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By employing the generalized fractional differential operator, we introduce a system of fractional order derivative for a uniformly
sampled polynomial signal. The calculation of the bring in signal depends on the additive combination of the weighted bring-in of
𝑁 cascaded digital differentiators. The weights are imposed in a closed formula containing the Stirling numbers of the first kind.
The approach taken in this work is to consider that signal function in terms of Newton series. The convergence of the system to a
fractional time differentiator is discussed.

1. Introduction

Nowadays, fractional calculus (integral and differential oper-
ators) arises in signal processing and image possessing. The
fractional calculation is able to enhance the quality of images,
with interesting possibilities in edge detection and image
restoration, to reveal faint objects in astronomical images and
devoted to astronomical images analysis [1, 2]. Furthermore,
fractional calculus is employed in image retrieval, design
problems of variables and image denoising, digital fractional
order for different filters [3–9]. In addition, the fractional
calculus (differential operators) is used to reduce the error
rate of handwritten signature verification system. All results
based on the fractional calculus operators (differential and
integral) show that this method is not only effective, but also
good immunity. Therefore, the fractional calculus in the field
of image processing and signal prosecuting that has broad
application prospect.

The digital differentiator is a very helpful tool to compute
and approximate the time derivatives of a given signal; such
as, in radar and sonar applications, the velocity and accel-
eration are calculated from position measurements using
differentiators. Digital fractional order differentiators are
discrete-time digital systems fractional order differentiation.
In view of signal processing, the generalization from integer

to fractional orders that is an important concept for its possi-
bility to enhance flexibility in designing digital differentiator
has been well treated in the existing signal processing. There
are comparatively published results respecting the fractional
digital differentiators [10, 11].

In this work, by using the generalized Srivastava-Owa
fractional differential operator [12] (involving twoparameters
𝛼, 𝜇), we introduce a system of generalized fractional order
derivative for a uniformly sampled polynomial signal. The
weights are obtained in a form containing the Pochhammer
number. The convergence of the system to a fractional time
differentiator is discussed. The output of the signal is deter-
mined by using the generalized hypergeometric function
called the Fox-Wright function.

2. Design Technique

Ibrahim [13], has derived a formula for the generalized
fractional integral. The 𝑛-fold integral for 𝑛 ∈ N = {1, 2, . . .}

and real 𝜇, is defined by

𝐼
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𝑧

0

𝜁
𝜇

1
𝑑𝜁
1
∫

𝜁
1

0

𝜁
𝜇

2
𝑑𝜁
2
⋅ ⋅ ⋅ ∫

𝜁
𝑛−1

0

𝜁
𝜇

𝑛
𝑓 (𝜁
𝑛
) 𝑑𝜁
𝑛
. (1)



2 Discrete Dynamics in Nature and Society

Employing the Cauchy formula for iterated integrals yields

∫
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(2)

Repeating the previous step 𝑛 − 1 times, we have

∫
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(3)

which implies the fractional operator type

𝐼
𝛼,𝜇
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Γ (𝛼)
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where 𝛼 and 𝜇 ̸= − 1 are real numbers, the function 𝑓(𝑧) is
analytic in simply connected region of the complex 𝑧-planeC
containing the origin, and themultiplicity of (𝑧𝜇+1−𝜁

𝜇+1

)
−𝛼 is

removed by requiring log(𝑧𝜇+1 −𝜁
𝜇+1

) to be real when (𝑧
𝜇+1

−

𝜁
𝜇+1

) > 0. When 𝜇 = 0, we arrive at the standard Srivastava-
Owa fractional integral operator, which is used to define the
Srivastava-Owa fractional derivatives.

Corresponding to the generalized fractional integrals (4),
we define the generalized differential operator of order 𝛼 by

𝐷
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(5)

where the function 𝑓(𝑧) is analytic in simply connected
region of the complex 𝑧-plane C containing the origin and
the multiplicity of (𝑧
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Example 1. We find the generalized derivative of the function
𝑓(𝑧) = 𝑧

], ] ∈ R. Let 𝜂 := (𝜁/𝑧)
𝜇+1 then we have
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(6)

3. Fractional Digital Signal

In this section we will use the fractional differential operator
(5) in order to compute the fractional signal. Assume the
analytic signal 𝑓(𝑧), which can be represented as a Newton
series around 𝑧
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where (𝑎)
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such that [
𝑛

𝑘
] denotes the Stirling numbers of the first kind
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(9)

Now we assume that 𝑧
0
= 𝑚𝑇 (𝑇 is the sampling period),

𝑠(𝑚) = 𝑓(𝑚𝑇) then we obtain
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By truncating the Newton series expansion at the 𝑁th term
(𝑛 = 𝑁), we assume the polynomial signal

𝑝 (𝑧) =

𝑁

∑

𝑛 = 0

𝑐
𝑛
𝑧
𝑛

, (𝑧 is real) (12)

such that for all the differences of order 𝑛 ≥ 𝑁 + 1 vanished.
The fractional differential digital signal is a discrete time

system whose output 𝑦(𝑚) is the uniformly sampled version
of the 𝛼th order derivative of 𝑓(𝑧). Therefore, we assume 𝛼 >

0. Specifically, we write

𝑦 (𝑚) = 𝐷
𝛼,𝜇

𝑧
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󵄨󵄨󵄨󵄨𝑧 =𝑚𝑇
. (13)

The input 𝑠(𝑚) = 𝑓(𝑚𝑇) is supposed to be a polynomial of
degree 𝑁. In view of Example 1, we have
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Next we proceed to evaluate the fractional order of the rising
factorial power term at 𝑚𝑇 = 𝑧. We expand (𝑧 − 𝑚𝑇)
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where
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consequently; by using Example 1, we have
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as 𝑘 → ∞, 𝑛 < 𝑘, and lim
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where
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is the Fox-Wright function (the generalization of

the hypergeometric function
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𝑝
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where 𝐴
𝑗
> 0 for all 𝑗 = 1, . . . , 𝑞, 𝐵

𝑗
> 0 for all 𝑗 = 1, . . . , 𝑝,
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Substituting (20) into (14) we obtain (13)
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=
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∇
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∇
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𝑘
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∇
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4. Experimental Results

In this section, we propose to apply the formula (21) on the
signal 𝑓(𝑧) = √𝑧. We will assume 𝑁 = 5. The Stirling
numbers of the first kind 𝑆

1
(𝑛, 𝑘) take the values

𝑆
1
(𝑛, 0) = 𝛿

𝑛,0

𝑆
1
(𝑛, 1) = (−1)

𝑛−1

(𝑛 − 1)!

...

𝑆
1
(𝑛, 𝑛 − 1) = −(

𝑛

2
) binomial coefficients,

(22)

where 𝛿
𝑛,0

is the delta function

𝛿
𝑛,0

= {
0 𝑛 ̸= 0

1 𝑛 = 0.
(23)

Now for sufficient small value of 𝜇, the Fox-Wright
function

1
Φ
1
[1] reduces to the hypergeometric function

𝑞
𝐹
𝑝

𝑞
Φ
𝑝
[

(𝛼
1
, 1) , . . . , (𝛼

𝑞
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(𝛽
1
, 1) , . . . , (𝛽

𝑝
, 1) ;

𝑧]
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∏
𝑞

𝑗 =1
Γ (𝛼
𝑗
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∏
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𝑖 =1
Γ (𝛽
𝑖
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𝑞
𝐹
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𝑝
; 𝑧)

(24)

such that
𝑞
𝐹
𝑝
satisfies

2
𝐹
1
(𝑎, 𝑏; 𝑐; 1) =

Γ (𝑐 − 𝑎 − 𝑏) Γ (𝑐)

Γ (𝑐 − 𝑎) Γ (𝑐 − 𝑏)
, 𝑏 ≤ 0. (25)

Employing the relations (24) and (25) yields

1
Φ
1
[1] ≃

Γ (𝛼
1
)

Γ (𝛽
1
)
2
𝐹
1
(1, 0; 1 − 𝛼; 1)

=
1

Γ (1 − 𝛼)

Γ (−𝛼) Γ (1 − 𝛼)

Γ (−𝛼) Γ (1 − 𝛼)

=
1

Γ (1 − 𝛼)
,

(26)

hence for 𝛼 = 1/2 ⇒ Γ(1/2) = 1.772, we impose
1
Φ
1
[1] ≃

0.564.
In virtue of (11), where 𝑓(𝑧) = 𝑓(𝑚𝑇) = 𝑠(𝑚) = √𝑇𝑚

and 𝑇 = 1/25, we pose

∇
0

1
𝑠 (𝑚) = 𝑠 (𝑚) =

√𝑚

5
,

∇
1

1
𝑠 (𝑚) = 𝑠 (𝑚) − 𝑠 (𝑚 − 1) =

√𝑚 − √𝑚 − 1

5
,

∇
2

1
𝑠 (𝑚) =

√𝑚 − 2√𝑚 − 1 + √𝑚 − 2

5
,

∇
3

1
𝑠 (𝑚) =

√𝑚 − 3√𝑚 − 1 + 3√𝑚 − 2 − √𝑚 − 3

5
,

∇
4

1
𝑠 (𝑚) =

√𝑚 − 4√𝑚 − 1 + 6√𝑚 − 2 − 4√𝑚 − 3 +√𝑚 − 4

5
,

∇
5

1
𝑠 (𝑚) = (√𝑚 − 5√𝑚 − 1 + 10√𝑚 − 2

− 10√𝑚 − 3 + 5√𝑚 − 4 − √𝑚 − 5)

× (5)
−1

.

(27)

For 𝜇 = 0 and 𝛼 = 0.5, the 6th terms of 𝑦(𝑚) become

𝑦 (𝑚)

= 2.82 {
∇
0

1
𝑠 (𝑚)

√𝑚

− √𝑚(
∇
1

1
𝑠 (𝑚)

1!
+

∇
2

1
𝑠 (𝑚)

2!

+ 2
∇
3

1
𝑠 (𝑚)

3!
+ 6

∇
4

1
𝑠 (𝑚)

4!
+ 24

∇
5

1
𝑠 (𝑚)

5!
)
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+ √𝑚3 (
∇
2

1
𝑠 (𝑚)

2!
+ 3

∇
3

1
𝑠 (𝑚)

3!
+ 11

∇
4

1
𝑠 (𝑚)

4!

+ 50
∇
5

1
𝑠 (𝑚)

5!
)

− √𝑚5 (
∇
3

1
𝑠 (𝑚)

3!
+ 6

∇
4

1
𝑠 (𝑚)

4!
+ 35

∇
5

1
𝑠 (𝑚)

5!
)

+ √𝑚7 (
∇
4

1
𝑠 (𝑚)

4!
+ 10

∇
5

1
𝑠 (𝑚)

5!
)

− √𝑚9 (
∇
5

1
𝑠 (𝑚)

5!
) + ⋅ ⋅ ⋅} .

(28)

Furthermore, for 𝛼 = 0.5 and 𝜇 = 0.25, we have

𝑦 (𝑚)

≃ 1.475{
∇
0

1
𝑠 (𝑚)

3
√𝑚

−
3
√𝑚2 (

∇
1

1
𝑠 (𝑚)

1!
+

∇
2

1
𝑠 (𝑚)

2!
+ 2

∇
3

1
𝑠 (𝑚)

3!

+ 6
∇
4

1
𝑠 (𝑚)

4!
+ 24

∇
5

1
𝑠 (𝑚)

5!
)

+
3
√𝑚5 (

∇
2

1
𝑠 (𝑚)

2!
+ 3

∇
3

1
𝑠 (𝑚)

3!
+ 11

∇
4

1
𝑠 (𝑚)

4!

+ 50
∇
5

1
𝑠 (𝑚)

5!
)

−
3
√𝑚8 (

∇
3

1
𝑠 (𝑚)

3!
+ 6

∇
4

1
𝑠 (𝑚)

4!
+ 35

∇
5

1
𝑠 (𝑚)

5!
)

+
3
√𝑚11 (

∇
4

1
𝑠 (𝑚)

4!
+ 10

∇
5

1
𝑠 (𝑚)

5!
)

−
3
√𝑚14 (

∇
5

1
𝑠 (𝑚)

5!
) + ⋅ ⋅ ⋅} .

(29)

Also, for 𝛼 = 0.5 and 𝜇 = 0.5, we have

𝑦 (𝑚)

≃ 1.5 {
∇
0

1
𝑠 (𝑚)

4
√𝑚

−
4
√𝑚3 (

∇
1

1
𝑠 (𝑚)

1!
+

∇
2

1
𝑠 (𝑚)

2!
+ 2

∇
3

1
𝑠 (𝑚)

3!

+ 6
∇
4

1
𝑠 (𝑚)

4!
+ 24

∇
5

1
𝑠 (𝑚)

5!
)

+
4
√𝑚7 (

∇
2

1
𝑠 (𝑚)

2!
+ 3

∇
3

1
𝑠 (𝑚)

3!
+ 11

∇
4

1
𝑠 (𝑚)

4!

+ 50
∇
5

1
𝑠 (𝑚)

5!
)
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Figure 1: The outcome of the fractional signal when 𝛼 = 0.5, 𝑇 =

1/25.
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Figure 2: The outcome of the fractional signal when 𝛼 = 0.75, 𝑇 =

1/25.

−
4
√𝑚11 (

∇
3

1
𝑠 (𝑚)

3!
+ 6

∇
4

1
𝑠 (𝑚)

4!
+ 35

∇
5

1
𝑠 (𝑚)

5!
)

+
4
√𝑚15 (

∇
4

1
𝑠 (𝑚)

4!
+ 10

∇
5

1
𝑠 (𝑚)

5!
)

−
4
√𝑚19 (

∇
5

1
𝑠 (𝑚)

5!
) + ⋅ ⋅ ⋅} .

(30)
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Figure 3:The outcome of the fractional signal when 𝛼 = 0.5, 𝑇 = 1.
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Figure 4: The outcome of the fractional signal when 𝛼 = 0.75, 𝑇 =

1.

5. Discussion

For given values of 𝑁, fixed fractional number 𝛼 = 0.5,
𝛼 = 0.75, and different values of the second parameter
𝜇 = 0, 0.25, 0.5, one can analyze the time-varying weights
by plotting the time-varying impulse response of the system
(Figures 1, 2, 3, and 4). For𝛼 = 1 and any value of 𝜇 the system
is a maximally linear differentiator (Figure 5). It follows from
the relation (21) that the input/output characterizes the ideal
digital differentiator, for fractional and integer values of 𝛼

with the help of the fractional value of 𝜇, of the polynomial
signal. This relation shows for integer case of 𝛼 that the
weights are time-invariant. While the weights are varying
time for fractional case.

Performance tests for the system proposed by this paper
were implemented using MATLAB 2010a on Intel(R) Core
i7 at 2.2 GHz, 4GB DDR3 Memory, system type 64-bit, and
Window 7.
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Figure 5: The outcome of the fractional signal when 𝛼 = 1.

6. Conclusion

The differential modeling of arbitrary order can be virtued as
a signal processing method to develop numerical differential
algorithms. There are various types of numerical fractional
differential algorithms anticipated in the mathematics liter-
ature such as the Grünwald-Letnikov fractional differential
operator and the Riemann-Liouville differential operator
which based on one parameter 𝛼. In this paper, we modified
the Newton series by using two-parameters (𝛼, 𝜇) fractional
differential operator (generalized Srivastava-Owa operator).
This approach implies zero error for the representation of the
signal polynomial; thus it provides ameans for the calculation
of the fractional derivatives of 𝑠(𝑚). The system yields the
arbitrary order derivative of the signal based on the current
sample and 𝑁 past samples of the signal. The value of 𝑁

computed the truncation length in (14).
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