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By generalizing the restricted 𝑝-isometry property to the partially sparse signal recovery problem, we give a sufficient condition
for exactly recovering partially sparse signal via the partial 𝑙𝑝 minimization (truncated 𝑙𝑝 minimization) problem with 𝑝 ∈ (0, 1].
Based on this, we establish a simpler sufficient condition which can show how the 𝑝-RIP bounds vary corresponding to different
𝑝s.

1. Introduction

The partially sparse signal recovery (PSSR) is the problem of
recovering a partially sparse signal from a certain number of
linear measurements when the part of the signal is known
to be sparse, which was coined by Bandeira et al. [1, 2].
This type of problems has many applications in signal and
image processing, derivative-free optimizations, and so on;
see, for example, [1–4]. Clearly, PSSR includes sparse signal
recovery (SSR) as a special case. The latter is the well-
known NP-hard problem in the compressed sensing (CS),
which is also called cardinality minimization problem (CMP,
or 𝑙0-norm minimization problems); see, for example, [5–8].
In particular, Candés and Tao [8] introduced a restricted
isometry property (RIP) of a sensingmatrixwhich guarantees
to recover a sparse solution of SSR by minimizing its convex
relaxation (ℓ1-normminimization). However, there are some
problems which cannot be reformulated as an SSR, but
a PSSR. As we know, PSSR happens naturally in sparse
Hessian recovery; see, for example, [2], where Bandeira et al.
employed partially sparse recovery approach for building
sparse quadratic interpolation models of functions with
sparse Hessian. They have successfully applied the ℓ1-norm
minimization of PSSR in interpolation-based trust-region
methods for derivative-free optimization. Vaswani and Lu [3]
successfully applied modified CS (partially sparse recovery)
in image reconstruction, where the sufficient RIP condition
is weaker than the RIP for SSR. Moreover, Bandeira et al. [1]

considered the RIP and null space properties (NSP) for PSSR
and extended recovery results under noisy measurements to
the partially sparse case, where partial NSP is a necessary and
sufficient condition for PSSR. In [4], Jacques also established
the partial RIP condition for PSSR with noise via its convex
relaxation problem.

Note that in the CS context, the SSR problem can
also be relaxed to a 𝑙𝑝-norm minimization (truncated 𝑙𝑝-
minimization) problem with 0 < 𝑝 < 1; see, for example,
[9–19]. It is well known that Chartrand [20] firstly show that
fewer measurements are required for exact reconstruction if
we replace 𝑙1-norm with 𝑙𝑝-norm (0 < 𝑝 < 1), and Chartrand
and Staneva [10] established 𝑝-RIP conditions for exact SSR
via 𝑙𝑝-minimization. In particular, the numerical experiments
in magnetic resonance imaging (MRI) showed that this
approach works very efficiently; see [9] for details. Wang
et al. [19] studied the performance of 𝑙𝑝-minimization for
strong recovery and weak recovery where we need to recover
all the sparse vectors on one support with one sign pattern.
Moreover, Saab et al. [16] provided a sufficient condition for
SSR via 𝑙𝑝-minimization and provided a lower bound of the
support size up to which 𝑙𝑝-minimization can recover all
such sparse vectors, and Foucart and Lai [14] improved this
bound by considering a generalized version of RIP condition.
While SSR and 𝑙𝑝-minimization have been the focus point
of some recent research, there are fewer research related to
PSSR and the partially 𝑙𝑝-minimization. One may naturally
wonder whether we can generalize the 𝑝-RIP conditions
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introduced by [10] from the SSR to the PSSR case. This
paper will deal with this issue. We will give a different 𝑝-
RIP recovery condition for PSSR via its nonconvex relaxation.
Furthermore, based on the recent work by Oymak et al. [21],
we also extend our result to the matrix setting.

In the next section, we give the PSSR model and review
some preliminaries on 𝑝-RIP conditions. In Section 3, we
establish the exact partially 𝑝-RIP recovery conditions for
PSSR via its nonconvex 𝑙𝑝-minimization. In Section 4,we give
a sufficient condition for partially low-rank matrix recovery
via the partially Schatten-𝑝minimization problem.

2. Preliminaries

In this section, we will review some basic concepts and results
on the 𝑝-RIP recovery conditions for SSR and introduce
the 𝑝-RIP definition for PSSR. We begin with defining the
mathematical model of the PSSR problem as follows:

min ‖𝑥‖0, s.t. 𝐴1𝑥 + 𝐴2𝑦 = 𝑏, (1)

where the 𝑙0-norm ‖𝑥‖0 is defined as ‖𝑥‖0 := |{𝑖 : 𝑥𝑖 ̸= 0}|

(which is not really a norm since it is not positive homo-
geneous). For any positive number 𝑠, we say 𝑥 is 𝑠-sparse if
‖𝑥‖0 ≤ 𝑠. 𝐴 = [𝐴1, 𝐴2] ∈ R𝑀×𝑁 is a sensing matrix with
𝐴1 ∈ R𝑀×(𝑁−𝑟), 𝐴2 ∈ R𝑀×𝑟, and 𝑏 ∈ R𝑀. It means that
the unknown vector consists of two parts (𝑥, 𝑦), where 𝑥 ∈

R𝑁−𝑟 is sparse and 𝑦 ∈ R𝑟 is possibly dense. When 𝐴 =

𝐴1, the previous problem reduces to the following 𝑙0-norm
minimization problem (sparse signal recovery, SSR):

min ‖𝑥‖0, s.t. 𝐴𝑥 = 𝑏. (2)

The previous PSSR problem (1) is an NP-hard problem, since
its special case SSR (2) is well-known NP-hard problem in
the compressed sensing (CS). As we mentioned in Section 1,
one popular and powerful approach is to solve it via ℓ1-norm
minimization (its convex relaxation), where the 𝑙0-norm is
replaced by the 𝑙1-norm in SSR (2). Moreover, we can also use
a nonconvex approach for exact reconstruction with fewer
measurements than the convex relaxation; see, for example,
[9, 10]. That is the 𝑙𝑝-norm minimization problem with 0 <

𝑝 < 1, where we replace the 𝑙0-norm with the 𝑙𝑝-norm in (2)
as follows:

min ‖𝑥‖𝑝𝑝, s.t. 𝐴𝑥 = 𝑏. (3)

Note that ‖ ⋅ ‖𝑝 is not a norm when 𝑝 ∈ (0, 1), but it is
much close to 𝑙0-norm.Moreover, the numerical experiments
in MRI showed that the approach via 𝑙𝑝-minimization works
very efficiently; see [9] for details. In particular, Chartrand
and Staneva [10] introduced the concept of restricted isome-
try constant via 𝑙𝑝-norm.

Definition 1 (𝑝-RIC [10]). Given a matrix 𝐴 ∈ R𝑀×𝑁, where
𝑀 < 𝑁, 𝑠 is a positive number and 0 < 𝑝 < 1, thenwe say that
𝛿𝑠 is the restricted 𝑝-isometry constant (or 𝑝-RIC) of order 𝑠
of the matrix 𝐴 if 𝛿𝑠 is the smallest number, such that

(1 − 𝛿𝑠) ‖𝑥‖
𝑝

2
≤ ‖𝐴𝑥‖

𝑝

𝑝
≤ (1 + 𝛿𝑠) ‖𝑥‖

𝑝

2
, (4)

for all 𝑠-sparse vectors 𝑥.

In the same paper, Chartrand and Staneva gave the fol-
lowing sufficient condition for exact SSR via 𝑙𝑝-minimization.

Theorem 2 (see [10]). Let 𝐴 ∈ R𝑀×𝑁, 𝑥 ∈ R𝑁, and 𝑘 = ‖𝑥‖0
be the size of the support of 𝑥, 0 < 𝑝 < 1, 𝑎1 > 1, and
𝑎2 = 𝑎

2/(2−𝑝)

1
, rounded up, so that 𝑎2𝑘 is an integer (𝑎2 =

⌈𝑎
2/(2−𝑝)

1
𝑘⌉/𝑘). If 𝐴 satisfies

𝛿𝑎
2
𝑘 + 𝑎1𝛿(𝑎

2
+1)𝑘 < 𝑎1 − 1, (5)

then 𝑥 is the unique minimizer of problem (2).

Inspired by the previous analysis, it is natural to give
the partially 𝑙𝑝-norm minimization problem for PSSR (1) as
follows:

min ‖𝑥‖𝑝𝑝, s.t. 𝐴1𝑥 + 𝐴2𝑦 = 𝑏. (6)

In order to establish the link between the PSSR (1) and its
partially 𝑙𝑝-norm minimization problem, we need to give a
partially 𝑝-RIC definition. Here we borrow the idea from
Bandeira et al. [1]. Assume that 𝐴2 is full column rank. For
𝐴 = [𝐴1, 𝐴2] as mentioned above, let

𝐵 := 𝐼 − 𝐴2(𝐴
𝑇

2
𝐴2)
−1

𝐴
𝑇

2
, (7)

which is the matrix of the orthogonal projection from R𝑁 to
R(𝐴2)

⊥.

Definition 3 (Partially 𝑝-RIC). Let 𝐴 = [𝐴1, 𝐴2] ∈ R𝑀×𝑁,
where 𝐴1 ∈ R𝑀×(𝑁−𝑟), and 𝐴2 ∈ R𝑀×𝑟 is full column rank.
We say that 𝛿𝑟

𝑠−𝑟
is the Partially Restricted Isometry Constant

(Partially 𝑝-RIC) of order 𝑠−𝑟 of the matrix𝐴 if 𝛿𝑟
𝑠−𝑟

is the 𝑝-
RIC of order 𝑠−𝑟 of thematrix𝐵𝐴1; that is, 𝛿

𝑟

𝑠−𝑟
is the smallest

number, such that

(1 − 𝛿
𝑟

𝑠−𝑟
) ‖𝑥‖
𝑝

2
≤
󵄩󵄩󵄩󵄩𝐵𝐴1𝑥

󵄩󵄩󵄩󵄩
𝑝

𝑝
≤ (1 + 𝛿

𝑟

𝑠−𝑟
) ‖𝑥‖
𝑝

2
, (8)

for all (𝑠 − 𝑟)-sparse vectors 𝑥, where 𝐵 is given by (7).

3. Main Results

We will give our main results which state sufficient 𝑝-RIP
recovery conditions on the exact PSSR via the nonconvex
𝑙𝑝-norm minimization. We begin with the following useful
lemma.

Lemma 4. For 0 < 𝑝 ≤ 1, let 𝑐1 = 𝑎
1−𝑝/2

1
and 𝑐2 = 𝑎

1−𝑝/2

2
with

𝑎1 > 0 and 𝑎2 > 0. If (𝑐1 −1)/𝑐2 > |𝑎1 −𝑎2|/𝑎2, then 𝑎1 > 1 and
𝑎2 > 1.

Proof. In order to prove the lemma, we consider the following
two cases.

Case 1 (𝑎1 ≥ 𝑎2). In this case, from the fact (𝑐1 − 1)/𝑐2 > |𝑎1 −
𝑎2|/𝑎2, we have

𝑎1

𝑎2
− (

𝑎1

𝑎2
)

1−𝑝/2

< 1 − (
1

𝑎2
)

1−𝑝/2

. (9)
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If 0 < 𝑎2 ≤ 1, from the previous inequality we easily obtain

0 <
𝑎1

𝑎2
− (

𝑎1

𝑎2
)

1−𝑝/2

< 1 − (
1

𝑎2
)

1−𝑝/2

≤ 0, (10)

which is a contradiction. Hence 𝑎1 ≥ 𝑎2 > 1.

Case 2 (𝑎1 < 𝑎2). Similarly, in this case, from (𝑐1 − 1)/𝑐2 >

|𝑎1 − 𝑎2|/𝑎2, we obtain

0 < 1 −
𝑎1

𝑎2
<
𝑐1 − 1

𝑐2
. (11)

If 0 < 𝑎1 ≤ 1, then

𝑐1 = 𝑎
1−𝑝/2

1
≤ 1. (12)

Combining the previous inequalities we obtain

0 < 1 −
𝑎1

𝑎2
<
𝑐1 − 1

𝑐2
≤ 0, (13)

which is a contradiction. Hence 1 < 𝑎1 < 𝑎2.
Therefore, taking into account the previous two cases, we

completed the proof.

We below propose a general recovery condition for PSSR
via its 𝑝-norm minimization.

Theorem 5. Let 𝐴 = [𝐴1, 𝐴2] ∈ R𝑀×𝑁 with 𝐴1 ∈ R𝑀×(𝑁−𝑟)

and 𝐴2 ∈ R𝑀×𝑟. Suppose that 𝐴2 is full column rank, and let
𝐴1𝑥 + 𝐴2𝑦 = 𝑏 with ‖𝑥‖0 = 𝑘. For 0 < 𝑝 ≤ 1, 𝑎1 > 0, and
𝑎2 > 0, let 𝑐1 = 𝑎

1−𝑝/2

1
, 𝑐2 = 𝑎

1−𝑝/2

2
with (𝑐1−1)/𝑐2 > |𝑎1−𝑎2|/𝑎2.

If

𝑎2𝑐1𝛿(𝑎
2
+1)𝑘 + (

󵄨󵄨󵄨󵄨𝑎1 − 𝑎2
󵄨󵄨󵄨󵄨 𝑐2 + 𝑎2) 𝛿𝑎1𝑘

< 𝑎2𝑐1 −
󵄨󵄨󵄨󵄨𝑎1 − 𝑎2

󵄨󵄨󵄨󵄨 𝑐2 − 𝑎2,

(14)

then (𝑥, 𝑦) is the unique minimizer of problem (6).

Proof. Note that (𝑥, 𝑦) is a feasible solution to optimization
problem (6). We remain to show that the solution set is
a singleton {(𝑥, 𝑦)}. This proof generally modifies that of
[10], but under different assumptions. (Specifically, we use a
different way to arrange the elements of 𝑇𝐶

0
in the following.)

Let (𝑢, V) be an arbitrary solution to problem (6). wewill show
that 𝑢 = 𝑥 and 𝑦 = V. We will prove 𝑢 = 𝑥 firstly. Taking
ℎ = 𝑢 − 𝑥, we will show that ℎ = 0. Let Φ = 𝐵𝐴1. For
𝑇 ∈ {1, . . . , 𝑁 − 𝑟}, Φ𝑇 denotes the matrix equaling Φ in
those columns whose indices belong to𝑇 and otherwise zero.
Similarly, we define the vector ℎ𝑇. Let 𝑇0 be the support of 𝑥.
Then, the supports of 𝑥 and ℎ𝑇𝐶

0

are disjoint since 𝑇0⋂𝑇
𝐶

0
=

0. From direct calculation, we obtain

‖𝑥‖
𝑝

𝑝
≥ ‖𝑢‖
𝑝

𝑝
= ‖𝑥 + ℎ‖

𝑝

𝑝

=
󵄩󵄩󵄩󵄩󵄩
𝑥 + ℎ𝑇

0

+ ℎ𝑇𝐶
0

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝

=
󵄩󵄩󵄩󵄩󵄩
𝑥 + ℎ𝑇

0

‖
𝑝

𝑝
+ ‖ℎ𝑇𝐶

0

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝

≥ ‖𝑥‖
𝑝

𝑝
−
󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
0

‖
𝑝

𝑝
+ ‖ℎ𝑇𝐶

0

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
,

(15)

where the first inequality holds because (𝑢, V) solves (6), and
the last one holds by the triangle inequality for ‖ ⋅ ‖𝑝𝑝. Then we
have

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇𝐶
0

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
≤
󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
0

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
. (16)

Nowwe arrange the elements of𝑇𝐶
0
in order of decreasing

magnitude of |ℎ| and partition into 𝑇𝐶
0
= 𝑇1⋃𝑇2⋃ ⋅ ⋅ ⋅ ⋃𝑇𝐽,

where 𝑇1 has 𝑎2𝑘 elements and 𝑇𝑗 (𝑗 ≥ 2) each has 𝑎1𝑘
elements (except possibly 𝑇𝐽). Set 𝑇01 = 𝑇0⋃𝑇1. Note that

𝐵𝐴2 = [𝐼 − 𝐴2(𝐴
𝑇

2
𝐴2)
−1

𝐴
𝑇

2
]𝐴2 = 0. (17)

Direct calculations yield

0 =
󵄩󵄩󵄩󵄩𝐵 (𝐴1𝑥 + 𝐴2𝑦 − 𝐴1𝑢 − 𝐴2V)

󵄩󵄩󵄩󵄩
𝑝

𝑝

=
󵄩󵄩󵄩󵄩𝐵𝐴1𝑥 − 𝐵𝐴1𝑢

󵄩󵄩󵄩󵄩
𝑝

𝑝
= ‖Φ𝑥 − Φ𝑢‖

𝑝

𝑝

= ‖Φℎ‖
𝑝

𝑝
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Φℎ𝑇
01

+ ∑

𝑗≥2

Φℎ𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝

≥
󵄩󵄩󵄩󵄩󵄩
Φℎ𝑇

01

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑

𝑗≥2

Φℎ𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝

≥
󵄩󵄩󵄩󵄩󵄩
Φℎ𝑇

01

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
− ∑

𝑗≥2

󵄩󵄩󵄩󵄩󵄩󵄩
Φℎ𝑇

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝

≥ (1 − 𝛿(𝑎
2
+1)𝑘)

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
01

󵄩󵄩󵄩󵄩󵄩

𝑝

2
− (1 + 𝛿𝑎

1
𝑘)

× ∑

𝑗≥2

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

2
.

(18)

Now we discuss the relation between 𝑙2-norm and 𝑙𝑝-norm.
For each 𝑡 ∈ 𝑇𝑗 and 𝑠 ∈ 𝑇𝑗−1, it holds |ℎ𝑡| ≤ |ℎ𝑠|. So, we have
for 𝑗 = 2,

󵄨󵄨󵄨󵄨ℎ𝑡
󵄨󵄨󵄨󵄨
𝑝
≤

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝

𝑎2𝑘

󳨐⇒
󵄨󵄨󵄨󵄨ℎ𝑡
󵄨󵄨󵄨󵄨
2
≤

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
1

󵄩󵄩󵄩󵄩󵄩

2

𝑝

(𝑎2𝑘)
2/𝑝

󳨐⇒

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
2

󵄩󵄩󵄩󵄩󵄩

2

2

𝑎1𝑘
≤

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
1

󵄩󵄩󵄩󵄩󵄩

2

𝑝

(𝑎2𝑘)
2/𝑝

󳨐⇒
󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
2

󵄩󵄩󵄩󵄩󵄩

𝑝

2
≤

𝑎
𝑝/2

𝑎2𝑘
1−𝑝/2

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
.

(19)
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Similarly, we obtain that for 𝑗 ≥ 3,

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

2
≤

1

(𝑎1𝑘)
1−𝑝/2

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
𝑗−1

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
. (20)

Applying the Holder’s inequality, we obtain

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
0

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
= ∑

𝑡∈𝑇
0

󵄨󵄨󵄨󵄨ℎ𝑡
󵄨󵄨󵄨󵄨
𝑝
⋅ 1

≤ (∑

𝑡∈𝑇
0

󵄨󵄨󵄨󵄨ℎ𝑡
󵄨󵄨󵄨󵄨
2
)

𝑝/2

(∑

𝑡∈𝑇
0

1)

1−𝑝/2

=
󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
0

󵄩󵄩󵄩󵄩󵄩

𝑝

2
⋅ 𝑘
1−𝑝/2

.

(21)

Similarly, we have

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
≤
󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑝

2
⋅ (𝑎2𝑘)

1−𝑝/2
. (22)

Therefore,

∑

𝑗≥2

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

2

≤
𝑎
𝑝/2

1

𝑎2𝑘
1−𝑝/2

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝

+
1

(𝑎1𝑘)
1−𝑝/2

∑

𝑗≥2

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
(By (19) and (20))

=
1

(𝑎1𝑘)
1−𝑝/2

∑

𝑗≥1

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
+
(𝑎1 − 𝑎2) 𝑎

𝑝/2

1

𝑎1𝑎2𝑘
1−𝑝/2

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝

=
1

(𝑎1𝑘)
1−𝑝/2

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇𝐶
0

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
+
(𝑎1 − 𝑎2) 𝑎

𝑝/2

1

𝑎1𝑎2𝑘
1−𝑝/2

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝

≤
1

(𝑎1𝑘)
1−𝑝/2

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
0

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
+
(𝑎1 − 𝑎2) 𝑎

𝑝/2

1

𝑎1𝑎2𝑘
1−𝑝/2

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
(By (16))

≤
𝑘
1−𝑝/2

(𝑎1𝑘)
1−𝑝/2

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
0

󵄩󵄩󵄩󵄩󵄩

𝑝

2

+
(𝑎1 − 𝑎2) (𝑎2𝑘)

1−𝑝/2

𝑎2(𝑎1𝑘)
1−𝑝/2

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑝

2
(By (21) and (22))

=
1

𝑐1

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
0

󵄩󵄩󵄩󵄩󵄩

𝑝

2
+
(𝑎1 − 𝑎2) 𝑐2

𝑎2𝑐1

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑝

2

≤
1

𝑐1

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
0

󵄩󵄩󵄩󵄩󵄩

𝑝

2
+

󵄨󵄨󵄨󵄨𝑎1 − 𝑎2
󵄨󵄨󵄨󵄨 𝑐2

𝑎2𝑐1

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑝

2

≤
1

𝑐1

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
01

󵄩󵄩󵄩󵄩󵄩

𝑝

2
+

󵄨󵄨󵄨󵄨𝑎1 − 𝑎2
󵄨󵄨󵄨󵄨 𝑐2

𝑎2𝑐1

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
01

󵄩󵄩󵄩󵄩󵄩

𝑝

2
.

(23)

Thus by (18) and (23), we have

0 ≥ (1 − 𝛿(𝑎
2
+1)𝑘)

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
01

󵄩󵄩󵄩󵄩󵄩

𝑝

2

− (1 + 𝛿𝑎
1
𝑘)∑

𝑗≥2

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

2
(By (18))

≥ (1 − 𝛿(𝑎
2
+1)𝑘)

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
01

󵄩󵄩󵄩󵄩󵄩

𝑝

2
−
1 + 𝛿𝑎

1
𝑘

𝑐1

󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
01

󵄩󵄩󵄩󵄩󵄩

𝑝

2

−

󵄨󵄨󵄨󵄨𝑎1 − 𝑎2
󵄨󵄨󵄨󵄨 𝑐2 (1 + 𝛿𝑎1𝑘

)

𝑎2𝑐1

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
01

󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

2
(By (23))

= [1 − 𝛿(𝑎
2
+1)𝑘 −

1 + 𝛿𝑎
1
𝑘

𝑐1
−

󵄨󵄨󵄨󵄨𝑎1 − 𝑎2
󵄨󵄨󵄨󵄨 𝑐2 (1 + 𝛿𝑎1𝑘

)

𝑎2𝑐1
]

×
󵄩󵄩󵄩󵄩󵄩
ℎ𝑇
01

󵄩󵄩󵄩󵄩󵄩

𝑝

2
.

(24)

Clearly, the assumption ensures that the scalar factor is
positive, and hence we obtain ℎ𝑇

01

= 0. That means ℎ𝑇
0

= 0.
Using ‖ℎ𝑇𝐶

0

‖
𝑝

𝑝 ≤ ‖ℎ𝑇
0

‖
𝑝

𝑝, we obtain ℎ𝑇𝐶
0

= 0. Therefore, ℎ = 0,
which means 𝑥 = 𝑢.

Now we remain to show that 𝑦 = V. It is obvious that
𝐴1𝑥+𝐴2𝑦 = 𝐴1𝑢+𝐴2V. Since 𝑥 = 𝑢, we have𝐴2(𝑦− V) = 0.
Then 𝑦 = V because 𝐴2 is full column rank.

Theorem 5 states a different sufficient condition for the
exactly PSSR via its nonconvex relaxation from the existing
conditions for SSR.

Theorem 6. Let 𝐴 = [𝐴1, 𝐴2] ∈ R𝑀×𝑁 with 𝐴1 ∈ R𝑀×(𝑁−𝑟)

and 𝐴2 ∈ R𝑀×𝑟. Suppose that 𝐴2 is full column rank, and let
𝐴1𝑥 + 𝐴2𝑦 = 𝑏 with ‖𝑥‖0 = 𝑘. For 0 < 𝑝 ≤ 1 and 𝑎 > 1, if

𝛿(𝑎+1)𝑘 <
𝑎
1−𝑝/2

− 1

𝑎1−𝑝/2 + 1
, (25)

then (𝑥, 𝑦) is the unique minimizer of problem (6). Specifically,
for all 0 < 𝑝 ≤ 1, if

𝛿(𝑎+1)𝑘 <
√𝑎 − 1

√𝑎 + 1
, (26)

then (𝑥, 𝑦) is the unique minimizer of problem (6).

Proof. Applying Theorem 5, here we only need to show that
if (25) holds, we can find 𝑎1 and 𝑎2, such that (14) holds. We
consider the three cases in the following.

Case i (𝑎1 ≥ 𝑎2 + 1). In this case, we easily obtain 𝑎1 − 𝑎2 ≥
1 and 𝛿𝑎

1
𝑘 ≥ 𝛿(𝑎

2
+1)𝑘. Therefore the following condition can

guarantee the inequality (14):

𝑎2𝑐1𝛿𝑎
1
𝑘 + [(𝑎1 − 𝑎2) 𝑐2 + 𝑎2] 𝛿𝑎

1
𝑘 < 𝑎2 (𝑐1 + 𝑐2 − 1) − 𝑎1𝑐2.

(27)
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Simplifying the previous inequality, we obtain

𝛿𝑎
1
𝑘 <

𝑎2𝑐1 − (𝑎1 − 𝑎2) 𝑐2 − 𝑎2

𝑎2𝑐1 + (𝑎1 − 𝑎2) 𝑐2 + 𝑎2

=
𝑎
1−𝑝/2

1
− (𝑎1 − 𝑎2) 𝑎

−𝑝/2

2
− 1

𝑎
1−𝑝/2

1
+ (𝑎1 − 𝑎2) 𝑎

−𝑝/2

2
+ 1

.

(28)

In this case, employing 𝑎−𝑝/2
2

> 0, we easily get that 𝑎1 = 𝑎2+1
gives the maximum value of the right of the inequality (the
strongest result) which satisfies the condition (14). That is,

𝛿(𝑎
2
+1)𝑘 <

(𝑎2 + 1)
1−𝑝/2

− 𝑎
−𝑝/2

2
− 1

(𝑎2 + 1)
1−𝑝/2

+ 𝑎
−𝑝/2

2
+ 1

. (29)

Case ii (𝑎2 ≤ 𝑎1 < 𝑎2+1). In this case, we can get that 0 ≤ 𝑎1−
𝑎2 < 1 and 𝛿𝑎

1
𝑘 < 𝛿(𝑎

2
+1)𝑘. Similarly, the following condition

can guarantee the inequality (14):

𝑎2𝑐1𝛿(𝑎
2
+1)𝑘 + [(𝑎1 − 𝑎2) 𝑐2 + 𝑎2] 𝛿(𝑎

2
+1)𝑘

< 𝑎2 (𝑐1 + 𝑐2 − 1) − 𝑎1𝑐2.

(30)

Simplifying the previous inequality, we obtain

𝛿(𝑎
2
+1)𝑘 <

𝑎
1−𝑝/2

1
− (𝑎1 − 𝑎2) 𝑎

−𝑝/2

2
− 1

𝑎
1−𝑝/2

1
+ (𝑎1 − 𝑎2) 𝑎

−𝑝/2

2
+ 1

. (31)

In this case, employing 𝑎−𝑝/2
2

> 0, we get that 𝑎1 = 𝑎2 give the
maximum value of the right of the inequality; that is,

𝛿(𝑎
2
+1)𝑘 <

𝑎
1−𝑝/2

2
− 1

𝑎
1−𝑝/2

2
+ 1

. (32)

Case iii (𝑎1 < 𝑎2). In this case, it is clear that 0 < 𝑎2 − 𝑎1,
𝑎1 < 𝑎2 + 1, and 𝛿𝑎

1
𝑘 < 𝛿(𝑎

2
+1)𝑘. So the following condition

can guarantee the inequality (14):

𝑎2𝑐1𝛿(𝑎
2
+1)𝑘 + [(𝑎2 − 𝑎1) 𝑐2 + 𝑎2] 𝛿(𝑎

2
+1)𝑘

< 𝑎2 (𝑐1 − 𝑐2 − 1) + 𝑎1𝑐2.

(33)

Simplifying the previous inequality, we obtain

𝛿(𝑎
2
+1)𝑘 <

𝑎
1−𝑝/2

1
− (𝑎2 − 𝑎1) 𝑎

−𝑝/2

2
− 1

𝑎
1−𝑝/2

1
+ (𝑎2 − 𝑎1) 𝑎

−𝑝/2

2
+ 1

. (34)

In this case, employing 𝑎−𝑝/2
2

> 0, we chose 𝑎2 − 𝑎1 → 0 to
give the maximum value of the right of the inequality.That is,

𝛿(𝑎
2
+1)𝑘 <

𝑎
1−𝑝/2

2
− 1

𝑎
1−𝑝/2

2
+ 1

. (35)

It is easy to see that ((𝑎2+1)
1−𝑝/2

−𝑎
−𝑝/2

2
−1)/((𝑎2+1)

1−𝑝/2
+

𝑎
−𝑝/2

2
+ 1) < (𝑎

1−𝑝/2

2
− 1)/(𝑎

1−𝑝/2

1
+ 1). In fact, (𝑎2 + 1)

1−𝑝/2
+

𝑎
−𝑝/2

2
+1 > 𝑎

1−𝑝/2

2
+1. On the other hand, (𝑎2+1)

1−𝑝/2
−𝑎
−𝑝/2

2
−

1 − (𝑎
1−𝑝/2

2
− 1) = (𝑎2 + 1)[(𝑎2 + 1)

−𝑝/2
− 𝑎
−𝑝/2

2
] < 0, which

means (𝑎2 + 1)
1−𝑝/2

− 𝑎
−𝑝/2

2
− 1 < 𝑎

1−𝑝/2

2
− 1.
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Figure 1:The upper bound of𝑝-RIC of order (𝑎+1)𝑘with particular
values of 𝑝.

Therefore, combining the previous three cases, we obtain
that one can choose 𝑎1 = 𝑎2 to get the weakest sufficient
condition. It is easy to see that 𝑎1 = 𝑎2 satisfying the
assumptions of Theorem 5.

After the previous discussion, using condition (25) and
choosing 𝑎1 = 𝑎2 = 𝑎, we can derive condition (14).

Specifically, we consider the following function:

𝑓 (𝑝) =
𝑎
1−𝑝/2

− 1

𝑎1−𝑝/2 + 1
= 1 −

2

𝑎1−𝑝/2 + 1
. (36)

Clearly,

𝑓
󸀠
(𝑝) = −

𝑎
1−𝑝/2 ln 𝑎

(𝑎1−𝑝/2 + 1)
2
< 0, (37)

and hence 𝑓(𝑝) is a decreasing function of 𝑝. Thus, for all
0 < 𝑝 ≤ 1, condition

𝛿(𝑎+1)𝑘 <
√𝑎 − 1

√𝑎 + 1
(38)

can guarantee condition (14).
The proof is completed.

Applying Theorem 6, we understand how the 𝑝-RIP
bounds related to 𝑝 as in Figure 1. From Figure 1, it is easy
to give a stronger result (i.e., weaker sufficient condition)
for smaller 𝑝. Moreover, by taking different values of 𝑝 with
𝑝 = 1/4, 1/2, 3/4, we obtain some interesting 𝑝-RIP bounds
as in Table 1.

4. Final Remark

In this paper, we studied the restricted 𝑝-isometry property
to the partially sparse signal recovery problem and proposed
a sufficient 𝑝-RIP condition for exactly recovering partially
sparse signal via the partially 𝑙𝑝-minimization problem with
𝑝 ∈ (0, 1]. It is worth generalizing the 𝑝-RIP condition
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Table 1: Bounds comparison on different values of 𝑝.

𝑝 =
1

4
0.1756 0.2943 0.3807 0.4468 0.4991 0.5417

𝑝 =
1

2
0.1509 0.2542 0.3307 0.3902 0.4380 0.4776

𝑝 =
3

4
0.1260 0.2133 0.2788 0.3304 0.3726 0.4080

𝑝 = 1 0.1010 0.1716 0.2251 0.2679 0.3033 0.3333

from the vector case to the matrix case. Note that the well-
known low-rank matrix recovery (LMR) problem has many
applications and appeared in the literature of a diverse set
of fields including matrix completion, quantum state tomog-
raphy, face recognition, magnetic resonance imaging (MRI),
computer vision, and system identification and control; see,
for example, [21, 22] for more details and the reference
therein. In particular, Oymak et al. [21] showed that several
sufficient RIP recovery conditions for 𝑘 sparse vector are
also sufficient for recovery of matrices of rank up to 2𝑘 via
Schatten 𝑝-norm minimization. According to our approach
to extend the 𝑝-RIP bound from SSP to partially SSR, we
can obtain some different restricted𝑝-isometry properties for
LMR problem by using the idea in [21].
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