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The discrete-time epidemic model is investigated, which is obtained using the Euler method. It is verified that there exist some
dynamical behaviors in this model, such as transcritical bifurcation, flip bifurcation, Hopf bifurcation, and chaos. The numerical
simulations, including bifurcation diagrams and computation of Lyapunov exponents, not only show the consistence with the
theoretical analysis but also exhibit the rich and complex dynamical behaviors.

1. Introduction

Epidemic models have been widely used in different forms
for studying epidemiological processes such as the spread
of HIV [1], SARS [2], and influenza [3]. It is well known
that dynamical systems with simple dynamical behavior in
the constant parameter case display very complex behaviors
including chaos when they are periodically perturbed [4,
5]. The continuous-time epidemic models have been widely
investigated in many articles (e.g., [6–10] and the references
cited therein). In recent years, we have found thatmore atten-
tion is paid to the discrete-time epidemic models (see [11–15]
and the references cited therein). The reasons are as follows:
first, difference models are more realistic than continuous
differential ones because the epidemic statistics are compiled
from given time intervals and are discontinuous. Second, the
discrete-time models can provide natural simulators for the
continuous cases. One can thus not only study the behaviors
of the continuous-time model with good accuracy, but also
assess the effect of lager time steps. At last, the use of discrete
-time models makes it possible to use the entire arsenal of
methods recently developed for the study of mappings and
lattice equations, either from the integrability and/or chaos
points of view.

On the other hand, daily treatments are frequently done
for some infections, such as the group of those being respon-
sible for the common cold, which do not confer any long
lasting immunity. Such infections do not have a recovered
state and individuals become susceptible again after infection.

For such reasons, according to [16], we firstly consider the SIS
epidemic model with nonlinear incidence rate:

𝑑𝑆

𝑑𝑡
= 𝑏𝑆 (1 −

𝑆

𝐾
) − 𝛽𝑆

2
𝐼 + 𝛾𝐼,

𝑑𝐼

𝑑𝑡
= 𝛽𝑆
2
𝐼 − 𝑑𝐼 − 𝛾𝐼,

(1)

where 𝑆 denotes the susceptible population, 𝐼 is the infected
population, and 𝑏 is the intrinsic birth rate constant.𝐾, 𝛽 are
the carrying capacity and the infection rate, respectively. 𝛾 ≥
0 is the recovery rate constant (1/𝛾 is the average infective
time).

Let

𝑆 = √
𝑑 + 𝛾

𝛽
𝑥, 𝐼 = √

𝑑 + 𝛾

𝛽
𝑦, 𝑑𝜏 = (𝑑 + 𝛾) 𝑑𝑡.

(2)

We obtain the following system analogous to (1):
𝑑𝑥

𝑑𝜏
= 𝑎
0
𝑥 − 𝑎
1
𝑥
2
− 𝑥
2
𝑦 + 𝑎
2
𝑦,

𝑑𝑦

𝑑𝜏
= 𝑥
2
𝑦 − 𝑦,

(3)

where

𝑎
0
=

𝑏

𝑑 + 𝛾
, 𝑎

1
=

𝑏

𝐾√𝛽 (𝑑 + 𝛾)

, 𝑎
2
=

𝛾

𝑑 + 𝛾
.

(4)
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Applying Euler scheme to (3), we obtain the following
equation:

𝑥
𝑛+1
= (𝑎
0
+ 1) 𝑥

𝑛
− 𝑎
1
𝑥
2

𝑛
− 𝑥
2

𝑛

𝑦
𝑛
+ 𝑎
2
𝑦
𝑛
,

𝑦
𝑛+1
= 𝑥
2

𝑛
𝑦
𝑛
.

(5)

This paper is organized as follows. In Section 2, we give
sufficient conditions of existence for transcritical bifurcation,
flip bifurcation, and Hopf bifurcation. In Section 3, a series
of numerical simulations show that there are bifurcation and
chaos in the discrete-time epidemic model. Finally, we give
remarks to conclude this paper in Section 4.

2. Bifurcations

It is easy to visualize that system (5) has three fixed points
𝑃
0
(0, 0), 𝑃

1
(𝑎
0
/𝑎
1
, 0), and 𝑃

2
(1, (𝑎
0
− 𝑎
1
)/(1 − 𝑎

2
)) when 𝑎

1
, 𝑎
0

are fixed.We can see that the fixed point𝑃
0
(0, 0) is a saddle. In

the following paper, we focus on investigating the bifurcations
of 𝑃
1
, 𝑃
2
.

Theorem 1. If 𝑎
0
= 𝑎
1
and 𝑎
0
̸= 2, (5) undergo a transcritical

bifurcation at𝑃
1
. Furthermore, the systemhas three fixed points

when 𝑎
0
> 𝑎
1
and has two fixed points when 𝑎

0
≤ 𝑎
1
.

Proof. The Jacobian matrix of (5) at 𝑃
1
takes the form

𝐽 (𝑃
1
) = (

1 − 𝑎
0
𝑎
2
−
𝑎
2

0

𝑎2
1

0
𝑎
2

0

𝑎2
1

). (6)

𝐽(𝑃
1
) has eigenvalues 𝜆

1
= 1 − 𝑎

0
, 𝜆
2
= 𝑎
2

0
/𝑎
2

1
. And 𝑎

0
̸= 2

implies that |𝜆
1
| ̸= 1.

Let

𝜉
𝑛
= 𝑥
𝑛
−
𝑎
0

𝑎
1

, 𝜂
𝑛
= 𝑦
𝑛
, 𝑐

𝑛
= 𝑎
0
− 𝑎
1
, (7)

equation (5) becomes

𝜉
𝑛+1
= (1 − 𝑎

1
) 𝜉
𝑛
+ (𝑎
2
− 1) 𝜂

𝑛
+ 𝐹
1
(𝜉
𝑛
, 𝜂
𝑛
, 𝑐
𝑛
) ,

𝜂
𝑛+1
= 𝜂
𝑛
+ 𝐹
2
(𝜉
𝑛
, 𝜂
𝑛
, 𝑐
𝑛
) ,

𝑐
𝑛+1
= 𝑐
𝑛
,

(8)

where

𝐹
1
(𝜉
𝑛
, 𝜂
𝑛
, 𝑐
𝑛
) = − (𝑎

1
+ 𝜂
𝑛
) 𝜉
2

𝑛
−
2𝜉
𝑛
𝜂
𝑛
𝑐
𝑛

𝑎
1

− (2𝜂
𝑛
+ 𝑐
𝑛
) 𝜉
𝑛
−
𝜂
𝑛
𝑐
2

𝑛

𝑎2
1

−
2𝑐
𝑛
𝜂
𝑛

𝑎
1

,

𝐹
2
(𝜉
𝑛
, 𝜂
𝑛
, 𝑐
𝑛
) = 2𝜉

𝑛
𝜂
𝑛
+
2𝑐
𝑛
𝜂
𝑛

𝑎
1

+ 𝜉
2

𝑛
𝜂
𝑛
+
𝜂
𝑛
𝑐
2

𝑛

𝑎2
1

+
2𝜉
𝑛
𝜂
𝑛
𝑐
𝑛

𝑎
1

.

(9)

By the following transformation:

(

𝜉
𝑛

𝜂
𝑛

𝑐
𝑛

) = (

1 1 0

1
𝑎
1

𝑎
2
− 1

0

0 0 1

)(

𝑝
𝑛

𝑞
𝑛

𝜎
𝑛

) , (10)

equation (8) becomes

(

𝑝
𝑛+1

𝑞
𝑛+1

𝜎
𝑛+1

) = (

1 − 𝑎
1
0 0

0 1 0

0 0 1

)(

𝑝
𝑛

𝑞
𝑛

𝜎
𝑛

) +(

𝑓
1
(𝑝
𝑛
, 𝑞
𝑛
, 𝜎
𝑛
)

𝑓
2
(𝑝
𝑛
, 𝑞
𝑛
, 𝜎
𝑛
)

0

) ,

(11)

where

𝑓
1
(𝑝
𝑛
, 𝑞
𝑛
, 𝜎
𝑛
)

= (
𝑎
1
+ 𝑎
2
− 1

1 − 𝑎
2

𝑞
𝑛
− 𝑎
1
)𝑝
2

𝑛

+ [
2 (𝑎
1
+ 𝑎
2
− 1) (𝜎

𝑛
+ 1) (𝑞

𝑛
+ 𝑞
2

𝑛
)

𝑎
1
(1 − 𝑎

2
)

− 𝜎
𝑛
− 2𝑎
1
𝑞
𝑛
]𝑝
𝑛

+
2 (𝑎
1
+𝑎
2
−1) 𝑞
3

𝑛

𝑎
1
(1 − 𝑎

2
)
+[
2 (𝑎
1
+ 𝑎
2
− 1) (𝜎

𝑛
+ 𝑎
1
)

𝑎
1
(1 − 𝑎

2
)

−𝑎
1
] 𝑞
2

𝑛

+ [
(𝑎
1
𝑎
2
+ 2𝑎
2
− 2) 𝜎

𝑛

𝑎
1
(1 − 𝑎

2
)

+
2 (𝑎
1
+ 𝑎
2
− 1) 𝜎

2

𝑛

𝑎3
1

(1 − 𝑎
2
)

] 𝑞
𝑛
,

𝑓
2
(𝑝
𝑛
, 𝑞
𝑛
, 𝜎
𝑛
) = 𝑞
3

𝑛
+ 2(1 + 𝑝

𝑛
+
𝜎
𝑛

𝑎
1

) 𝑞
2

𝑛

+ 2𝑝
𝑛
𝑞
𝑛
+
2𝑞
𝑛
𝜎
𝑛

𝑎
1

+
(𝑎
1
𝑝
𝑛
+ 𝜎
𝑛
)
2

𝑞
𝑛

𝑎2
1

.

(12)

Then, we can consider

𝑝
𝑛
= 𝑔 (𝑞

𝑛
, 𝜎
𝑛
) = 𝜀
1
𝑞
2

𝑛
+ 𝜀
2
𝑞
𝑛
𝜎
𝑛
+ 𝜀
3
𝜎
2

𝑛

+ 𝑜 ((
󵄨󵄨󵄨󵄨𝑝𝑛
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑞𝑛
󵄨󵄨󵄨󵄨)
3

) ,

(13)

which must satisfy

𝑔 (𝑞
𝑛+1
, 𝜎
𝑛+1
) = 𝑔 (𝑞

𝑛
+ 𝑓
2
(𝑔 (𝑞
𝑛
, 𝜎
𝑛
) , 𝑞
𝑛
, 𝜎
𝑛
) , 𝜎
𝑛+1
)

= (1 − 𝑎
1
) 𝑔 (𝑞
𝑛
, 𝜎
𝑛
) + 𝑓
1
(𝑔 (𝑞
𝑛
, 𝜎
𝑛
) , 𝑞
𝑛
, 𝜎
𝑛
) .

(14)

Thus, we have

𝜀
1
=
𝑎
1
𝑎
2
+ 2𝑎
2
− 2

𝑎
1
(1 − 𝑎

2
)
, 𝜀

2
=
𝑎
1
𝑎
2
+ 2𝑎
2
− 2

𝑎2
1

(1 − 𝑎
2
)
, 𝜀

3
= 0.

(15)
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And (8) is restricted to the center manifold, which is given by

𝑓 : 𝑞
𝑛+1
=
2 (𝑎
1
𝑎
2
+ 2𝑎
2
− 2)

𝑎
1
(1 − 𝑎

2
)

(𝑞
3

𝑛
+
𝑞
2

𝑛
𝜎
𝑛

𝑎
1

)

+ 𝑞
3

𝑛
+ 2𝑞
2

𝑛
+ 𝑞
𝑛
+
2𝑞
2

𝑛
𝜎
𝑛

𝑎
1

+
2𝑞
𝑛
𝜎
𝑛

𝑎
1

+ 𝑜 ((
󵄨󵄨󵄨󵄨𝑞𝑛
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝜎𝑛
󵄨󵄨󵄨󵄨)
4

) .

(16)

Since

𝑓 (0, 𝜎
𝑛
) = 0,

𝜕𝑓

𝜕𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(0,0)

= 1,
𝜕
2
𝑓

𝜕𝑞2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(0,0)

= 4,

𝜕
2
𝑓

𝜕𝑞𝜕𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(0,0)

= −
2

𝑎
1

̸= 0,

(17)

system (5) undergoes a transcritical bifurcation at 𝑃
1
. This

proves the theorem.

Theorem 2. Equation (5) undergoes a flip bifurcation at 𝑃
1

when 𝑎
0
= 2, 𝑎

1
̸= 𝑎
0
. Furthermore, the stable periodic-2 point

bifurcates from this fixed point.

Proof. Let

𝜉
𝑛
= 𝑥
𝑛
−
𝑎
0

𝑎
1

, 𝜌
𝑛
= 𝑦
𝑛
, 𝑐

𝑛
= 𝑎
0
− 2, (18)

system (5) becomes

𝜉
𝑛+1
= −𝜉
𝑛
+ (𝑎
2
−
4

𝑎2
1

)𝜌
𝑛
+ 𝐹
1
(𝜉
𝑛
, 𝑐
𝑛
, 𝜌
𝑛
) ,

𝑐
𝑛+1
= −𝑐
𝑛
,

𝜌
𝑛+1
=
4

𝑎2
1

𝜌
𝑛
+ 𝐹
2
(𝜉
𝑛
, 𝑐
𝑛
, 𝜌
𝑛
) ,

(19)

where

𝐹
1
(𝜉
𝑛
, 𝑐
𝑛
, 𝜌
𝑛
) = − (𝑎

1
+ 𝜌
𝑛
) 𝜉
2

𝑛

− (𝑐
𝑛
+
2 (𝑐
𝑛
+ 2) 𝜌

𝑛

𝑎
1

)𝜉
𝑛
−
4𝑐
𝑛
+ 𝑐
2

𝑛

𝑎2
1

𝜌
𝑛
,

𝐹
2
(𝜉
𝑛
, 𝑐
𝑛
, 𝜌
𝑛
) = 𝜌
𝑛
𝜉
2

𝑛
+
4𝑐
𝑛
+ 𝑐
2

𝑛

𝑎2
1

𝜌
𝑛
+
2 (𝑐
𝑛
+ 2) 𝜌

𝑛

𝑎
1

𝜉
𝑛
.

(20)

By the following transformation:

(

𝜉
𝑛

𝑐
𝑛

𝜌
𝑛

) =(

1 0 1

0 1 0

0 0
(𝑎
2

1
+ 4)

(𝑎
2
𝑎2
1
− 4)

)(

𝜙
𝑛

𝑢
𝑛

V
𝑛

) , (21)

equation (19) becomes

(

𝜙
𝑛+1

𝑢
𝑛+1

V
𝑛+1

) =(

−1 0 0

0 −1 0

0 0
4

𝑎2
1

)(

𝜙
𝑛

𝑢
𝑛

V
𝑛

)+(

𝑓
1
(𝜙
𝑛
, 𝑢
𝑛
, V
𝑛
)

0

𝑓
2
(𝜙
𝑛
, 𝑢
𝑛
, V
𝑛
)

) ,

(22)

where

𝑓
1
(𝜙
𝑛
, 𝑢
𝑛
, V
𝑛
)

= (
𝑎
2

1
+ 𝑎
2
𝑎
2

1

4 − 𝑎
2
𝑎2
1

V
𝑛
− 𝑎
1
)𝜙
2

𝑛

+ [
2 (1 + 𝑎

2
) 𝑎
2

1
V2
𝑛

4 − 𝑎
2
𝑎2
1

+
2𝑎
1
(𝑢
𝑛
− 2 + 𝑎

2
𝑎
2

1
+ 𝑎
2
𝑢
𝑛
+ 2𝑎
2
) V
𝑛

4 − 𝑎
2
𝑎2
1

− 𝑢
𝑛
]𝜙
𝑛

+
𝑎
2

1
+ 𝑎
2
𝑎
2

1

4 − 𝑎
2
𝑎2
1

V
3

𝑛
+
𝑎
1
(𝑎
2
𝑎
2

1
+ 2𝑎
2
𝑢
𝑛
+ 4𝑎
2
+ 2𝑢
𝑛
)

4 − 𝑎
2
𝑎2
1

V
2

𝑛

+
(1 + 𝑎

2
) 𝑢
2

𝑛
V
𝑛

4 − 𝑎
2
𝑎2
1

+
𝑎
2
(4 + 𝑎

2

1
) 𝑢
𝑛
V
𝑛

4 − 𝑎
2
𝑎2
1

,

𝑓
2
(𝜙
𝑛
, 𝑢
𝑛
, V
𝑛
) = V
3

𝑛
+ 2(𝜙

𝑛
+
𝑢
𝑛
+ 4

𝑎
1

) V
2

𝑛

+
(𝑎
1
𝜙
𝑛
+ 𝑢
𝑛
) (𝑎
1
𝜙
𝑛
+ 𝑢
𝑛
+ 4) V

𝑛

𝑎2
1

.

(23)

Then, we can consider V
𝑛
= 𝑔(𝜙

𝑛
, 𝑢
𝑛
) = 𝜀
1
𝜙
2

𝑛
+𝜀
2
𝜙
𝑛
𝑢
𝑛
+𝜀
3
𝑢
2

𝑛
+

𝑜((|𝜙
𝑛
| + |𝑢
𝑛
|)
3
), which must satisfy

𝑔 (−𝜙
𝑛
+ 𝑓
1
(𝜙
𝑛
, 𝑔 (𝜙
𝑛
, 𝑢
𝑛
) , V
𝑛
) , 𝑢
𝑛+1
)

=
4

𝑎2
1

𝑔 (𝜙
𝑛
, 𝑢
𝑛
) + 𝑔
3
(𝜙
𝑛
, 𝑢
𝑛
)

+ 2 (𝜙
𝑛
+
𝑢
𝑛
+ 4

𝑎
1

)𝑔
2
(𝜙
𝑛
, 𝑢
𝑛
)

+
(𝑎
1
𝜙
𝑛
+ 𝑢
𝑛
) (𝑎
1
𝜙
𝑛
+ 𝑢
𝑛
+ 4) 𝑔 (𝜙

𝑛
, 𝑢
𝑛
)

𝑎2
1

.

(24)

Thus, we have 𝜀
𝑘
= 0, 𝑘 = 1, 2, 3. We obtain the center

manifold as follows:

V
𝑛
= 𝑔 (𝜙

𝑛
, 𝑢
𝑛
) = 𝜀
4
𝜙
2

𝑛
𝑢
𝑛
+ 𝜀
5
𝜙
𝑛
𝑢
2

𝑛

+ 𝜀
6
𝑢
3

𝑛
+ 𝑜 ((

󵄨󵄨󵄨󵄨𝜙𝑛
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨)
4

) .

(25)

And (19) is restricted to the center manifold, which is given
by

𝑓 : 𝜙
𝑛+1
= −𝜙
𝑛
+ 𝑓
1
(𝜙
𝑛
, 𝑔 (𝜙
𝑛
, 𝑢
𝑛
) , V
𝑛
) . (26)



4 Discrete Dynamics in Nature and Society

Direct calculations show that

(
𝜕𝑓

𝜕𝜎

𝜕
2
𝑓

𝜕𝑝2
+ 2

𝜕
2
𝑓

𝜕𝑝𝜕𝜎
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(0,0)

= −2,

(
1

2
(
𝜕
2
𝑓

𝜕𝑝2
)

2

+
1

3
(
𝜕
3
𝑓

𝜕𝑝3
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(0,0)

=
𝑎
2

1

2
.

(27)

Hence, system (5) undergoes a flip bifurcation at 𝑃
1
. This

completes the proof.

The positive fixed point is so important to the biological
system that people usually are very interested in it. We will
next pay attention to the only positive fixed point 𝑃

2
of (5).

Theorem3. Equation (5) undergoes a transcritical bifurcation
at 𝑃
2
when 𝑎

1
= 𝑎
0
, 𝑎
1
̸= 2, and Δ > 0, where

Δ =
(1 + 𝑎

2
)
2

𝑎
2

0

(1 − 𝑎
2
)
2
+ 8 (𝑎

1
− 𝑎
0
) +
4𝑎
2

1
𝑎
2

2
− 4𝑎
2
(𝑎
2
+ 1)

(1 − 𝑎
2
)
2

.

(28)

Theorem 4. If Δ > 0, 𝑎
1
̸= 𝑎
0
, and 𝑎

0
= (2 − 2𝑎

2
− 𝑎
1
+

3𝑎
1
𝑎
2
)/2𝑎
2
, (5) undergoes a flip bifurcation at 𝑃

2
.

Since the analysis is similar to the case at𝑃
1
, the previously

mentioned proofs are omitted.
We next give the condition of existence of Hopf bifurca-

tion by using the hopf bifurcation theorem in [17].
The characteristic equation of the Jacobian matrix 𝐽(𝑃

2
)

can be written as 𝜆2 − 𝑡
2
𝜆 + 𝑑
2
= 0, where

𝑡
2
= 2 + 𝑎

0
− 2𝑎
1
−
2 (𝑎
0
− 𝑎
1
)

1 − 𝑎
2

,

𝑑
2
= 𝑡
2
− 1 + 2𝑎

0
− 2𝑎
1
.

(29)

The eigenvalues of the Jacobian matrix of (5) at 𝑃
2
are

𝜆
1,2
= (𝑡
2
± √𝑡2
2
− 4𝑑
2
)/2. The eigenvalues 𝜆

1,2
are complex

conjugates for Δ < 0. We translate the fixed point 𝑃
2
(1, (𝑎
0
−

𝑎
1
)/(1 − 𝑎

2
)) to the origin by 𝑥

𝑛
= 𝜑
𝑛
− 1, 𝑦

𝑛
= 𝛿
𝑛
− ((𝑎
0
−

𝑎
1
)/(1 − 𝑎

2
)), and the system (5) becomes

𝜑
𝑛+1
= (𝑡
2
− 1) 𝜑

𝑛
+ (𝑎
2
− 1) 𝛿

𝑛

− (𝛿
𝑛
+
𝑎
0
− 𝑎
1
𝑎
2

1 − 𝑎
2

)𝜑
2

𝑛
− 2𝜑
𝑛
𝛿
𝑛
,

𝛿
𝑛+1
=
2 (𝑎
0
− 𝑎
1
)

1 − 𝑎
2

𝜑
𝑛
+ 𝛿
𝑛
+ 2𝜑
𝑛
𝛿
𝑛
+ (𝛿
𝑛
+
𝑎
0
− 𝑎
1

1 − 𝑎
2

)𝜑
2

𝑛
.

(30)

The eigenvalues of the matrix associated with the linearized
map (30) at fixed point (0, 0) are complex conjugates which
are written as 𝜆, 𝜆 = (𝑡

2
± 𝑖√4𝑑

2
− 𝑡2
2
)/2, where

|𝜆| = √1 + 3𝑎0 − 4𝑎1 −
2 (𝑎
0
− 𝑎
1
)

1 − 𝑎
2

. (31)

Now assume that 3𝑎
2
< 1, and let 𝑎

00
= (2𝑎

1
(1 − 2𝑎

2
))/(1 −

3𝑎
2
). Then we have

𝑑 (|𝜆|)

𝑑𝑎
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑎
0
=𝑎
00

=
1 − 3𝑎

2

2 (1 − 𝑎
2
)
> 0,

󵄨󵄨󵄨󵄨𝜆 (𝑎10)
󵄨󵄨󵄨󵄨 = 1,

𝜆 (𝑎
00
) = 1 +

𝑎
1
𝑎
2
− 𝑎
1

1 − 3𝑎
2

± 𝑖

√𝑎
1
(1 − 𝑎

2
) (2 − 𝑎

1
+ 𝑎
1
𝑎
2
− 6𝑎
2
)

1 − 3𝑎
2

,

𝜆
𝑗
̸= 1, 𝑗 = 1, 2, 3, 4.

(32)

Let

T = (
𝑎
2
− 1 0

2 − 𝑡
2

2
−

√4𝑑
2
− 𝑡2
2

2

) ,

(
𝜑
𝑛

𝛿
𝑛

) = T(𝜙𝑛
𝜎
𝑛

) .

(33)

The system (30) becomes

(
𝜙
𝑛+1

𝜎
𝑛+1

) = (

𝑡
2

2
−

√4𝑑
2
− 𝑡2
2

2

√4𝑑
2
− 𝑡2
2

2

𝑡
2

2

)(
𝜙
𝑛

𝜎
𝑛

)

+ (
𝑓
1
(𝜙
𝑛
, 𝜎
𝑛
)

𝑓
2
(𝜙
𝑛
, 𝜎
𝑛
)
) ,

(34)

where

𝑓
1
(𝜙
𝑛
, 𝜎
𝑛
)

= (
𝑎
0
+ 𝑎
0
𝑎
2

2
− 𝑎
1
𝑎
2
)𝜙
3

𝑛

+
[
[

[

(𝑎
2
− 1)√4𝑑

2
− 𝑡2
2

2
𝜎
𝑛
+
𝑎
2
(2𝑎
0
− 𝑎
1
− 𝑎
1
𝑎
2
)

𝑎
2
− 1

]
]

]

𝜙
2

𝑛

+ √4𝑑
2
− 𝑡2
2
𝜎
𝑛
𝜙
𝑛
,

𝑓
2
(𝜙
𝑛
, 𝜎
𝑛
)

=
(2 − 𝑡
2
) (2𝑎
2
− 𝑡
2
) (𝑎
2
− 1)

2√4𝑑
2
− 𝑡2
2

𝜙
3

n

+ (𝑎
2
−1) (𝑎

2
−
𝑡
2

2
) 𝜙
2

𝑛
𝜎
𝑛
−
(2−𝑡
2
) (2−𝑡

2
+𝑎
1
𝑎
2
−𝑎
0
)

√4𝑑
2
− 𝑡2
2

𝜙
2

𝑛

−
2 (𝑎
2
− 1) (2 − 𝑡

2
− 𝑎
0
+ 𝑎
1
)

√4𝑑
2
− 𝑡2
2

𝜙
2

𝑛
+ (2𝑎
2
− 𝑡
2
) 𝜎
𝑛
𝜙
𝑛
.

(35)
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Notice that (34) is exactly on the center manifold in the form,
in which the coefficient 𝑙 [18] is given by 𝑙 = −Re[((1 −
2𝜆)𝜆
2

/(1 − 𝜆))𝑙
11
𝑙
20
] − (1/2)|𝑙

11
|
2
− |𝑙
02
|
2
+ Re(𝜆𝑙

21
), where

𝑙
11
=
1

4
[(𝑓
1𝜙𝜙
+ 𝑓
1𝜎𝜎
) + (𝑓

2𝜙𝜙
+ 𝑓
2𝜎𝜎
) 𝑖]

=
3𝑎
0
𝑎
2
− 2𝑎
1
𝑎
2

2
− 𝑎
0

4𝑎
2
− 4

−
1

4√4𝑑
2
− 𝑡2
2

× [(4 − 2𝑡
2
) (2 − 𝑡

2
+ 𝑎
1
𝑎
2
− 𝑎
0
)

+ (𝑎
2
− 1) (4 − 2𝑡

2
− 2𝑎
0
+ 2𝑎
1
)] 𝑖,

𝑙
20
=
1

8
[(𝑓
1𝜙𝜙
− 𝑓
1𝜎𝜎
+ 2𝑓
2𝜙𝜎
) + (𝑓

2𝜙𝜙
− 𝑓
2𝜎𝜎
− 2𝑓
1𝜙𝜎
) 𝑖]

=
1

4
(𝑎
2
− 𝑎
1
𝑎
2
− 2 + 2𝑎

0
) −

1

8√4𝑑
2
− 𝑡2
2

× [ (4 − 2𝑡
2
) (2 − 𝑡

2
+ 𝑎
1
𝑎
2
− 𝑎
0
) + (𝑎

2
− 1)

× (4 − 2𝑡
2
− 2𝑎
0
+ 2𝑎
1
) − 8𝑑

2
+ 2𝑡
2

2
] 𝑖,

𝑙
02
=
1

8
[(𝑓
1𝜙𝜙
− 𝑓
1𝜎𝜎
− 2𝑓
2𝜙𝜎
) + (𝑓

2𝜙𝜙
− 𝑓
2𝜎𝜎
+ 2𝑓
1𝜙𝜎
) 𝑖]

=
1

8
(2𝑎
0
− 2𝑎
0
𝑎
2
− 2 − 4𝑎

2
+ 3𝑡
2
)

+
1

8
(2𝑎
0
− 𝑎
1
𝑎
2
− 2 + 𝑡

2
+ 2√4𝑑

2
− 𝑡2
2
) 𝑖,

𝑙
21
=
1

16
[(𝑓
1𝜙𝜙𝜙

+ 𝑓
1𝜙𝜎𝜎

+ 𝑓
2𝜙𝜙𝜎

+ 𝑓
2𝜎𝜎𝜎

)

+ (𝑓
2𝜙𝜙𝜙

+ 𝑓
2𝜙𝜎𝜎

− 𝑓
1𝜙𝜙𝜎

− 𝑓
1𝜎𝜎𝜎

) 𝑖]

=
1

8
(1 − 𝑎

2
) (3 + 𝑎

2
− 2𝑡
2
)

+
1

8√4𝑑
2
− 𝑡2
2

(6𝑎
2
− 3𝑡
2
+ 3𝑎
2
𝑡
2
+ 8𝑑
2
+ 𝑡
2

2
) 𝑖.

(36)

From the previous analysis, we haveTheorem 5.

Theorem 5. System (5) undergoes a Hopf bifurcation at fixed
point 𝑃

2
, if 𝑙 ̸= 0, Δ < 0 and

𝑎
1
̸=
2 (1 − 𝑎

2
) + 2𝑎

2
𝑎
1

1 + 𝑎
3

. (37)

3. Numerical Simulations

With development of scientific computation, computer
becomes a powerful tool to study nonlinear systems, espe-
cially for a system without explicit solution. It not only
is able to explore new complex dynamical behaviors, for
example, periodic orbits and chaos in different regions [16,
19], but also can do rigorous analysis by combining modern

dynamical systems theory and reliable computation, for
example, topological horseshoes [20–23]. In this section, we
use the bifurcation diagrams, Lyapunov exponents, and phase
portraits to illustrate the previous analytic results and find
new dynamics of the model (5) as the parameters vary. The
attractors of (5) are also given by using the method in [20].
The bifurcation parameters are considered in the following
three cases:

(I) varying 𝑎
0
in range 1.6 ≤ 𝑎

0
≤ 2.2 and fixing 𝑎

1
= 0.9,

𝑎
3
= 0.01;

(II) varying 𝑎
1
in range 0.8 ≤ 𝑎

1
≤ 1.2 and fixing 𝑎

0
= 2,

𝑎
3
= 0.01;

(III) varying 𝑎
2
in range 0.3 ≤ 𝑎

2
≤ 0.6 and fixing 𝑎

0
= 2,

𝑎
1
= 0.9.

For case (I). The bifurcation diagram of (5) in 𝑎
0
-𝑥
𝑛
and

𝑎
0
-𝑦
𝑛
space for 𝑎

1
= 0.9, 𝑎

3
= 0.01 is given in Figures

1(a) and 1(b) to show the dynamical changes of susceptible
and infective, respectively, as 𝑎

0
varies. There is obvious

phenomenon of bifurcation when we select the stepsize to be
10
−4. The spectrum of Lyapunov exponents of the system (5)

with respect to parameter 𝑎
1
is given in Figure 1(c).

Moreover, we can see that the orbit with initial values
(1, 1) approaches to the stable fixed point 𝑃

2
for 𝑎
0
< 1.8

approximately, and Hopf bifurcation occurs at 𝑎
0
≈ 1.8.

When increased to 𝑎
0
≈ 2.05, (5) becomes stable. In Figures

1(b) and 1(c), we observe the period -4,8 windows within the
chaotic regions and boundary crisis at 𝑎

0
≈ 2.05. For 𝑎

0
∈

(1.95, 2.05) the maximum Lyapunov exponents are positive
which correspond to chaotic region. Towell see the dynamics,
the attractor in the system (5) and time series of 𝑥

𝑛
and 𝑦
𝑛
are

given in Figures 1(d) and 1(e), respectively.

For case (II). Figure 2(a) is the bifurcation diagram of (5) for
𝑥
𝑛
and 𝑦

𝑛
and depicts that there are period -4,5 windows

within the chaotic regions and boundary crisis at 𝑎
1
≈

1. Figure 2(b) shows the spectrum of Lyapunov exponents
of the system (5) with respect to parameter 𝑎

1
. For 𝑎

1
∈

(0.85, 0.95) the maximum Lyapunov exponents are positive
which correspond to chaotic region.

For case (III). Figures 3(a) and 3(b) are the bifurcation
diagrams of (5) for 𝑥

𝑛
and 𝑦

𝑛
, respectively, and depict that

there are period -2,4 windows within the chaotic regions and
boundary crisis at 𝑎

2
= 0.5. Figure 3(c) shows the spectrum

of Lyapunov exponents of (5) with respect to parameter 𝑎
2
.

Figure 3(d) is the attractor of (5) with 𝑎
2
= 0.46.

4. Conclusion

In this paper, we investigate the behaviors of a discrete-time
SIS epidemic model with nonlinear incidence rate, and find
many complex and new interesting dynamical phenomena.
Without the recovery rate of infectious hosts, (1) becomes the
SI model (see [16]). Our theoretical analysis and numerical
simulations have demonstrated that the model exhibits the
variety of dynamical behaviors, which includes that the
discrete epidemic model undergoes transcritical bifurcation,
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flip bifurcation, Hopf bifurcation, and chaos. Furthermore,
chaos can cause the population to run a higher risk of
extinction due to the unpredictability [24, 25]. Thus, how to
control chaos in the epidemicmodel is very important, which
needs further consideration.
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