts)+

1
J k(t)G(s,1)dt
mv +nu Jo

_ 1
+ vt J h(t)G(s,7)dr
mv +nu Jo

1
> mtpt J k(t)G(s,7)dr
mv +nu Jo

_ 1
+ 2 vt J h(1)G(s,7)dr
mv +nu Jo

e(s)

T omv+ny

1
<;,tt J e(t)k(r)dr
0

+(1- t‘)vJ1 e(r)h(r)dr)
0

> c®e® (;4 JOI e(Mk()dr+v Jl e(t)h (T)dT)

mv + ny 0
=pe(t)e(s),

1
H(ts)=Gts)+ j k(1) G (s, T)dr
mv +ny Jo

_ 1
+ 2 vt J h(1)G(s,7)dr
mv +nu Jo

t
<G(s,s)+ mrH

1
J k(1) G (s,s)dr
mv +nu Jo

_ 1
+ 2 vt J h(1)G(s,s)dr
mv +nu Jo

1
:e(s)<1+ m+ pt J k(r)dr
mv+n

U Jo

+ novi Jl h(r)dr)

mv +ny Jo

e(s)

T omv+ny

(mv+npt+(m+/4)

1 1
X L k(t)dr+n Jo h (T)dT>
=ne(s).
(17)

(3) Forallt € J5,s € [0,1], by (8) and Lemma 3, we have

m+ ut

H(t,s) = G(t,s) + J.l k(t)G(s,T)dr
0

mv + ny

n-—vt
+

1
J- h(t)G(s,7)dr
mv +nu Jo
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S (m+us) (! S S
> 0G (S,S) + m—-’-n‘“ JO k(T)G(S, T)dT P = mv, +
B . 1 1
" d(n-vs) J h(7)G (s, 7)dt X (yl J e (1) k(1) dr + v, J e(t)hy (1) dr>,
mv+nyu Jo 0 0
=8H (s,s). pZZ;
(18) MV, + Myl
1 1
0 X (;42 J e (1) ky(1)dT + v, J e (1) hy(7) d‘r> .
0 0
Lemma 5. Assume that (A1)-(A3) holds. If x(t) € C?[0,1] is (24)
a solution of the following integral equation
Proof. By using Lemma 3, the conclusions for (1) and the first
1 " part of (2) are obvious.
x(t) = (Tx) () = Jo H(t,s)w(s) f (s,x (s),x (s))ds, By using by (21) and Lemma 3, we have
(19) !
Hy(t7) = G(t, 1)+ i F it J k, (v) G (z,v)dv
mvy +mpy Jo

then x(t) € C?*[0,1] N C*(0, 1) is a solution of BVP (1), where

_ 1
1 +nl—vltj hy(v) G (r,v) dv
H(t,s) =f H, (t,7) H, (7, 5)dr, (20) VL F i Jo
0

1
et (L < :11+ MJ }lkl(s)ds (25)
H,(t,7)=G(t,7)+ 2Tl J k, (v) G (1, v)dv VL F i Jo

myvy +nyy Jo

_ 1
+ ’ql—w J lhl (s)ds

O vt Jl hy ()G (5, v)dv, myvy +nypy Jo
myvy + gy Jo m
(21) < —.
4
! Similarly, by (22), t
H, (1,5) = G (1,5) + Lfﬂj ky (v) G (s, v)dv imilarly, by (22), we ge
myv, +n
Vo il Jo HZ(T,S)S@. (26)
4
n,—v,t (!
L — J hy (v) G (s, v)dv, So, by (20), (25), and (26), we concluded
myv, + i, Jo
22 !
22 Hts) :J H, (t, 1) H, (r,9dr < 2 (27)
1 1 0 16
m = L shy (s)ds, m=1- L sk, (s)ds, By using Lemmas 3 and 4, we have
: s ) 1 Lol
m, = J shy(s)ds, ny,=1- J sk, (s)ds. H<5’5> - JO H, <§’T> H, (v, s)de
0 0
1
Proof. By using Lemma 2, the conclusion is obvious. O 2 % Jo e(1)H, (1, s)dr (28)
Lemma 6. If (A3) holds, then one has the following three 1
properties: > %e(s) L ¢ (r)dr = %’Z@(s).
(1) H(t,s) > 0, for all t,s € (0,1), O
(2) 0 < H(t,s) <mn,/16, t,s € [0,1], Let E = C?[0, 1]. Then E is a Banach space with the norm
lxll, = llxll + Ilx"ll, where lxll = max,epolx@®)l, <"l =
(3) H(1/2,5) = (p,p,/120)e(s), for all s € [0,1], maxte[o,1]|x”(t)|-
where For a fixed § = (0,1/2), J5 = [§,1 — §], define the cone
K c Eby
U:m1+n1+."ll(1_"1) Ki{ E:x>0 x" <0 mi > 62
1 vy + 24ix€E: x>0, x < ,rtréglx()_ [l 5

(29)
" = My + 1, + sy (1-v,) maxx" (£) < —&° “x""}
: myv, + i, ’ te]s B '




It’s easy to prove that K is a closed convex cone, and
lx (O] +|x"(®)] 2 &lIxll,, tes, xeK.  (30)

Lemma 7. If (A1)-(A3) hold, then T(K) ¢ K, and T : K —
K is completely continuous.

Proof. By the properties of Green’s function, if x € C*[0,1]
then Tx € C*[0,1] and

1
(Tx)" () = - L Hy (65)w(s) f (5x(5),x"(9))ds. (3D)

For all x € K, we have by (19) and (31)

(Tx)(t) 20,  (Tx)"(t) <0, (32)
1 1

o< | | [G(r,m’”‘—”“
0 Jo mvy + 1y

1
X J ky (v) G (v, v)dv
0

1
PR S— J h, (v)G (v, v)dv]

mvy +my Jo
x H, (1,5)w(s) f (s, x(s), x”(s))dr ds,
(33)

my +
myv, + myl,

“(Tx)”" < JOI [G(s, s) +

< jl k, ()G (1, 7)dr
0 (34)

PR B Jl h, (t) G (1, T)dT]

myv, + iy, Jo

xw(s)f (s,x (s),x"(s))ds.
On the other hand, by (19), (33), and Lemma 3, we obtain

min (Tx) (t)

tefs

11

my + Ut
=minJ J [G(t,‘r)+l—‘u1
tels Jo Jo my vy + ny

1
— vt

X J ki(v)G(T,v)dv + Lo W e L

0 myvy + nythy

1
X J hy(v)G (T, v)dv]
0

xH, (1,8)w(s) f (s, x(s), x”(s))dr ds
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1 p1 )
> 6J J [G (T, T) + M
0 Jo myvy + iy

X Jl K (V)G (v, v)dv + =1 0=0)
0

mvy +my
1

X J hy (v)G (v, v) dv]
0

xH, (1,5) w(s) f (s,x (s), x”(s))dT ds

11
> SZJ J [G(T,T)+ Mt
o Jo myvy + niy

1
xj k() G (v, v)dv
0

—m thl (V)G(v,v)dv]

myvy +nyiy Jo
xH, (1,8) w(s) f (s,x(s),x"(s))dr ds

> 8% | Tx] .
(35)
Similarly, by (31), (34), and Lemma 3, we obtain

max(Tx)" (t)
te]s

= —1};}? Jl H, (t,s)w(s) f (s, x(s), x"(s))ds

0

1
t
= —minj [G(t,s)+ iehile:

tels Jo MV, + i,

1
X J ky (1) G (s, T)dT

0

— vt 1
+&j h, (1) G (s, T)dt
myv, + i, Jo

xw(s) f (s,x (s) ,x"(s))ds

m, + i,
myv, + i,

< -8 Jl [G(s, s)+

0

1
X J ky ()G (r,7)dr
0

1
+LJ' h,(t) G (7, 7)dr
my v, + Ml Jo

xw(s) f (s,x (s) ,x”(s))ds

< -8 |(mx)"|.
(36)
So Tx C K, and then T(K) ¢ K.
Clearly, the operator T is continuous; thus by the Arzela-

Ascoli theorem, it follows that T' is completely continu-
ous. O



Discrete Dynamics in Nature and Society

3. Main Results
For convenience, we introduce the following notations:

K, ={xeK:|xl,<r}, K, = {x € K : ||xl, = r},

K,p={xeK:r<|x|, <R},

t,
fﬁ— lim sup maxf( xy)’
ixl+lyl - g €011 |x] + |y]

ft.xy)

B = liminf min
Ixl+1yl = Brel0,1] |x| + |y| (37)

Mg = max f(txy),

te[0,1],0<|x|+|y|<pB

1
L= <m + @>J- w (s)ds,
16 4 0

1-8
=<M+&>62J' e(s)w(s)ds.
120 4 6

Theorem 8. Assume that (Al1)-(A3) hold. In addition, one
supposes that one of the following conditions is satisfied
(Hy) Lf(t, x, y) < |x| + |yl, for all |x| +|y|#0,t € [0,1],
(H,) Nf(t,x,y) > |x| + |y, for all |x| +|y|#0,t € [0,1].

Then, the BVP (1) has no positive solution.

Proof. Case 1. The condition (H,) holds. Assume towards a
contraction that x* (¢) is a positive solution of BVP (1), from
the proof of Lemma 7 and (29), then x* € K, x*(¢) > 0 for
0 <t < 1. By Lemma 6 and (29), we have

)l = max [ (9] = max |Tx" ()]

= max
te(0,1]

< % Ll w (s) (|x* ()] + |x*” (s)|>ds

1 n
J H (t, s)w(s)f(s, x"(s),x" (s))ds
0

I/\

M
W], [ w s,

[+ = max |0 = max ()"
=t1€1%g;1(] J- H, (t, s)w(s)f(s,x (s),x" (s))
< EJ w(s)(|x (s)| 'x (s)|)
< Z—i|x ) Jolw(s)ds.
(38)
So, lx™ll, = lIx*Il + lx*"I| < (1/L)(1,/16 + /4" I

1
_[0 w(s)ds = [x*||,, which is a contradiction.

Case 2. The condition (H,) holds. Assume towards a contrac-
tion that x**(¢) is a positive solution of BVP (1), from the
proof of Lemma 7 and (29), then x™* € K, x™*(¢) > 0, for
0 <t < 1. By Lemmas 4 and 6 and (30), we have

[«"*| = max |x** ()] = max |Tx*" (¢)]
te[0,1] tef0,1]

> J: H(%,s) w(s) f (s,x** (s) " (s))ds

> % J e(s)w(s) <|x** (s)| + X (s)')ds
> % J;Se(s)w(s) (|x** ()] + X (s)|)d5

PiPa 2y wx 1-0
> 120N8 [l I, L e(s)w(s)ds,

n
* %

[« = max |+ @] = max (2)" )
= tre%nl(] J H, (t, s)w(s)f(s, (s),x" (s))ds

> JIH2<1,s)w(s)f(s X" (s), x**,(s))

> = J e(s)w(s) (|x** ()] + X (s)|)ds

4N

Po Q2 % 1-0
ZWG ||x 2L e(s)w(s)ds.

(39)

So, llx* I|2 = le**II + 1™ > (1/N)(ppy/120 + py/4)8

x|, Ja w(s)ds = [x**|l,, which is a contradiction,
and this completes the proof. O

Theorem 9. Assume that (Al1)-(A3) hold. In addition, one
supposes that one of the following conditions is satisfied

(Hy) Lf° <1 < Nf..,
(Hy) Lf® <1< Nf,.

Then, the BVP (1) has at least one positive solution.

Proof. Case 1. The condition (Hj) holds.

Considering Lf° < 1, then there exists r, > 0, such that
ft,x,y) < (f0 +&)(Ix| +|yl), fort € [0,1], (x, ) € {(x, y) :
0 < |x| + |yl < 1}, where & > 0, satisfies L(fO +g&)<1.

Then, fort € [0,1], x € E)K,l,by (19), (26), and Lemma 6,
we have

ITxl, = 1T+ |(Tx)" |

(’71’72
16

4)J w(s)f(s x(s),s (s))



IN

(B ) (1)

x Ll w(s) (Ix ()] + [x" (s)])ds

1
< (m + @) (£ +e) Il L w (s)ds < x|,

16 4
(40)
which means that
[ITxl, < lIxll,, for x € OK,. . (41)

Next, turning to Nf,, > 1, then there exists R, > 0, such
that f(t,x,y) = (fo — sl)(lxl +|yl), for t € [0,1],(x,y) €
{(x,¥) : 0 < |x| + |yl > R}, where &, > 0, satisfies N(f,, —
&) > 1.

Let R, = maX{Zrl,El/éz}, forallt € Js,x € BKRl. By
(30) and Lemma 6, we have

ITxl, = ITx] + |(Tx)"| = ITx (%)| + |(Tx)" <%>|

1
. (% ! %) L e w(s) f(sx(s),s" (s))ds

. (o

P2
222 B (fr-2)

1
x L e(s)w(s) (Ix ()] +|x" (5)|)ds

PiPr Po —_ )82
2<120+4>(f°° £) 0'lxl,

1-86
. j e(s)w(s)ds > [x[,
5

(42)

which means that

ITxl, = lxl,  for x € 9Ky . (43)

Case 2. The condition (H,) holds.

Considering Nf° > 1, then there exists , > 0, such that
flt,x,9) 2 (f° —&5)(xl +|yl), for t € [0,1], (x, ) € {(x, ») :
0 < |x| + |yl < r,}, where & > 0, satisfies N(f0 -&)> 1

Then, for t € J5,x € 0K, , by (30) and Lemma 6, we have

(5l )

PP P2 _
= (120 " 4>(f° &)

T,

\%

1
X L e(s)w(s) (Jx ()] +]x" (5)|)ds (44)

(B2 4 22) (f, - &) 8°)l,

vV

1-8
X J- e(s)w(s)ds = |x|,,
p)
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which means that

ITxl, = flxl,, ~ for x € K, . (45)

Next, turning to Lf*™ < 1, then there exists R, > 0, such
that f(t,x, y) < (f +e)(Ix| + |y]), for t € [0,1],(x, y) €
{(x, )« x|+ |yl > }_22}, where g, > 0, satisfies L(f* +¢,) < 1.

Let

= max
t€[0,1],0<|x[+|y|<R,

ftxy), (46)

R,
fort € [0,1], f(t, x, y) < Mg+ (f* + &) (x| + |y].

LetR, = max{ZrZ,EZ,LMﬁz/(l —L(f” +¢))} fort €
[0,1],x € BKRZ. By (26) and Lemma 6, we have

1
Il < (B2 + ) | w) f (5209, (9)ds

16 4
< (M, )
16 4

X (Mi2 Jl w(s)ds+ (7 +¢)

0
1
X J w(s) (|x ()] + |x” (s)|)ds>
0
< LMz + |xl,E (f®+e) <R, —L(f*+¢)R,

+IxlLL (f +&4) = lIxll,,
(47)

which means that

ITxl, < lxl,  for x € 9Ky, (48)

Applying Lemmal to (41) and (43), or (45), and (48)
yields that T has a fixed point x, € K, (i = 1,2) with
x,(t) = Olx,ll,,t € (0,1). Thus, it follows that BVP (1) has
at least one positive solution, and the theorem is proved. [

Theorem 10. Assume that (A1)-(A3) hold, as do the following
two conditions:

(Hs) Nfy > land Nf,, > 1,

(Hy) there exists b > 0, such that maX,e(o 1, o<+ y<bf (>
x,y) <b/L.

Then, the BVP (1) has at least two positive solutions
x,(t), x,,(t), which satisfy

0< el <b < Ix..l (49)

Proof. We choose r, Rwith0 <r <b <R.
If Nf, > 1, then by the proof of (45), we have

ITxll, 2 lIxll,  for flx]l, = 7. (50)
If Nf., > 1, then by the proof of (43), we have

ITxl, = lIxll,,  for [lx]l; = R. (51)
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On the other hand, by (H), for x € 0K;,, we have

iTeta < (B2 2) [T £ (5509, 9)ds

4
1 (52
M 1
< (1—62 + ZZ)Mb L w(s)ds = LM,
where Mb = maxte[o)l],0<|x|+|y|sbf(t, X, y) < b/L
By (52), we have
ITxll, < b = llx[l,. (53)

Applying Lemmal to (50), (51), and (53) yields that T'
has a fixed point x, € K,;, and a fixed point x,, € K.
Thus it follows that BVP (1) has at least two positive solutions
x, and x,,. Noticing (53), we have |x,|l, #b and |x, |, #b.
Therefore, (49) holds, and the proof is complete. O

Theorem 11. Assume that (A1)-(A3) hold, as do the following
two conditions:

(H,) Lf° < 1and Lf*® < 1,

(Hg) thereexist§ € (0,1/2) and B > 0 such that f(t, x, y) >
8’°B/N forallt e J5, x € [6’B, B] and y €
[-B,—8"Bl.

Then, the BVP (1) has at least two positive solutions
x*(t), x™* (t), which satisfy

0< x|, <B<|x™], (54)

Proof. We choose 7, Rwith 0 < 7 < B < R.
If Lf, < 1, then by the proof of (41), we have

[T, < Nl

If Lf,, < 1, then by the proof of (48), we have

for x|, =7. (55)

ITxl, < lxll,, for [x], = R. (56)
On the other hand, by (Hjy), for x € 0K, we have
P1P2
ez (%))
[Tx[l, oo 4 e(s)w(s) -

x f(s,x(s),5" (s))ds > B = |x].

Applying Lemma l to (55), (56), and (57) yields that T'
has a fixed point x, € K;p, and a fixed point x,, € KBR
Thus it follows that BVP (1) has at least two positive solutions
x, and x,, . Noticing (57), we have | x, ||, # Band | x,. |, # B.
Therefore, (54) holds, and the proof is complete. O

4. Example
Example 12. Consider the following fourth-order BVP
1 "

—flt,x({),x (t)),
vzf( 0),x" (1))

@) = te(0,1),

1 1
x(0) = Jo sx (s)ds, x(1) = L sx (s)ds, (58)

X 0) = JOI 2. n (5)ds, X (1) = JOI 2.n (s)ds.

9
By calculation, we obtain
1 1
1 1
=1-| sds=-, v-l—Jsds-—,
th L 5 1 . >
! 1 ! 2
mlzjszds:—, nl—l—Jszds——,
0 3 0 3
1 1
2 2
yzzl—jszds:—, vzzl—Jszds:—,
0 0 3
1 1 1
m2:Js3ds:—, nz—l—Jsds— (59)
0 4 0
5 1 1 1
’71—2) M, = 6’ P1—6> P2 10’
14 1
L=_3) 8=_)
96 3
181
_ 1813 (3v2-2) = 0.00032.
2187000

(1) About the nonexistence of positive solution, we con-
sider BVP (58) with

f(tx,y) =kie (x| + |y]) + k, |sin (Ix| + [y])] . (60)
where k; and k, are two positive real numbers, then

f(txy)
|| + ]|

f(txy)

< ek, +k,, —lxl N |y|

> k. (61)

If ek, + k, < 1/L or k; > 1/N, by Theorem 8, BVP
(58) has no positive solution.

(2) About the existence of positive solution, we consider
BVP (58) with

f(t.xy) = ket (Ixl + [y]) + &, [sin (x| + |y|)|,  (62)

where k; and k, are two positive real numbers, then

t, k
f, = liminf min ftxy) =5k,

lelyi—0eelol] x|+ [y] e

(63)
t) b
£ = limsup malxM =ky.
|x|+|y] = oo tef01] |x| + |y|

Ifk, < 1/Land k, > 1/N, then we have Lf™ < 1 <

Nf,. By Theorem 9, BVP (58) has at least one positive
solution.

(3) About the multiplicity of positive solution, we con-
sider BVP (58) with

f(txy)

e' sink, (x| + |¥])], x| +[y] < b,
. (64)
= 1 e |sink; (Ix] +|y|)|
L (40 (xl +y] - b)°
x|+ |y| > b,
ks |x|+|y|+1 e |y|
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where k, and k, are two positive real numbers, then

t, b
fo = liminf min M =k,
lxl+|y| — 0 telo1] |x] + ||
(65)
t) b
foo = limsup ma.xM = 2k,.
|x|+|y| = 00 tefo.1] x| + |}/|

If k;, > 1/N and k, > 1/2N, then we have Nf, > 1 and
Nfo > 1.

Furthermore, letting b > LM, > 143e/96, then we have
M, < b/L. By Theorem 10, BVP (58) has at least two positive
solutions.

Remark 13. 1In [4, 7-10], the existence of solutions for fourth-
order ordinary differential equations BVP has been treated
but did not discuss problems with singularities. Although,
[11] seems to have considered the existence of positive
solutions for the fourth-order BVP with integral boundary
conditions for the singularity allowed to appear att = 0
and/or t = 1. However, in [11], only the boundary conditions
x(0) = 0, x"(0) = 0, 0r x(1) = 0, x"(1) = 0 have
been considered. It is clear that the boundary conditions of
Example 12 are x(0) #0, x"(0)#0, and x(1)#0, x"(1)#0.
Hence, we generalize the fourth-order ordinary differential
equations BVP.
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