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Modeling, analysis, and control of hepatitis B virus (HBV) infection have attracted the interests ofmathematicians during the recent
years. Several mathematical models exist and adequately explain the HBV dynamics as well as the effect of antiviral drug therapies.
However, none of thesemodels can completely exhibit all that is observed clinically and account the full course of infection. Besides
model inaccuracies thatHBVdynamicsmodels suffer from, some disturbances/uncertainties fromdifferent sourcesmay arise in the
modeling. In this paper, the HBV dynamics is described by a system of nonlinear ordinary differential equations. The disturbances
or uncertainties are modeled in the HBV dynamics model as additive bounded disturbances. The model is incorporated with
two types of drug therapies which are used to inhibit viral production and prevent new infections. The model can be considered
as nonlinear control system with control input is defined to be dependent on the drug dose and drug efficiency. We developed
treatment schedules for HBV infected patients by using multirate model predictive control (MPC). The MPC is applied to the
stabilization of the uninfected steady state of the HBV dynamics model. The inherent robustness properties of the MPC against
additive disturbances are also shown.

1. Introduction

Hepatitis B virus (HBV) infection is among the most com-
mon causes of hepatitis and can result in serious liver
diseases such as chronic hepatic insufficiency, hepatocellular
carcinoma, and cirrhosis. Over the last decade,much collabo-
rated effort involving biologists andmathematicians has been
devoted towards designing mathematical models of HBV
dynamics [1–11], human immunodeficiency virus (HIV) [12–
20], and hepatitis C virus (HCV) [21]. Mathematical model-
ing and model analysis of the HBV dynamics are important
for exploring possible mechanisms and dynamical behaviors
of the viral infection process, estimating key parameter
values, and guiding development of efficient antiviral drug
therapies. Stability analysis of HBV dynamics models has
been studied by many authors (see e.g., [22–32]).

Several drug therapies have been proposed for treating
persons with chronic HBV including adefovir dipivoxil,
alpha-interferon, lamivudine, pegylated interferon, entecavir,

telbivudine, and tenofovir [33]. Hepatitis antiviral drugs pre-
vent replication ofHBVs and save the liver from cirrhosis and
cancer. During the treatment, the viral load is reduced and
consequently the viral replication in liver is decreased [34].

Optimal control theory can be used to optimize the drug
doses required in the treatment of HBV infected patients
[33, 35, 36]. In this paper, the optimal treatment scheduleswill
be designed using model predictive control (MPC) method.
MPC obtains a feedback control by solving a finite horizon
optimal control problem at each time instant using the cur-
rent state of the system as the initial state for the optimization
and applying “the first part” of the optimal control [37]. MPC
has many advantages which include its facility of handling
constraints, its closed-loop stability, and inherent robustness.
Moreover, MPC solves optimal control problem on-line for
the current state of the plant which is a mathematical pro-
gramming problem and is much simpler than determining
the feedback solution by dynamic programming [37].
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Recently, MPC has been applied for determining the
optimal treatment schedules forHIV infected patients in [38–
41]. As far as the authors know, the application of MPC to the
HBVdynamicsmodel has never been studied before.The aim
of the present paper is to apply a multirate MPC approach
to an HBV dynamics model. The MPC is constructed based
on the approximate discrete-time model. The closed-loop
stability of the multirate MPC will be shown. The inherent
robustness properties of the MPC against disturbances will
also be shown. The disturbances may arise from modeling
errors, or disturbances arise from immune system fluctuating
or immune effect of a coinfection.

2. HBV Infection Model

We will use the mathematical model proposed in [22],
incorporating to allow some additive disturbances and taking
into account the effect of two types of antiviral drugs
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Here 𝑇, 𝐼, and 𝑉 denote the concentration of uninfected
hepatocytes, infected hepatocytes, and free virions, respec-
tively. Uninfected hepatocytes are assumed to be produced
at the constant rate 𝑠 and die at the rate of 𝑑𝑇. Uninfected
hepatocytes can also be created by proliferation of existing 𝑇
cells. Herewe represent the proliferation by a logistic function
in which 𝑎 is the maximum proliferation rate of target cells,
and 𝑇max is the 𝑇 concentration at which proliferation shuts
off. The rate of infection is given by saturation functional
response 𝛽𝑒−𝑢1𝑇𝑉/(1 + 𝑏𝑉), where 𝛽 is the infection rate
constant characteristic of the infection efficiency and 𝑏 > 0
is constant. The death rate of infected hepatocytes is 𝛿𝐼. Free
virions are assumed to be produced from infected hepato-
cytes at the rate of 𝑝𝑒−𝑢2𝐼 and 𝑐𝑉 is the clearance rate
of viral particles. Functions 𝑤

𝑖

, 𝑖 = 1, 2, 3, describe the
model uncertainties/disturbances. Two types of drugs are
considered; the first is used to prevent the virus from infecting
the cell and is represented by the chemotherapy function 𝑒−𝑢1 ,
and the second is used to prevent the infected cells from
producing new viruses and is represented by the function
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All the parameters of the model are supposed to be positive.
System (1)–(3) can be considered as a nonlinear control
system with (𝑇, 𝐼, 𝑉)󸀠 as the state vector and (𝑢
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󸀠 is the
control input vector. We are now ready to present a study on
the basic mathematical properties of system (1)–(3).

We assume that the model uncertainty/disturbances are
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Now we show that under which conditions the nonnegative
orthant R3
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is positively invariant for (1)–(3):
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This means that the nonnegative orthant R3

+

is positively
invariant, namely, if a trajectory starts in the nonnegative
orthant, it remains there.

Proposition 1. Assume that the disturbances satisfy the
boundedness condition (5) and 𝑑𝑇max > 𝑠+𝜖1. Then there exist
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This means that, even if 𝑇 reaches 𝑇max, it should decrease.
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where 𝜎 = min{𝑑, 𝛿}. Hence 0 ≤ 𝑇tot(𝑡) ≤ (𝑎𝑇max + 4(𝑠 + 𝜖1 +
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Note that Ω contains all the biologically relevant states,
thus we can restrict the state space of the system to the com-
pact set Ω. Since the drug doses cannot be arbitrarily
increased, we thenmay consider only a compact control con-
straint set.

Let us compute the steady states of system (1)–(3) under
constant controller in the absence of the disturbances that
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It has been shown in [22] that the infected steady state 𝐸
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Theorem 2 (see [22]). For the nominal system (1)–(3) (i.e.,
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Proposition 6. Suppose that Assumption 5 is valid. Then the
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Theorem 8 (see [22]). Consider the nominal system (1)–(3).
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Then the positive steady state 𝐸
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stable provided that one of the following two assumptions holds:

(i) (𝑇max/2𝑎)(𝑎 − 𝑑) < 𝑚 < 𝑇0 < (𝑇max/2𝑎)(𝑎 − 𝑑 + 𝛿),

(ii) 𝑚 > (𝑇max/2𝑎)(𝑎 − 𝑑 + 𝛿).

3. Multirate MPC for Nonlinear Systems

In this section, we outline the multirate MPC design for
nonlinear systems in the presence of bounded disturbances
and give a review on the results obtained in [43, 44].
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The set of real and natural numbers (including zero) are
denoted, respectively, by R and N. The symbol R

≥0

denotes
the set of nonnegative real numbers. A continuous function
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Wewill assume that there is a compact setX ⊂ R𝑛 containing
the origin, that is positively invariant with respect to system
(15) for any 𝑤(⋅) ∈ 𝑊 and any piecewise constant controller
𝑢 ∈ 𝑈. Let 𝑡 󳨃→ Φ

𝐸

(𝑡, 𝑧, 𝑢, 𝑤(⋅)) denote the solution of (15)
with given 𝑢, 𝑤, and 𝑧 = 𝑧(0). Then the exact discrete-time
model can be defined as

𝑧

𝑖+1

=

̃

𝐹

𝐸

𝜏

(𝑧

𝑖

, 𝑢

𝑖

, 𝑤

𝜏

[𝑖]) ,
(19)

where ̃𝐹𝐸
𝜏

(𝑧, 𝑢, 𝑤

𝜏

) := Φ

𝐸

(𝜏; 𝑧, 𝑢, 𝑤

𝜏

).
Let u(𝑖) = {𝑢(𝑖)

0

, . . . , 𝑢

(𝑖)

ℓ−1

}, w(𝑖)

= {𝑤

𝜏

[𝑖ℓ], . . . , 𝑤

𝜏

[(𝑖 + 1)ℓ −

1]}, and F𝐸

ℓ

(𝜉, u,w) := Φ𝐸

(𝜏ℓ, 𝜉, u,w), then the exact ℓ-step
discrete-time model is given by

𝜉

𝐸

𝑖+1

= F
𝐸

ℓ

(𝜉

𝐸

𝑖

, u(𝑖),w(𝑖)

) , 𝜉

𝐸

0

= 𝑧

0

. (20)

We note that the exact discrete-time models (19) and (20)
describe, respectively, the behavior of the system at the time
instants 𝑘𝜏 and 𝑘ℓ𝜏, 𝑘 = 0, 1, . . . .

In this work, the construction of multirate MPC is based
on the nominal prediction and only small disturbances are
allowed. The nominal system of (15) is given by

𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡)) , 𝑥 (0) = 𝑧 (0) , (21)

and its exact discrete-time model is given by

𝑥

𝐸

𝑖+1

= 𝐹

𝐸

𝜏

(𝑥

𝐸

𝑖

, 𝑢

𝑖

) . (22)

We note that, since 𝑓 is typically nonlinear, 𝐹𝐸
𝜏

in (22) is not
known in most cases, therefore the controller design can be
carried out by means of the nominal approximate discrete-
time model

𝑥

𝐴

𝑖+1

= 𝐹

𝐴

𝜏,ℎ

(𝑥

𝐴

𝑖

, 𝑢

𝑖

) , (23)

where ℎ is a modeling parameter, which is typically the step
size of the underlying numerical method. The applied num-
erical scheme approximation has to ensure the closeness of
the exact models in the following sense.

Assumption 9. There exists an ℎ∗ > 0 such that

(i) 𝐹𝐴
𝜏,ℎ

(0, 0) = 0, 𝐹𝐴
𝜏,ℎ

is continuous in both variables,
uniformly continuous in ℎ ∈ (0, ℎ∗], and Lipschitz
continuous with respect to 𝑥 in any compact set,
uniformly in small ℎ,

(ii) there exists a 𝛾 ∈K such that
󵄩

󵄩

󵄩

󵄩

󵄩

𝐹

𝐸

𝜏

(𝑥, 𝑢) − 𝐹

𝐴

𝜏,ℎ

(𝑥, 𝑢)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝜏𝛾 (ℎ) , (24)

for all 𝑥 ∈ X, all 𝑢 ∈ 𝑈, and ℎ ∈ (0, ℎ∗].

Assumption 10. There exists an ℎ∗ > 0 such that the nominal
exact discrete-time model (22) is practically asymptotically
controllable from X to the origin with piecewise constant
controllers for all ℎ ∈ (0, ℎ∗] (see e.g., [43] for the definition).

For the solutions of (19), (22), and (23) with u =

{𝑢

0

, 𝑢

1

, . . .}, w = {𝑤

𝜏

[0], 𝑤

𝜏

[1], . . . } and 𝑥
0

we will use the
notationsΦ𝐸

𝑖

(𝑥

0

, u,w), 𝜙𝐸
𝑖

(𝑥

0

, u), and 𝜙𝐴
𝑖

(𝑥

0

, u), respectively.
The following problem is to be solved: for given 𝜏 and ℓ

find a control strategy

k
ℎ

: X 󳨀→ 𝑈 × 𝑈 × ⋅ ⋅ ⋅ × 𝑈⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℓ times
,

k
ℎ

(𝑥) = {𝑢

0

(𝑥) , . . . , 𝑢

ℓ−1

(𝑥)} ,

(25)

using the nominal approximate discrete-time model (23), to
practically stabilize the exact discrete-time system (19).

Let𝑁 ∈ N with𝑁 ≥ ℓ be given. Let (23) be subject to the
cost function

𝐽

𝜏,ℎ

(𝑁, 𝑥, u) =
𝑁−1

∑

𝑖=0

𝜏𝑙

ℎ

(𝑥

𝐴

𝑖

, 𝑢

𝑖

) + 𝑔 (𝑥

𝐴

𝑁

) , (26)

where u = {𝑢

0

, . . . , 𝑢

𝑁−1

}, 𝑥𝐴
𝑖

= 𝜙

𝐴

𝑖

(𝑥, u), 𝑖 = 0, 1, . . . , 𝑁,
𝑙

ℎ

and 𝑔 are given functions satisfying the following assump-
tions.
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Assumption 11. Let X
1

= X +B
1

, (i) 𝑔 : X
1

→ R is con-
tinuous, positive definite radially unbounded, and Lipschitz
continuous in any compact set,

(ii) 𝑙
ℎ

(𝑥, 𝑢) is continuous with respect to 𝑥 and 𝑢,
uniformly continuous in small ℎ, and Lipschitz continuous
in any compact set,

(iii) there exist an ℎ∗ > 0 and two class-K
∞

functions 𝜑
1

and 𝜑
2

such that the inequality

𝜑

1

(‖𝑥‖) ≤ 𝑙

ℎ

(𝑥, 𝑢) ≤ 𝜑

2

(‖𝑥‖) + 𝜑

2

(‖𝑢‖) , (27)

holds for all 𝑥 ∈ X
1

, 𝑢 ∈ 𝑈 and ℎ ∈ (0, ℎ∗].

Assumption 12. There exist ℎ∗ > 0 and 𝜂 > 0 such that for all
𝑥 ∈ G

𝜂

= {𝑥 : 𝑔(𝑥) ≤ 𝜂} there exists a 𝜅(𝑥) ∈ 𝑈 such that
inequality

𝜏𝑙

ℎ

(𝑥, 𝜅 (𝑥)) + 𝑔 (𝐹

𝐴

𝜏,ℎ

(𝑥, 𝜅 (𝑥))) ≤ 𝑔 (𝑥) , (28)

holds for all ℎ ∈ (0, ℎ∗].

We define the value function, which represents the opti-
mal value of (26) for a given initial condition as follows

𝑉

𝑁

(𝑥) = inf {𝐽
𝜏,ℎ

(𝑁, 𝑥, u) : 𝑢
𝑖

∈ 𝑈} . (29)

Let u∗ = {𝑢∗
0

, . . . , 𝑢

∗

𝑁−1

} be the solution of this optimization
problem, then the first ℓ elements of u∗ are applied at the state
𝑥, that is,

k
ℎ

(𝑥) = {𝑢

∗

0

(𝑥) , . . . , 𝑢

∗

ℓ−1

(𝑥)} . (30)

Let ℎ∗
0

denote the minimum of the values ℎ∗ generated by
Assumptions 9–12. Let Δ

𝑥

and Δ
𝑢

be such numbers that, for
each 𝑥 ∈ X, 𝑢 ∈ 𝑈, ‖𝑥‖ ≤ Δ

𝑥

, ‖𝑢‖ ≤ Δ
𝑢

.

Theorem 13 (see [43]). If Assumptions 9–12 hold, then

(i) there exist an ℎ∗
1

with 0 < ℎ∗
1

≤ ℎ

∗

0

, and a constant
𝑉

𝐴

max independent of𝑁, such that 𝑉
𝑁

(𝑥) ≤ 𝑉

𝐴

max for all
𝑥 ∈ X, ℎ ∈ (0, ℎ∗

1

] and𝑁 ∈ N,
(ii) there exist constants 𝑁∗, 𝐿

𝑉

and 𝛿
𝑉

and functions
𝜎

1

, 𝜎

2

∈ K
∞

such that for all 𝑥 ∈ X, 𝑁 > 𝑁

∗,
ℎ ∈ (0, ℎ

∗

1

] and 𝑖 = 1, 2, . . . , ℓ,

𝜎

1

(‖𝑥‖) ≤ 𝑉

𝑁

(𝑥) ≤ 𝜎

2

(‖𝑥‖) ,

𝑉

𝑁

(𝜙

𝐴

𝑖

(𝑥, k
ℎ

(𝑥))) − 𝑉

𝑁

(𝑥) ≤ −𝜏𝜑

1

(‖𝑥‖) .

(31)

Moreover, for all 𝑥, 𝑦 ∈ X
1

with ‖𝑥 − 𝑦‖ ≤ 𝛿
𝑉

,
󵄨

󵄨

󵄨

󵄨

𝑉

𝑁

(𝑥) − 𝑉

𝑁

(𝑦)

󵄨

󵄨

󵄨

󵄨

≤ 𝐿

𝑉

󵄩

󵄩

󵄩

󵄩

𝑥 − 𝑦

󵄩

󵄩

󵄩

󵄩

, (32)

for all ℎ ∈ (0, ℎ∗
1

].
ClearlyX ⊂ {𝑥 : 𝑉

𝑁

(𝑥) ≤ 𝑉

𝐴

max}.

Theorem 14 (see [38, 44]). Suppose that Assumptions 9–12 are
valid and 𝑁 is chosen such that 𝑁 ≥ 𝑁

∗. Then, there exist
𝛽 ∈ KL, 𝜃 ∈ K

∞

, 𝜇∗ > 0 and for any 𝛿 > 0 there exists an

ℎ

∗

> 0 such that for any 𝑥
0

∈ X, and ℎ ∈ (0, ℎ∗] the trajectory
of the ℓ-step exact discrete-time system

𝜉

𝐸

𝑖+1

= F
𝐸

ℓ

(𝜉

𝐸

𝑖

, k
ℎ

(𝜉

𝐸

𝑖

) ,w(𝑖)

) , 𝜉

𝐸

0

= 𝑥

0

, (33)

with the ℓ-step MPC k
ℎ

and w(𝑖)

∈W
𝜇

∗

ℓ

satisfies
󵄩

󵄩

󵄩

󵄩

󵄩

𝜉

𝐸

𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝛽 (

󵄩

󵄩

󵄩

󵄩

𝑥

0

󵄩

󵄩

󵄩

󵄩

, 𝑖ℓ𝜏) + 𝜃 (𝜇

∗

) + 𝛿, ∀𝑖 ≥ 0. (34)

4. MPC for the HBV Model

In this sectionwe apply theMPCmethod proposed in Section
3.Wewill show that, with a suitable choice of𝑁 and functions
𝑔 and 𝑙

ℎ

, the assumptions of the previous section can be
satisfied. Introduce new variables as 𝑧

1

= 𝑇−𝑇

0

, 𝑧
2

= 𝐼, 𝑧
3

=

𝑉. In these new variables the model (1)–(3) takes the form of
(15) with

𝑓 (𝑧, 𝑢) =

(

𝑠 − 𝑑 (𝑧

1

+ 𝑇

0

) + 𝑎 (𝑧

1

+ 𝑇

0

) [1 −

𝑧

1

+ 𝑇

0

𝑇max
] − 𝛽𝑒

−𝑢1
(𝑧

1

+ 𝑇

0

) 𝑧

3

1 + 𝑏𝑧

3

𝛽𝑒

−𝑢1
(𝑧

1

+ 𝑇

0

) 𝑧

3

1 + 𝑏𝑧

3

− 𝛿𝑧

2

𝑝𝑒

−𝑢2
𝑧

2

− 𝑐𝑧

3

),

(35)

and 𝑤 = (𝑤
1

, 𝑤

2

, 𝑤

3

)

󸀠.
Let the compact setX be defined as

X = {(𝑧

1

, 𝑧

2

, 𝑧

3

) : −𝑇

0

≤ 𝑧

1

≤ 𝑀

1

− 𝑇

0

,

0 ≤ 𝑧

2

≤ 𝑀

1

, 0 ≤ 𝑧

3

≤ 𝑀

2

} ,

(36)

where𝑀
1

and𝑀
2

are given in Proposition 1.
With this definition,𝑓 satisfies all regularity assumptions,

and according to Proposition 1,X is positively invariant.
To verify Assumptions 11 and 12, we linearized the

nominal system (35) around the origin in case of constant
controllers, that is, 𝑢

1

(𝑡) = 𝑢

1

> 𝑢

(1)

𝑐

, 𝑢
2

(𝑡) = 𝑢

2

> 𝑢

(2)

𝑐

with 𝑢(1)
𝑐

+ 𝑢

(2)

𝑐

= 𝑢

𝑐

, where 𝑢
𝑐

is given in Proposition 3.
Let 𝐴

𝐶

be the coefficient matrix of the linearized system and
𝑥 = (𝑇−𝑇

0

, 𝐼, 𝑉)

󸀠. Then the discrete-time model for the line-
arized system is given by

𝑥 (𝑘 + 1) = 𝑒

𝐴

𝐶
𝜏

𝑥 (𝑘) .
(37)

Let the sampling period be chosen to be 𝜏 = 0.5 and 𝑢
1

=

𝑢

2

= 1. The running cost and the terminal cost can be chosen
as

𝑙

ℎ

(𝑥, 𝑢) = 0.1𝑥

󸀠

𝑄𝑥 + (𝑢

1

− 𝑢

(1)

𝑐

)

2

+ (𝑢

2

− 𝑢

(2)

𝑐

)

2

,
(38)

𝑔 (𝑥) = 𝑥

󸀠

𝑃𝑥, (39)

where 𝑃 is a positive definite diagonal matrix and 𝑄 is a
positive definite symmetric matrix satisfying the Lyapunov
equation for the discrete-time system (37)

𝑄 = − (𝐴

󸀠

𝜏

𝑃𝐴

𝜏

− 𝑃) , 𝐴

𝜏

= 𝑒

𝐴

𝐶
𝜏

. (40)
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Table 1: The values of the parameters in the HBV dynamics model.

Parameters
𝑑 𝑠 𝛿 𝑝 𝑐 𝛽 𝑎 𝑇max 𝜓

1

𝜓

2

Values 0.072 36 0.5 5 3 0.001 0.108 1500 0.01 0.01

Using the parameters given in Table 1, we have verified
Assumption 5 numerically by fixing one controller, for exam-
ple, 𝑢

1

and solve the inequality (13) with respect to 𝑢
2

. We
have found that for 𝑢

1

= 1, then inequality (13) is satisfied
when 𝑢

2

> 0.20397.
From (38)-(39), Assumption 11 is satisfied. Assumption 10

follows from Proposition 6. Assumption 9 is fulfilled as well,
if we choose a suitable numerical integration scheme (e.g., the
Runge-Kutta formula). To verify Assumption 12, thematrix𝑃
has been chosen through a series of numerical experiments
𝑃 = diag(1, 20, 3). It has been verified numerically by solving
a constrained minimization problem with several starting
points, for which Assumption 12 is satisfied over the whole
set X. Thus all assumptions of the proposed method can be
satisfied with suitable choice of the parameters of the MPC
method.

5. Numerical Results

We performed simulation studies using the following param-
eter values which are listed in Table 1.

We assumed that the statemeasurements were performed
at the instants 𝑗ℓ𝜏, 𝑗 = 0, 1, . . . with ℓ = 4 and the
horizon length 𝑁 was chosen to be 𝑁 = 8. All computa-
tions were carried out by MATLAB. Especially, the optimal
control sequence was computed by the fmincon code of the
Optimization toolbox. Simulations for the continuous-time
system were carried out using ODE45 program in MATLAB
for two cases, untreated case and treated case.

(i) Untreated Case. In this case, we simulate the nominal
system (1)–(3) (i.e., 𝑤

𝑖

(𝑡) = 0, 𝑖 = 1, 2, 3) without treatment
(i.e., 𝑢

1

= 𝑢

2

= 0). Using the parameters given in Table 1 and
choose 𝑏 = 0.005, we have obtained (𝑝𝛽/𝛿𝑐)𝑇

0

= 3.33333 > 1

and 𝑅
0

(0.0) = 1.60987 > 1, moreover, all the conditions of
Theorem 8 are satisfied.Therefore the uninfected steady state
𝐸

0

is unstable and the infected steady state 𝐸
1

exists and is
globally asymptotically stable. To show the simulation results
for the untreated case, we assume that the infection occurs
with a certain amount of virus particles 𝑉 = 0.001. Thus the
initial conditions for the untreated case are𝑇(0) = 𝑇

0

= 1000,
𝐼(0) = 0, and 𝑉(0) = 0.001. From Figures 1, 2, and 3, we
can see that, the concentration of uninfected hepatocytes is
decaying while the concentrations of the infected hepato-
cytes, and free viruses are increasing. Also we note that the
trajectory tends to the stable infected steady state 𝐸

1

. Figures
1–3 show also the effect of the saturation parameter 𝑏 on
the evolution of uninfected hepatocytes, infected hepatocytes
and free viruses, respectively. It can be seen that, as 𝑏 is
increased, the evolution of the disease is postponed.

(ii)TreatedCase. In this case, the treatment is designed via
MPC strategy for the nominal and disturbed HBV infection
models. In this case, we assume that the system is in the
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Figure 1: The evolution of uninfected hepatocytes for untreated
case.
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Figure 2: The evolution of infected hepatocytes for untreated case.

infected steady state before initiating the treatment, that is,
𝐸

1

|

(𝑢

1
=𝑢

2
=0)

. In this case, we choose the saturation parameter
𝑏 = 0.005. Thus the initial conditions for the MPC are given
by 𝑇(0) = 482.96, 𝐼(0) = 73.19, and 𝑉(0) = 121.98.

The disturbances are simulated by

𝑤

𝑖

(𝑡) ∈ [𝜂

𝑖

, 𝜖

𝑖

] ,

𝑤

𝑖

(𝑡) = 𝑤

𝑖

(𝑗) = 𝜂

𝑖

+ (𝜖

𝑖

− 𝜂

𝑖

) 𝑟 (𝑗) ,

𝑡 ∈ [𝑗𝜏, (𝑗 + 1) 𝜏) , 𝑖 = 1, 2, 3, 𝑗 = 0, 1, . . . ,

(41)

where the parameters 𝑟(𝑗) are uniformly distributed random
numbers on [0, 1], and 𝜂

𝑖

= −𝜖

𝑖

when the system states lie
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Figure 3: The evolution of free virus for untreated case.
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Figure 4: The evolution of uninfected hepatocytes under MPC.

in the interior of the positive orthantR3

+

. At the boundary of
R3

+

, the lower bound 𝜂
𝑖

has to be chosen as the following:

𝜂

1

= max {−𝑠, −𝜖
1

} ,

𝜂

2

= max{−𝑒−𝑢1𝛽
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} ,

𝜂

3

= max {−𝑝𝑒−𝑢2𝑧
2

, −𝜖

3

} ,

(42)

to guarantee that the positive orthant R3

+

is positively invari-
ant.
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Figure 5: The evolution of infected hepatocytes under MPC.
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Figure 6: The evolution of free virus under MPC.

We apply the MPC to the HBV model with and without
disturbances.The following cases are shown in the simulation
results:

(1) MPC-(I): 𝑤
𝑖

(𝑡) = 0, 𝑖 = 1, 2, 3,
(2) MPC-(II)𝑤

𝑖

(𝑡) ∈ [𝜂

𝑖

, 𝜖

𝑖

], with 𝜖
1

= 20, 𝜖
2

= 5, 𝜖
3

= 10,
(3) MPC-(III) 𝑤

𝑖

(𝑡) ∈ [𝜂

𝑖

, 𝜖

𝑖

], with 𝜖
1

= 40, 𝜖
2

= 10, 𝜖
3

=

20.

Figure 4 shows that, when the MPC is applied, the con-
centration of uninfected hepatocytes is increasing. From
Figures 5 and 6, we can see that the concentrations of
infected hepatocytes and free virions are decaying during
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Figure 7: The drug dose of the first type designed by MPC.
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Figure 8: The drug dose of the second type designed by MPC.

the treatment. From Figures 4–6, we observe that when the
MPC strategy is applied in the presence of bounded dis-
turbances, the trajectory of the system tends to a ball around
the uninfected steady state 𝐸

0

and remains there. The drug
doses 𝑚

1

= 𝑢

1

/𝜓

1

and 𝑚
2

= 𝑢

2

/𝜓

2

as functions of the time
for MPC-(I), MPC-(II), and MPC-(III) cases are shown in
Figures 7 and 8, respectively.

6. Conclusion

In this paper we have studied a mathematical model describ-
ing the HBV dynamics. The model has been incorporated
to allow some additive disturbances. Under the effect of two

types of drug therapies the HBV dynamics model is consid-
ered as a nonlinear control system, where the control input is
defined to be dependent on the drug dose and drug efficiency.
We have applied MPC method for determining the optimal
treatment schedules and for stabilizing the HBV infection
system around the uninfected steady state. The inherent
robustness properties of the MPC have been established.
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