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We study the workload process of the M/G/1 queueing system. Firstly, we give the explicit criteria for the geometric rate of
convergence and the geometric decay of stationary tail. And the parameters 𝜀

0
and 𝑠
0
for the geometric rate of convergence and the

geometric decay of the stationary tail are obtained, respectively. Then, we give the explicit criteria for the rate of convergence and
decay of stationary tail for three specific types of subgeometric cases. Andwe give the parameters 𝜀

1
and 𝑠
1
of the rate of convergence

and the decay of the stationary tail, respectively, for the subgeometric rate 𝑟(𝑛) = exp(𝑠𝑛1/(1+𝛼)), 𝑠 > 0, 𝛼 > 0.

1. Introduction

We consider several types of convergence rates of the M/G/1
queueing system by using drift conditions. The M/G/1
queueing system discussed here is that the arrivals form a
Poisson process with parameter 𝜆.The service times 𝜈

1
, 𝜈
2
, . . .

for the customers are independently identically distributed
random variables with a common distribution function 𝐵(𝑥).
Let

1

𝜇

≡ ∫

∞

0

𝑥𝑑𝐵 (𝑥) , 𝜌 ≡

𝜆

𝜇

, (1)

where 𝜇 > 0 is a constant, and 𝜌 is called the service intensity.
Denote the workload process of the M/G/1 queueing system
by𝑊(𝑡); then, {𝑊(𝑡), 𝑡 ≥ 0} is a Markov process.

Ergodicity, specially ordinary ergodicity, has been well
studied for Markov processes. There are a large volume of
references devoted to the geometric case (or exponential case)
and the subgeometric case (e.g., see [1–3]). Hou and Liu
[4, 5] discussed ergodicity of embedded M/G/1 and GI/M/n
queues, polynomial and geometric ergodicity for M/G/1-type
Markov chain, and processes by generating function of the
first return probability. Hou and Li [6, 7] obtained the explicit
necessary and sufficient conditions for polynomial ergodicity
and geometric ergodicity for the class of quasi-birth-and-
death processes by using matrix geometric solutions.

There is much work on decay of the tail in the stationary
distribution. Li and Zhao [8, 9] studied heavy-tailed asymp-
totic and light-tailed asymptotic of stationary probability
vectors of Markov chains of GI/G/1 type. Jarner and Roberts
[10] discussed Foster-Lyapounov-type drift conditions for
Markov chains which imply polynomial rate convergence to
stationarity in appropriate V-norms. Jarner and Tweedie [11]
proved that the geometric decay of the tail in the stationary
distribution is a necessary condition for the geometric-
ergodicity for random walk-type Markov chains. We will
discuss several types of ergodicity and the tail asymptotic
behavior of the stationary distribution by Foster-Lyapounov-
drift conditions.We give the relationship of ergodicity and the
decay of the tail in the stationary distribution for ℎ-skeleton
chain in M/G/1 queueing system, which is different from the
former; ergodicity and the decay of the tail are discussed,
respectively. We shall give the bounded interval in which
geometric and subexponential parameter 𝑠 lies and prove
that it is determined by the tail of the service distribution.
The parameters 𝜀

0
and 𝑠
0
for geometric rate of convergence

and the geometric decay of the stationary tail are obtained,
respectively. We shall also give explicit criteria for the rate
of convergence and decay of stationary tail for three specific
types of subgeometric cases (Case 1: the rate function 𝑟(𝑛) =
exp(𝑠𝑛1/(1+𝛼)), 𝛼 > 0, 𝑠 > 0; Case 2: polynomial rate function
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𝑟(𝑛) = 𝑛
𝛼
, 𝛼 > 0; Case 3: logarithmic rate function 𝑟(𝑛) =

log𝛼𝑛, 𝛼 > 0). And we give the parameters 𝜀
1
and 𝑠

1
of

the rate of convergence and the decay of the stationary tail,
respectively, for the subgeometric rate in Case 1.

We organize the paper as follows. In Section 2, we shall
introduce basic definitions and theorems, including the main
result, Theorem 6. In Section 3, we shall prove the geometric
rates of convergence in Theorem 6. In Section 4, we shall
prove the rates of convergence for the subgeometric Cases 1–3
inTheorem 6.

2. Basic Definitions and the Main Results

Let {𝑋
𝑛
, 𝑛 ≥ 0} be a discrete time Markov chain on the

state space (𝐸,E) with transition kernel 𝑃. Assume that it
is 𝜓-irreducible, aperiodic, and positive recurrent. Now, we
discuss the convergence in 𝑓-norm of the iterates 𝑃𝑛 of the
kernel to the stationary distribution 𝜋 at rate 𝑟 := (𝑟(𝑛), 𝑛 ≥
0); that is, for all 𝐴 ∈ E,

lim
𝑛→∞
𝑟 (𝑛)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
(𝑛)
(𝑥, 𝐴) − 𝜋 (𝐴)

󵄩
󵄩
󵄩
󵄩
󵄩𝑓
= 0, 𝜋-𝑎.𝑒., (2)

where 𝑓 : 𝐸 → [1, +∞) satisfies 𝜋(𝑓) < +∞, and for
all signed measures 𝜎, the 𝑓-norm ||𝜎||

𝑓
is defined as

sup
|𝑔|≤𝑓
|𝜎(𝑔)|.

Geometric Rate Function. That is, the function 𝑟 satisfies

0 < lim inf
log 𝑟 (𝑛)
𝑛

≤ lim sup
log 𝑟 (𝑛)
𝑛

< +∞. (3)

Subgeometric Rate Function.That is, the function 𝑟 satisfies

lim
𝑛→∞

log 𝑟 (𝑛)
𝑛

= 0. (4)

The class of subgeometric rates function includes polynomial
rates functions; that is, 𝑟(𝑛) = 𝑛𝛼, 𝛼 > 0, and rate functions
which increase faster than the polynomial ones; 𝑟(𝑛) =
exp(𝑠𝑛1/(1+𝛼)), 𝛼 > 0, 𝑠 > 0.

We shall discuss geometric rates of convergence 𝑟(𝑛) =
exp(𝑠𝑛), 𝑠 > 0, subgeometric rate of convergence 𝑟(𝑛) =
exp(𝑠𝑛1/(1+𝛼)), 𝛼 > 0, 𝑠 > 0, polynomial rate of convergence
𝑟(𝑛) = 𝑛

𝛼
, 𝛼 > 0, and logarithmic rate of convergence 𝑟(𝑛) =

log𝛼𝑛, 𝛼 > 0.

Condition𝐷(𝜙, 𝑉, 𝐶).There exist a function𝑉 : 𝐸 → [1,∞),
a concave monotone nondecreasing differentiable function
𝜙 : [1,∞] → (0,∞], a measurable set 𝐶, and a finite
constant 𝑏 such that

Δ𝑉 (𝑥) = 𝑃𝑉 (𝑥) − 𝑉 (𝑥) ≤ 𝜙 ∘ 𝑉 + 𝑏𝐼
𝐶
, (5)

where 𝐼
𝐶
is the indicator function of the set 𝐶.

Now we shall give Theorems 1 and 2 which we will use in
this paper.

Theorem 1 (Theorem 14.0.1 in [1]). If 𝐷(𝜙, 𝑉, 𝐶) holds for
some petite set 𝐶 and there exists 𝑥

0
∈ 𝐸 such that𝑉(𝑥

0
) < ∞,

then there exists a unique invariant distribution 𝜋, 𝜋(𝜙 ∘ 𝑉) <
∞ and

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
(𝑛)
(𝑥, 𝐴) − 𝜋 (𝐴)

󵄩
󵄩
󵄩
󵄩
󵄩𝜙∘𝑉
= 0, 𝜋-𝑎.𝑒., (6)

where 𝜙 ∘ 𝑉(𝑥) ≥ 1, 𝑥 ∈ 𝐸.

Theorem 2 (Proposition 2.5 in Douc et al. [12]). Let 𝑃 be a𝜓-
irreducible and aperiodic kernel. Assume that𝐷(𝜙, 𝑉, 𝐶) holds
for function 𝜙 with lim

𝑡→+∞
𝜙
󸀠
(𝑡) = 0, a petite set 𝐶, and a

function𝑉 with {𝑉 < +∞} ̸= 0. Then, there exists an invariant
probability measure 𝜋, and for all 𝑥 in the full and absorbing
set {𝑉 < ∞},

lim
𝑛→∞
𝑟
𝜙
(𝑛)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
(𝑛)
(𝑥, 𝐴) − 𝜋 (𝐴)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, (7)

where (𝑟
𝜙
(𝑛)) = 𝜙 ∘ 𝐻

−1

𝜙
(𝑛),𝐻

𝜙
(𝑣) := ∫

𝑣

1
(1/𝜙(𝑥))𝑑𝑥.

Since 𝜙 is a concave monotone nondecreasing differentiable
function, 𝜙󸀠 is nonincreasing. Then, there exists 𝑐 ∈ [0, 1),
such that lim

𝑡→+∞
𝜙
󸀠
(𝑡) = 𝑐. In Theorem 2, for the case 𝑐 ∈

(0, 1), condition𝐷(𝜙,𝑉, 𝐶) implies that the chain is geometric
ergodic, but the rate in the geometric convergence property
cannot be achieved under the condition that lim

𝑡→+∞
𝜙
󸀠
(𝑡) =

𝑐 > 0.
The workload process {𝑊(𝑡), 𝑡 ≥ 0} of the M/G/1

queueing system is a Markov process on the state space
{𝑅
+
,B(𝑅

+
)}. {𝑊(𝑛ℎ)} is an ℎ-skeleton of {𝑊(𝑡), 𝑡 ≥ 0}. We

choose ℎ = 1, and denote {𝑊(𝑛ℎ)}
ℎ=1

by {𝑋
𝑛
}. Suppose that

the workload can be decreased bymin{1, 𝑋
𝑛
} during the time

interval [𝑛, 𝑛 + 1]. And suppose that the transition kernel of
{𝑋
𝑛
} is 𝑃(𝑥, ⋅). For convenience, let 𝜎

𝑘
= 𝜈
1
+ 𝜈
2
+ ⋅ ⋅ ⋅ + 𝜈

𝑘
.

Then,

𝑋
𝑛+1
=

+∞

∑

𝑘=1

𝐼
{𝜉=𝑘}
𝜎
𝑘
+min {𝑋

𝑛
− 1, 0} , 𝑛 = 1, 2, . . . , (8)

where 𝜉 is the number of arrivals in a time interval of unit
length.

Lemma 3. {𝑋
𝑛
} is irreducible and aperiodic.

Proof. Let 𝜑 be ameasure on𝑅
+
with 𝜑({0}) = 1, 𝜑({0}𝑐) = 0.

For all 𝑥 ∈ 𝑅
+
, there exists a 𝑘 satisfying 𝑘 − 1 < 𝑡 ≤ 𝑘, such

that

𝑃
𝑘
(𝑥, {0}) ≥ exp (−𝜆𝑘) > 0. (9)

Hence, {𝑋
𝑛
} is irreducible. From

𝑃
𝑛
(𝑥, {0}) > 0, 𝑛 ≥ 1, (10)

we know that {𝑋
𝑛
} is also aperiodic.

Lemma 4. 𝐶 = [0, 𝑐] is petite set, where 𝑐 (𝑐 ≥ 0) is a real
number.

Proof. Let [𝑐] be the maximum integer nomore than 𝑐. Since

𝑃
[𝑐]+1
(𝑥, {0}) ≥ exp {−𝜆 ([𝑐] + 1)} > 0, ∀𝑥 ∈ 𝐶, (11)
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and 𝐶 is a closed set, we know that min
𝑥∈𝐶
𝑃
[𝑐]+1
(𝑥, {0}) > 0 .

Let 𝜈
2
be a measure on 𝑅

+
satisfying, for all 𝐵 ∈B(𝑅

+
),

𝜈
2
(𝐵) = {

0, {0} ∉ 𝐵,

min
𝑥∈𝐶

𝑃
[𝑐]+1
(𝑥, {0}) , {0} ∈ 𝐵.

(12)

Obviously, for all 𝑥 ∈ 𝐶,

𝑃
[𝑐]+1
(𝑥, 𝐵) ≥ 𝜈

2
(𝐵) , ∀B (𝑅

+
) . (13)

Thus, we get that 𝐶 is a petite set.

Lemma5. TheMarkov chain {𝑋
𝑛
} is stochasticallymonotonic.

Proof. For every fixed 𝑦, from

𝑃 {𝑋
𝑛+1
≤𝑦 | 𝑋

𝑛
= 𝑥} = 𝑃{

+∞

∑

𝑘=1

𝐼
{𝜉=𝑘}
𝜎
𝑘
≤ 𝑦} , ∀𝑥∈[0, 1] ,

𝑃 {𝑋
𝑛+1
≤ 𝑦 | 𝑋

𝑛
= 𝑥}

= 𝑃{

+∞

∑

𝑘=1

𝐼
{𝜉=𝑘}
𝜎
𝑘
+ 𝑥 − 1 ≤ 𝑦} ,

= 𝑃{

+∞

∑

𝑘=1

𝐼
{𝜉=𝑘}
𝜎
𝑘
− 𝑦 − 1 ≤ −𝑥} , ∀𝑥 ∈ [1, +∞) ,

(14)

we obtain that 𝑃{𝑋
𝑛+1
≤ 𝑦 | 𝑋

𝑛
= 𝑥} is nonincreasing in 𝑥.

That is, {𝑋
𝑛
} is stochastically monotonic.

For two sequences 𝑢
𝑛
and 𝑣

𝑛
, we write 𝑢

𝑛
≍ 𝑣
𝑛
, if there

exist positive constants 𝑐
1
and 𝑐
2
such that, for large 𝑛, 𝑐

1
𝑢
𝑛
≤

𝑣
𝑛
≤ 𝑐
2
𝑢
𝑛
.

Let us say that the distribution function 𝐺 of a random
variable 𝜉 is inG+(𝑟) if

𝐸𝑒
𝑠𝜉
= ∫

+∞

0

𝑒
𝑠𝑥
𝐺 (𝑑𝑥) < +∞, 0 < 𝑠 ≤ 𝑟; (15)

the distribution function 𝐺 of a random variable 𝜉 is in
S+(𝑟, 𝛼) if

𝐸𝑒
𝑠𝜉
1/(1+𝛼)

= ∫

+∞

0

𝑒
𝑠𝑥
1/(1+𝛼)

𝐺 (𝑑𝑥) < +∞, 0 < 𝑠 ≤ 𝑟, (16)

where 𝑟 > 0, and 𝛼 > 0.
Now, we give the main result.

Theorem 6. Suppose that 𝜌 < 1 and 𝜋 is the stationary
distribution of {𝑋

𝑛
}.

(1) If 𝐵 ∈ G+(𝑟), then one has

∫

+∞

1

exp (𝑠𝑥) 𝜋 (𝑑𝑥) < +∞, ∀0 < 𝑠 < 𝑠
0
, (17)

where 𝑠
0
is the minimum positive root of the equation 𝐸𝑒𝑠𝜈1 =

1 + (𝑠/𝜆). Moreover, {𝑋
𝑛
} is geometrically ergodic,

lim
𝑛→∞
𝑒
𝜀
0
𝑛 󵄩󵄩
󵄩
󵄩
󵄩
𝑃
(𝑛)
(𝑥, 𝐴) − 𝜋 (𝐴)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, (18)

where 𝜀
0
= 𝜆 + 𝑠 − 𝜆𝐸𝑒

𝑠𝜈
1 , and 𝑠 ∈ (0, 𝑠

0
) is a root of the

equation 𝐸𝜈
1
𝑒
𝑠𝜈
1
= 1/𝜆.

(2) If 𝐵 ∈ S+(𝑟, 𝛼), then one has

∫

+∞

1

𝑥
−𝛼/(1+𝛼) exp (𝑠𝑥1/(1+𝛼)) 𝜋 (𝑑𝑥) < ∞, 0 < 𝑠 < 𝑠

1
,

(19)

where 𝑠
1
is the minimal positive solution of 𝛽(𝑠) = 0 (𝛽(𝑠) =

𝑥
𝛼/(1+𝛼)

{1 − ∑
∞

𝑘=0
(𝜆
𝑘
𝑒
−𝜆
/𝑘!)𝐸 exp{𝑠(𝜎

𝑘
− 1 + 𝑥)

1/(1+𝛼)
−

𝑠𝑥
1/(1+𝛼)

}}). And

lim
𝑛→∞
𝑛
(−𝛼/(1+𝛼)) exp (𝜀

1
𝑛
1/(1+𝛼)

)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
(𝑛)
(𝑥, ⋅) − 𝜋 (⋅)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0,

(20)

where 𝜀
1
= max

𝑠∈(0,𝑠
1
)
[(𝛼 + 1)𝛽(𝑠)]

1/(𝛼+1).
(3) If there exists a constant 𝛼 > 1, such that 𝐸𝜈𝛼

1
=

∫

+∞

0
𝑥
𝛼
𝐵(𝑑𝑥) < +∞, then

lim
𝑛→∞
𝑛
𝛼−1 󵄩󵄩
󵄩
󵄩
󵄩
𝑃
(𝑛)
(𝑥, ⋅) − 𝜋 (⋅)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0,

∫

+∞

1

𝑥
𝛼−1
𝜋 (𝑑𝑥) < +∞.

(21)

(4) If there exists an integer number 𝛼 > 0, such that
𝐸𝜈
1
log𝛼(𝜈

1
+ 1) = ∫

+∞

0
𝑥log𝛼(𝑥 + 1)𝐵(𝑑𝑥) < +∞, then

lim
𝑛→∞

log𝛼𝑛 󵄩󵄩󵄩󵄩
󵄩
𝑃
(𝑛)
(𝑥, ⋅) − 𝜋 (⋅)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0,

∫

+∞

1

log𝛼𝑥𝜋 (𝑑𝑥) < +∞.
(22)

We shall proveTheorem 6 in Sections 3 and 4.

3. Geometric Rate of Convergence

The Markov chain {𝑋
𝑛
} is geometrically ergodic if (2) holds

with 𝑟(𝑛) = 𝑒𝑠𝑛 for some 𝑠 > 0. By Theorem 15.0.1 in [1],
an equivalent condition of geometric ergodicity is that there
exist a petite set𝐶, constants𝛽 > 0 and 𝑏 < ∞, and a function
𝑉 ≥ 1 finite for at least one 𝑥

0
∈ 𝐸 satisfying

Δ𝑉 (𝑥) < −𝛽𝑉 (𝑥) + 𝑏𝐼
𝐶
, 𝑥 ∈ 𝐸. (23)

By using the drift previous condition, we usually obtain the
geometric ergodicity, but we could not get the parameters for
the geometric rate of convergence. Now, we will study the
geometric decay of the stationary tail and geometric rate of
convergence to the stationary distribution.

Let 𝑉
𝑠
(𝑥) = exp(𝑠𝑥), 0 < 𝑠 ≤ 𝑟, 𝑥 ∈ 𝑅

+
. Taking the petite

set 𝐶 = [0, 1], for all 𝑥 ∈ [0, 1],

Δ𝑉
𝑠 (
𝑥) = 𝑃𝑉𝑠 (

𝑥) − 𝑉𝑠 (
𝑥)

<

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 exp {𝑠 (𝜈
1
+ ⋅ ⋅ ⋅ + 𝜈

𝑘
+ 𝑥)}

≤

∞

∑

𝑘=0

𝜆
𝑘

𝑘!

(𝐸𝑒
𝑠𝜈
1
)
𝑘
𝑒
𝑥
= exp (𝜆𝐸𝑒𝑠𝜈1) 𝑒𝑥.

(24)
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Since 𝐵 ∈ G+(𝑟)(i.e., 𝐸𝑒𝑠𝜈1 < ∞, 0 < 𝑠 ≤ 𝑟), we know that

Δ𝑉
𝑠
(𝑥) < exp (𝜆𝐸𝑒𝑠𝜈1) 𝑒𝑥 < ∞, ∀𝑥 ∈ [0, 1] . (25)

For all 𝑥 > 1 (i.e., 𝑥 ∈ 𝐶𝐶),

Δ𝑉
𝑠
(𝑥) = 𝑃𝑉

𝑠
(𝑥) − 𝑉

𝑠
(𝑥)

= − exp (𝑠𝑥) + exp (𝑠𝑥)
∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 exp {𝑠 (𝜎
𝑘
− 1)}

= − exp (𝑠𝑥){1 − exp (−𝜆 − 𝑠)
∞

∑

𝑘=0

𝜆
𝑘

𝑘!

(𝐸𝑒
𝑠𝜈
1
)
𝑘
}

= − exp (𝑠𝑥) {1 − exp (−𝜆 − 𝑠 + 𝜆𝐸𝑒𝑠𝜈1)} .
(26)

Let 𝛽(𝑠) = 1 − exp(−𝜆 − 𝑠 + 𝜆𝐸𝑒𝑠𝜈1). Now, we prove that there
exists an 𝑠󸀠 > 0 such that 𝛽(𝑠󸀠) > 0. By the stated condition
𝐵 ∈ G+(𝑟), we know that𝛽(𝑠) is a finite differentiable function
for 𝑠 ∈ [0, 𝑟). Furthermore,

𝛽 (0) = {1 − exp (−𝜆 − 𝑠 + 𝜆𝐸𝑒𝑠𝜈1)}
𝑠=0
= 0,

𝛽
󸀠
(𝑠) |𝑠=0

= {− (−1 + 𝜆𝐸𝜈
1
𝑒
𝑠𝜈
1
) exp (−𝜆 − 𝑠 + 𝜆𝐸𝑒𝑠𝜈1)}

𝑠=0

= 1 − 𝜌 > 0.

(27)

Proposition 7. Suppose that 𝜌 < 1 and 𝜋 is the stationary
distribution of {𝑋

𝑛
}. If 𝐵 ∈ G+(𝑟); then,

∫

+∞

1

exp (𝑠𝑥) 𝜋 (𝑑𝑥) < +∞, ∀0 < 𝑠 < 𝑠
0
, (28)

where 𝑠
0
is the minimum positive root of the equation 𝐸𝑒𝑠𝜈1 =

1 + (𝑠/𝜆).

Proof. By (27), we know that 𝛽(0) = 0 and 𝛽󸀠(0) > 0. So,
there exists an 𝑠󸀠 ∈ (0, 𝑟) such that 𝛽(𝑠󸀠) > 0. The function
𝛽(𝑠) is continuous in the interval [𝑠󸀠, 𝑟], and it is easy to see
that 𝛽(𝑟) < 0, 𝛽(𝑠󸀠) > 0. By the zero theorem, we know that
there exists at least one root of the equation 𝛽(𝑠) = 0 (i.e.,
𝐸𝑒
𝑠𝜈
1
= 1+ (𝑠/𝜆)). Let 𝑠

0
be the minimum positive root; then,

𝛽(𝑠) > 0, for all 0 < 𝑠 < 𝑠
0
.

Let 𝑏 = sup
𝑠∈(0,𝑠

0
)
exp(𝜆𝐸𝑒𝑠𝜈1) < ∞; then, we have

Δ𝑉
𝑠 (
𝑥) ≤ − 𝛽 (𝑠) 𝑉𝑠 (

𝑥) + 𝑏𝐼[0,1]

= − 𝜙 ∘ 𝑉
𝑠 (
𝑥) + 𝑏𝐼[0,1]

, 0 < 𝑠 < 𝑠
0
, 𝑥 ∈ 𝑅

+
,

(29)

where 𝜙(𝑥) = 𝛽(𝑠)𝑥 (i.e., condition 𝐷(𝜙, 𝑉
𝑠
, 𝐶) holds). By

Theorem 1, we know that 𝜋(𝜙 ∘ 𝑉
𝑠
) < ∞; that is,

∫

+∞

1

exp (𝑠𝑥) 𝜋 (𝑑𝑥) < ∞, 0 < 𝑠 < 𝑠
0
. (30)

Proposition 8. Suppose that 𝜌 < 1 and 𝜋 is the stationary
distribution of {𝑋

𝑛
}. If 𝐵 ∈ G+(𝑟); then,

lim
𝑛→∞
𝑒
𝜀
0
𝑛 󵄩󵄩
󵄩
󵄩
󵄩
𝑃
(𝑛)
(𝑥, 𝐴) − 𝜋 (𝐴)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, (31)

where 𝜀
0
= 𝛼(𝑠), 𝛼(𝑠) = 𝜆 + 𝑠 − 𝜆𝐸𝑒𝑠𝜈1 , and 𝑠 ∈ (0, 𝑠

0
) is the

root of the equation 1 − 𝜆𝐸𝜈
1
𝑒
𝑠𝜈
1
= 0.

Proof. From (29),

Δ𝑉
𝑠
(𝑥) ≤ −𝛽 (𝑠) 𝑉

𝑠
(𝑥) + 𝑏𝐼

[0,1]
, 0 < 𝑠 < 𝑠

0
, 𝑥 ∈ 𝑅, (32)

where 𝛽(𝑠) = 1− exp(−𝜆−𝑠+𝜆𝐸𝑒𝑠𝜈1), and 𝑠
0
is the minimum

positive root of the equation 𝐸𝑒𝑠𝜈1 = 1 + (𝑠/𝜆). We have

𝑃𝑉
𝑠
(𝑥) ≤ exp (−𝜆 − 𝑠 + 𝜆𝐸𝑒𝑠𝜈1) 𝑉

𝑠
(𝑥) + 𝑏𝐼

[0,1]
,

0 < 𝑠 < 𝑠
0
, 𝑥 ∈ 𝑅

+
.

(33)

From Lemma 5, we know that {𝑋
𝑛
} is a stochastically mono-

tonic Markov chain. By usingTheorem 1.1 in [13], we have

lim
𝑛→∞

exp {(𝜆 + 𝑠 − 𝜆𝐸𝑒𝑠𝜈1) 𝑛} 󵄩󵄩󵄩󵄩
󵄩
𝑃
(𝑛)
(𝑥, ⋅) − 𝜋 (⋅)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0,

0 < 𝑠 < 𝑠
0
.

(34)

Let 𝛼(𝑠) = 𝜆 + 𝑠 − 𝜆𝐸𝑒𝑠𝜈1 . From 𝛼󸀠󸀠(𝑠) = −𝜆𝐸𝜈2
1
𝑒
𝑠𝜈
1
< 0, we

know that 𝛼(𝑥) is a concave function. Together with 𝛼(0) =
0, 𝛼(𝑠

0
) = 0, there exists a unique point 𝑠 ∈ (0, 𝑠

0
), such that

𝛼
󸀠
(𝑠) = 1 − 𝜆𝐸𝜈

1
𝑒
𝑠𝜈
1
= 0, and 𝛼(𝑠) has a maximum 𝛼(𝑠) at the

point 𝑠 in the interval (0, 𝑠
0
). So,

lim
𝑛→∞
𝑒
𝜀
0
𝑛 󵄩󵄩
󵄩
󵄩
󵄩
𝑃
(𝑛)
(𝑥, 𝐴) − 𝜋 (𝐴)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, (35)

where 𝜀
0
= 𝛼(𝑠). The proof is completed.

4. Subgeometric Rates of Convergence for
Cases 1–3

Case 1 (The Rate Function 𝑟(𝑛) = exp(𝑠𝑛1/(1+𝛼))). The rate
function 𝑟(𝑛) = exp(𝑠𝑛1/(1+𝛼)), which increases to infinity
faster than the polynomial one, and slower than the geomet-
rical one, has been discussed only recently in the literature.

Proposition 9. Suppose that 𝜌 < 1 and 𝜋 is the stationary
distribution of {𝑋

𝑛
}. If 𝐵 ∈ S+(𝑟, 𝛼), then one has

∫

+∞

1

𝑥
−𝛼/(1+𝛼) exp (𝑠𝑥1/(1+𝛼)) 𝜋 (𝑑𝑥) < ∞, 0 < 𝑠 < 𝑠1,

(36)

where 𝑠
1
is the minimal positive solution of 𝛽(𝑠) = 0 (𝛽(𝑠) =

𝑥
𝛼/(1+𝛼)

{1 − ∑
∞

𝑘=0
(𝜆
𝑘
𝑒
−𝜆
/𝑘!)𝐸 exp{𝑠(𝜎

𝑘
− 1 + 𝑥)

1/(1+𝛼)
−

𝑠𝑥
1/(1+𝛼)

}}). And

lim
𝑛→∞
𝑛
−𝛼/(1+𝛼) exp (𝜀

1
𝑛
1/(1+𝛼)

)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
(𝑛)
(𝑥, ⋅) − 𝜋 (⋅)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, (37)

where 𝜀
1
= max

𝑠∈(0,𝑠
1
)
[(𝛼 + 1)𝛽(𝑠)]

(1/(1+𝛼)).
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Proof. Let 𝑉
𝑠
(𝑥) = exp(𝑠𝑥1/(1+𝛼)), 0 < 𝑠 ≤ 𝑟, 𝑥 ∈ 𝑅

+
. For all

𝑥 ∈ 𝐶,

Δ𝑉
𝑠
(𝑥)

= 𝑃𝑉
𝑠
(𝑥) − 𝑉

𝑠
(𝑥) ≤ − exp (𝑠𝑥1/(1+𝛼))

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 exp {𝑠(𝜎
𝑘
+ 𝑥)
1/(1+𝛼)

}

≤ − exp (𝑠𝑥1/(1+𝛼)) + exp (𝑠𝑥1/(1+𝛼))

⋅

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 exp {𝑠 (𝜈1/(1+𝛼)
1

+𝜈
1/(1+𝛼)

2
+⋅ ⋅ ⋅+𝜈

1/(1+𝛼)

𝑘
)}

= − exp (𝑠𝑥1/(1+𝛼)) + exp (𝑠𝑥1/(1+𝛼))

⋅

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

[𝐸 exp (𝑠𝜈1/(1+𝛼)
1

)]

𝑘

= − exp (𝑠𝑥1/(1+𝛼))

+ exp (𝑠𝑥1/(1+𝛼)) exp {𝜆𝐸 exp (𝑠𝜈1/(1+𝛼)
1

)} ,

(38)

where the second inequality holds by using the condi-
tion that 𝑓(𝑥) = 𝑥

1/(1+𝛼) is concave. Let 𝛼(𝑠) =

− exp(𝑠𝑥1/(1+𝛼)) + exp(𝑠𝑥1/(1+𝛼)) exp{𝜆𝐸 exp(𝑠𝜈1/(1+𝛼)
1

)}. Since
𝐸 exp(𝑠𝜈1/(1+𝛼)

1
) < ∞, we know that

Δ𝑉
𝑠
(𝑥) ≤ 𝛼 (𝑠) < ∞, 𝑥 ∈ 𝐶. (39)

For all 𝑥 ∈ 𝐶𝐶,

Δ𝑉
𝑠
(𝑥) = 𝑃𝑉

𝑠
(𝑥) − 𝑉

𝑠
(𝑥)

= − exp (𝑠𝑥1/(1+𝛼))

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 exp {𝑠(𝜎
𝑘
− 1 + 𝑥)

1/(1+𝛼)
}

= − exp (𝑠𝑥1/(1+𝛼))

⋅ {1 −

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 exp {𝑠(𝜎
𝑘
−1+𝑥)

1/(1+𝛼)

−𝑠𝑥
1/(1+𝛼)

}}

= −

exp (𝑠𝑥1/(1+𝛼))
𝑥
1/(1+𝛼)

𝑥
𝛼/(1+𝛼)

⋅ {1 −

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 exp {𝑠(𝜎
𝑘
− 1 + 𝑥)

1/(1+𝛼)

−𝑠𝑥
1/(1+𝛼)

}} .

(40)

Let

𝛽 (𝑠)

= 𝑥
𝛼/(1+𝛼)

⋅ {1−

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 exp {𝑠(𝜎
𝑘
−1+𝑥)

1/(1+𝛼)
−𝑠𝑥
1/(1+𝛼)

}} .

(41)

Now, we prove that there exists an 𝑠
1
> 0 such that 𝛽(𝑠) > 0

for all 𝑠 ∈ (0, 𝑠
1
). Similar to the proof of the case 𝑥 ∈ 𝐶, we

know that 𝛽(𝑠) is a finite function for 𝑠 ∈ [0, 𝑟). Furthermore,

𝛽 (0) = 𝑥
𝛼/(1+𝛼)

(1 −

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

) = 0,

𝛽
󸀠
(𝑠) |
𝑠=0
= − 𝑥

𝛼/(1+𝛼)

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 {(𝜎
𝑘
− 1 + 𝑥)

1/(1+𝛼)

−𝑥
1/(1+𝛼)

}

= 𝑥[1 −

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸(1 +

𝜎
𝑘
− 1

𝑥

)

1/(1+𝛼)

]

≥ 𝑥[1 −

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

(1 +

(𝑘/𝜇) − 1

𝑥

)

1/(1+𝛼)

]

≥ 𝑥[1 − (1 +

𝜌 − 1

𝑥

)

1/(1+𝛼)

] > 0.

(42)

Let 𝑠
1
be the minimum positive root of the equation 𝛽(𝑠) = 0;

then, we have 𝛽(𝑠) > 0 for all 0 < 𝑠 < 𝑠
1
.

Let 𝑉
𝑠
(𝑥) = exp(𝑠𝑥1/(1+𝛼)), for all 𝑠 ∈ (0, 𝑠

1
), and let 𝑏 =

max
𝑠∈(0,𝑠

1
)
{𝛼(𝑠)} < ∞; then, we have

Δ𝑉
𝑠
(𝑥) ≤ − 𝛽 (𝑠)

exp (𝑠𝑥1/(1+𝛼))
𝑥
𝛼/(1+𝛼)

+ 𝑏𝐼
𝐶
,

= − 𝜙 ∘ 𝑉
𝑠
(𝑥) + 𝑏𝐼

𝐶
, 𝑥 ∈ 𝑅

+
,

(43)

where 𝜙(𝑥) = 𝛽(𝑠)(𝑥/log𝛼(𝑥)), (i.e., Condition 𝐷(𝜙, 𝑉
𝑠
, 𝐶)

holds). By Theorem 1, we know that there exists a unique
invariant distribution 𝜋, 𝜋(𝜙 ∘ 𝑉) < ∞, that is

∫

+∞

1

𝑥
−𝛼/(1+𝛼) exp (𝑠𝑥1/(1+𝛼)) 𝜋 (𝑑𝑥) < ∞. (44)

From

𝐻
𝜙 (
𝑥) = ∫

𝑥

1

𝑑𝑥

𝜙 (𝑥)

= ∫

𝑥

1

log𝛼 (𝑥) 𝑑𝑥
𝛽 (𝑠) 𝑥

=

log1+𝛼 (𝑥)
(𝛼 + 1) 𝛽 (𝑠)

,

(45)
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we have𝐻−1
𝜙
(𝑥) = exp[((𝛼 + 1)𝛽(𝑠)𝑥)1/(1+𝛼)]. So,

𝑟
𝜙 (
𝑛) = 𝜙 ∘ 𝐻

−1

𝜙
(𝑛)

= 𝛽 (𝑠)

exp [((𝛼 + 1) 𝛽 (𝑠) 𝑛)1/(1+𝛼)]

((𝛼 + 1) 𝛽 (𝑠) 𝑛)
𝛼/(1+𝛼)

= 𝛽(𝑠)
1/(1+𝛼)

[(𝛼 + 1) 𝑛]
−𝛼/(1+𝛼)

⋅ exp [((𝛼 + 1) 𝛽 (𝑠) 𝑛)1/(1+𝛼)]

≍ 𝑛
−𝛼/(1+𝛼) exp [((𝛼 + 1) 𝛽 (𝑠) 𝑛)1/(1+𝛼)] .

(46)

Let 𝜀
1
= max

𝑠∈(0,𝑠
1
)
{[(𝛼 + 1)𝛽(𝑠)]

1/(1+𝛼)
}; then we have,

lim
𝑛→∞
𝑛
−𝛼/(1+𝛼) exp (𝜀

1
𝑛
1/(1+𝛼)

)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
(𝑛)
(𝑥, ⋅) − 𝜋 (⋅)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0. (47)

The proof is completed.

Case 2 (Polynomial Rate of Convergence). Consider the
following.

Proposition 10. If 𝜌 < 1 and there exists a constant 𝛼 > 1
such that

𝐸𝜈
𝛼

1
= ∫

+∞

0

𝑥
𝛼
𝐵 (𝑑𝑥) < +∞, (48)

then

lim
𝑛→∞
𝑛
𝛼−1 󵄩󵄩
󵄩
󵄩
󵄩
𝑃
(𝑛)
(𝑥, ⋅) − 𝜋 (⋅)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0,

∫

+∞

1

𝑥
𝛼−1
𝜋 (𝑑𝑥) < +∞.

(49)

Proof. Let𝑉(𝑥) = (𝑥+1)𝛼 ≥ 1, 𝑥 ∈ 𝑅
+
, and let𝑚

𝛼
be the 𝛼th

moment of the poisson distribution with parameter 𝜆. From
(𝑎 + 𝑏)

𝛼
≤ 2
𝛼
(𝑎
𝛼
+ 𝑏
𝛼
), where 𝑎 > 0, 𝑏 > 0, we have, for all

𝑥 ∈ 𝐶 (where 𝐶 is the petite [0, 𝑐]),

Δ𝑉 (𝑥) = 𝑃𝑉 (𝑥) − 𝑉 (𝑥) ≤ −(𝑥 + 1)
𝛼

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸(𝜈
1
+ 𝜈
2
+ ⋅ ⋅ ⋅ + 𝜈

𝑘
+ 𝑥 + 1)

𝛼

≤ − (𝑥 + 1)
𝛼
+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

2
𝛼
𝐸 ((𝜎
𝑘
)
𝛼
+ (𝑥 + 1)

𝛼
)

≤ − (𝑥 + 1)
𝛼
+ 2
𝛼
(𝑥 + 1)

𝛼
+ 2
𝛼

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝑘
𝛼
𝐸𝜈
𝛼

1

= − (𝑥 + 1)
𝛼
+ 2
𝛼
(𝑥 + 1)

𝛼
+ 2
𝛼
𝑚
𝛼
𝐸𝜈
𝛼

1
.

(50)

Let 𝑏 = −(𝑐 + 1)𝛼 + 2𝛼(𝑐 + 1)𝛼 + 2𝛼𝑚
𝛼
𝐸𝜈
𝛼

1
. Since 𝐸𝜈𝛼

1
< ∞,

we know that

Δ𝑉 (𝑥) ≤ 𝑏 < ∞, 𝑥 ∈ 𝐶. (51)

Let 𝐶𝑖
𝑛
denote the binomial coefficient, and let 𝑛 = ⌊𝛼⌋, 𝜃 =

𝛼 − 𝑛; then; 𝛼 = 𝑛 + 𝜃. For all 𝑥 ∈ 𝐶𝐶,

Δ𝑉 (𝑥) = 𝑃𝑉 (𝑥) − 𝑉 (𝑥) = −(𝑥 + 1)
𝛼

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸(𝜎
𝑘
− 1 + 𝑥 + 1)

𝛼
= −(𝑥 + 1)

𝛼

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸(𝜎
𝑘
− 1 + 𝑥 + 1)

𝑛+𝜃
= −(𝑥+1)

𝛼

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

⋅ 𝐸{[(𝑥 + 1)
𝑛
+ 𝐶
1

𝑛
(𝑥 + 1)

𝑛−1
(𝜎
𝑘
− 1)

+

𝑛

∑

𝑖=2

𝐶
𝑖

𝑛
(𝑥+1)

𝑛−𝑖
(𝜎
𝑘
−1)
𝑖
] (𝜎
𝑘
+𝑥)
𝜃
}

=

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 {(𝑥 + 1)
𝑛
(𝜎
𝑘
+ 𝑥)
𝜃
− (𝑥 + 1)

𝛼
}

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 {𝐶
1

𝑛
(𝑥 + 1)

𝑛−1
(𝜎
𝑘
− 1) (𝜎

𝑘
+ 𝑥)
𝜃
}

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

⋅ 𝐸{

𝑛

∑

𝑖=2

[𝐶
𝑖

𝑛
(𝑥 + 1)

𝑛−𝑖
(𝜎
𝑘
− 1)
𝑖
] (𝜎
𝑘
+ 𝑥)
𝜃
} .

(52)

Since 𝑓
1
(𝜉) = 𝜉

𝜃 is a concave function, we know that

𝐸(𝜉 + 𝑥)
𝜃
≤ (𝐸𝜉 + 𝑥)

𝜃
. (53)

Thus, the first part of (52) is

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 {(𝑥 + 1)
𝑛
(𝜎
𝑘
+ 𝑥)
𝜃
− (𝑥 + 1)

𝛼
}

≤ (𝑥 + 1)
𝑛
(𝜌 + 𝑥)

𝜃
− (𝑥 + 1)

𝛼
< 0.

(54)

If 𝛼 is integer (i.e., 𝜃 = 0), then the second part of (52) is

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 {𝐶
1

𝑛
(𝑥 + 1)

𝑛−1
(𝜎
𝑘
− 1)} = 𝐶

1

𝑛
(𝜌 − 1) (𝑥 + 1)

𝛼−1
.

(55)
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If 𝛼 is not integer (i.e., 𝜃 ̸= 0), then the second part of (52) is

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 {𝐶
1

𝑛
(𝑥 + 1)

𝑛−1
(𝜎
𝑘
− 1) (𝜎

𝑘
+ 𝑥)
𝜃
}

= 𝐶
1

𝑛
(𝑥 + 1)

𝑛−1

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 [(𝜎
𝑘
− 1) (𝑥 + 1)

𝜃
]

+ 𝐶
1

𝑛
(𝑥 + 1)

𝑛−1

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

⋅ 𝐸 {(𝜎
𝑘
− 1) [(𝜎

𝑘
+ 𝑥)
𝜃
− (𝑥 + 1)

𝜃
]}

≤ 𝐶
1

𝑛
(𝜌 − 1) (𝑥 + 1)

𝛼−1

+ 𝐶
1

𝑛
(𝑥 + 1)

𝑛−1

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 {1
{𝜎
𝑘
>1}
𝜎
𝜃+1

𝑘
}

+ 𝐸 {1
{𝜎
𝑘
<1}
((𝑥 + 1)

𝜃
− 𝑥
𝜃
)}

≤ 𝐶
1

𝑛
(𝜌 − 1) (𝑥 + 1)

𝛼−1

+ 𝐶
1

𝑛
(𝑥 + 1)

𝑛−1
𝑚
𝜃+1
(𝐸𝜈
𝜃+1

1
+ 1)

= 𝐶
1

𝑛
(𝜌 − 1) (𝑥 + 1)

𝛼−1
+ 𝑎
1
(𝑥 + 1)

𝑛−1
,

(56)

where 𝑎
1
= 𝐶
1

𝑛
𝑚
𝜃+1
(𝐸𝜈
𝜃+1

1
+1). From (55) and (56), we obtain

that the second part of (52) is

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 {𝐶
1

𝑛
(𝑥 + 1)

𝑛−1
(𝜎
𝑘
− 1) (𝜎

𝑘
+ 𝑥)
𝜃
}

= 𝐶
1

𝑛
(𝜌 − 1) (𝑥 + 1)

𝛼−1
+ 𝑎
1
(𝑥 + 1)

𝑛−1
,

(57)

where 𝑎
1
= 0 if 𝛼 is integer. The third part of (52) is

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝑛

∑

𝑖=2

𝐶
𝑖

𝑛
(𝑥 + 1)

𝑛−𝑖
𝐸 [(𝜎
𝑘
− 1)
𝑖
(𝜎
𝑘
+ 𝑥)
𝜃
]

≤

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝑛

∑

𝑖=2

𝐶
𝑖

𝑛
(𝑥 + 1)

𝑛−𝑖

⋅ 𝐸 {(((𝜎
𝑘
)
𝑖
+ 1) (𝜎

𝑘
)
𝜃
+ (𝑥 + 1)

𝜃
)}

≤

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝑛

∑

𝑖=2

𝐶
𝑖

𝑛
(𝑥 + 1)

𝑛−𝑖

⋅ 𝐸 {(𝜎
𝑘
)
𝑖+𝜃
+(𝜎
𝑘
)
𝑖

(𝑥+1)
𝜃
+(𝜎
𝑘
)
𝜃
+(𝑥+1)

𝜃
}

=

𝑛

∑

𝑖=2

𝐶
𝑖

𝑛
(𝑥 + 1)

𝑛−𝑖

⋅ {𝑚
𝑖+𝜃
𝐸𝜈
𝑖+𝜃

1
+ 𝑚
𝑖
𝐸𝜈
𝑖

1
(𝑥 + 1)

𝜃
+ 𝑚
𝜃
𝐸𝜈
𝜃

1
+ (𝑥 + 1)

𝜃
}

≤

𝑛

∑

𝑖=2

𝐶
𝑖

𝑛
(𝑚
𝑖+𝜃
𝐸𝜈
𝑖+𝜃

1
+ 𝑚
𝑖
𝐸𝜈
𝑖

1
+ 𝑚
𝜃
𝐸𝜈
𝜃

1
+ 1) (𝑥 + 1)

𝑛−𝑖+𝜃

=

𝑛

∑

𝑖=2

𝑎
𝑖(
𝑥 + 1)

𝛼−𝑖
,

(58)

where 𝑎
𝑖
= 𝐶
𝑖

𝑛
(𝑚
𝑖+𝜃
𝐸𝜈
𝑖+𝜃

1
+𝑚
𝑖
𝐸𝜈
𝑖

1
+𝑚
𝜃
𝐸𝜈
𝜃

1
+1) < ∞, 1 ≤ 𝑖 ≤ 𝑛

(by 𝐸𝜈𝛼
1
< ∞). Combining (52), (54), (57), and (58), we have

Δ𝑉 (𝑥) ≤ 𝐶
1

𝑛
(𝜌 − 1) (𝑥 + 1)

𝛼−1

+ 𝑎
1
(𝑥 + 1)

𝑛−1
+

𝑛

∑

𝑖=2

𝑎
𝑖
(𝑥 + 1)

𝛼−𝑖
,

(59)

where 𝑎
1
= 0 if 𝛼 is integer. Choose 𝑐 large enough such that,

for all 𝑥 > 𝑐 (i.e., 𝑥 ∈ 𝐶𝑐, 𝐶 = [0, 𝑐]),

𝑎
1
(𝑥 + 1)

𝑛−1
+

𝑛

∑

𝑖=2

𝑎
𝑖
(𝑥 + 1)

𝛼−𝑖
< −

1

2

𝐶
1

𝑛
(𝜌 − 1) (𝑥 + 1)

𝛼−1
.

(60)

Thus

Δ𝑉 (𝑥) ≤

1

2

𝐶
1

𝑛
(𝜌 − 1) (𝑥 + 1)

𝛼−1
, ∀𝑥 ∈ 𝐶

𝑐
. (61)

Together with (51), we have

Δ𝑉 (𝑥) ≤ − 𝛽(𝑥 + 1)
𝛼−1
+ 𝑏𝐼
𝐶
,

= − 𝜙 ∘ 𝑉 (𝑥 + 1) + 𝑏𝐼
𝐶
, ∀𝑥 ∈ 𝑅

+
,

(62)

where 𝛽 = (1/2)𝐶1
𝑛
(1 − 𝜌) > 0, 𝜙(𝑧) = 𝛽𝑧(𝛼−1)/𝛼 (i.e., con-

dition 𝐷(𝜙, 𝑉, 𝐶) holds). By Theorem 1, we know that there
exists a unique invariant distribution 𝜋, 𝜋(𝜙 ∘ 𝑉) < ∞ (i.e.,
∫

+∞

1
𝑥
𝛼−1
𝜋(𝑑𝑥) < ∞) and

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
(𝑛)
(𝑥, 𝐴) − 𝜋 (𝐴)

󵄩
󵄩
󵄩
󵄩
󵄩𝜙∘𝑉
= 0, 𝜋-𝑎.𝑒.. (63)

From

𝐻
𝜙
(𝑥) = ∫

𝑥

1

𝑑𝑧

𝜙 (𝑧)

=

1

𝛽

∫

𝑥

1

𝑧
(1−𝛼)/𝛼

𝑑𝑧 =

𝛼

𝛽

(𝑥
1/𝛼
− 1) ,

(64)

we have𝐻−1
𝜙
(𝑥) = ((𝛽/𝛼)𝑥 + 1)

𝛼. So,

𝑟
𝜙 (
𝑛) = 𝜙 ∘ 𝐻

−1

𝜙
(𝑛)

= 𝛽[(

𝛽

𝛼

𝑛 + 1)

𝛼

]

(𝛼−1)/𝛼

= 𝛽(

𝛽

𝛼

𝑛 + 1)

𝛼−1

≍ 𝑛
𝛼−1
.

(65)

That is,

lim
𝑛→∞
𝑛
𝛼−1 󵄩󵄩
󵄩
󵄩
󵄩
𝑃
(𝑛)
(𝑥, ⋅) − 𝜋 (⋅)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0. (66)
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Case 3 (LogarithmicRate ofConvergence). Now,we consider
the logarithmic case which is slower than that for any
polynomial.

Proposition 11. If 𝜌 < 1 and there exists a positive integer 𝛼
such that

𝐸 (𝜈
1
log𝛼 (𝜈

1
+ 1)) = ∫

+∞

0

𝑥log𝛼 (𝑥 + 1) 𝐵 (𝑑𝑥) < +∞,

(67)

then

lim
𝑛→∞

log𝛼𝑛 󵄩󵄩󵄩󵄩
󵄩
𝑃
(𝑛)
(𝑥, ⋅) − 𝜋 (⋅)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, (68)

∫

+∞

1

log𝛼𝑥𝜋 (𝑑𝑥) < ∞. (69)

Proof. For all 𝑥 ∈ 𝑅
+
, let 𝑉(𝑥) = (𝑥 + 𝑒)log𝛼(𝑥 + 𝑒); then, we

have 𝑉(𝑥) > 𝑒, 𝑥 ∈ 𝑅
+
. Let 𝑐 > 𝑒𝛼, and choose 𝐶 = [0, 𝑐]. For

all 𝑥 ∈ 𝐸,

Δ𝑉 (𝑥)

= 𝑃𝑉 (𝑥) − 𝑉 (𝑥)

=

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 (𝜎
𝑘
− 1 + 𝑥 + 𝑒) log𝛼 (𝜎

𝑘
− 1 + 𝑥 + 𝑒)

− (𝑥 + 𝑒) log𝛼 (𝑥 + 𝑒) =
∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 (𝜎
𝑘
− 1) log𝛼 (𝑥 + 𝑒)

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 (𝜎
𝑘
− 1 + 𝑥 + 𝑒)

⋅ [log𝛼 (𝜎
𝑘
−1+𝑥+𝑒)−log𝛼 (𝑥+𝑒)]=(𝜌−1) log𝛼 (𝑥 + 𝑒)

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

⋅ 𝐸 { (𝜎
𝑘
− 1 + 𝑥 + 𝑒)

⋅ [log𝛼 ((𝑥+𝑒) (1+
𝜎
𝑘
− 1

𝑥 + 𝑒

))−log𝛼 (𝑥+𝑒)]}

≤ (𝜌 − 1) log𝛼 (𝑥 + 𝑒)

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸{1
{𝜎
𝑘
>1}
(𝜎
𝑘
− 1 + 𝑥 + 𝑒)

⋅

𝛼

∑

𝑖=1

𝐶
𝑖

𝛼
log𝛼−𝑖 (𝑥 + 𝑒) log𝑖 (1 +

𝜎
𝑘
− 1

𝑥 + 𝑒

)}

≤ (𝜌 − 1) log𝛼 (𝑥 + 𝑒)

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸{1
{1<𝜎
𝑘
≤𝑥+𝑒}
2 (𝑥 + 𝑒)

⋅

𝛼

∑

𝑖=1

𝐶
𝑖

𝛼
log𝛼−𝑖 (𝑥 + 𝑒) log𝑖 (1 +

𝜎
𝑘
− 1

𝑥 + 𝑒

)}

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸{1
{𝜎
𝑘
>𝑥+𝑒}
2𝜎
𝑘

𝛼

∑

𝑖=1

𝐶
𝑖

𝛼
log𝛼−𝑖

⋅ (𝑥 + 𝑒) log𝑖 (1 +
𝜎
𝑘
− 1

𝑥 + 𝑒

)}

≤ (𝜌 − 1) log𝛼 (𝑥 + 𝑒)

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸{1
{1≤𝜎
𝑘
≤𝑥+𝑒}
2 (𝜎
𝑘
− 1)

𝛼

∑

𝑖=1

𝐶
𝑖

𝛼
log𝛼−𝑖 (𝑥 + 𝑒)}

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸{1
{𝜎
𝑘
>𝑥+𝑒}
2𝜎
𝑘

⋅

𝛼

∑

𝑖=1

𝐶
𝑖

𝛼
log𝛼−𝑖 (𝑥 + 𝑒) log𝑖𝜎

𝑘
}

≤ (𝜌 − 1) log𝛼 (𝑥 + 𝑒)

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 {1
{1≤𝜎
𝑘
≤𝑥+𝑒}
2
𝛼+1
𝜎
𝑘
log𝛼−1 (𝑥 + 𝑒)}

+

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 {1
{𝜎
𝑘
>𝑥+𝑒}
2
𝛼+1
𝜎
𝑘

⋅log𝛼−1 (𝑥 + 𝑒) log𝛼𝜎
𝑘
}

≤ (𝜌 − 1) log𝛼 (𝑥 + 𝑒)

+ 2
𝛼+1log𝛼−1 (𝑥 + 𝑒)

⋅ [𝜌 +

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 {1
{𝜎
𝑘
>𝑥+𝑒}
𝜎
𝑘
log𝛼𝜎
𝑘
}]

≤ (𝜌 − 1) log𝛼 (𝑥 + 𝑒) + 2𝛼+1log𝛼−1 (𝑥 + 𝑒)

⋅ [𝜌 +

∞

∑

𝑘=0

𝜆
𝑘
𝑒
−𝜆

𝑘!

𝐸 {1
{𝜎
𝑘
>𝑥+𝑒}
𝜎
𝑘
2
𝛼

⋅ (log𝛼𝑘+log𝛼 (𝜈
1
+1)) } ]

≤ (𝜌 − 1) log𝛼 (𝑥 + 𝑒) + 2𝛼+1log𝛼−1 (𝑥 + 𝑒)

⋅ [𝜌 + 2
𝛼
(𝑚
2
𝐸𝜈
1
+ 𝑚
1
𝐸 (𝜈
1
log𝛼 (𝜈

1
+ 1)))]

= (𝜌 − 1) log𝛼 (𝑥 + 𝑒) + 𝑎
0
log𝛼−1 (𝑥 + 𝑒) ,

(70)



Discrete Dynamics in Nature and Society 9

where 𝑎
0
= 2
𝛼+1
[𝜌 + 2

𝛼
(𝑚
2
𝐸𝜈
1
+ 𝑚
1
𝐸(𝜈
1
log𝛼(𝜈

1
+ 1)))].

Since 𝐸(𝜈
1
log𝛼(𝜈

1
+ 1)) < ∞, we get that 𝑎

0
< +∞. Let

𝑏 = 𝑎
0
log𝛼−1(𝑐 + 𝑒); then, we have

Δ𝑉 (𝑥) ≤ 𝑏 < ∞, 𝑥 ∈ 𝐶. (71)

Choose 𝑐 large enough such that, if 𝑥 > 𝑐 (i.e., 𝑥 ∈ [0, 𝑐]𝑐),

𝑎
0
log𝛼−1 (𝑥 + 𝑒) < 1

2

(1 − 𝜌) log𝛼 (𝑥 + 𝑒) . (72)

Thus,

Δ𝑉 (𝑥) ≤ −

1

2

(1 − 𝜌) log𝛼 (𝑥 + 𝑒) , ∀𝑥 ∈ 𝐶𝑐. (73)

Together with (71), we have

Δ𝑉 (𝑥) ≤ − 𝛽log𝛼 (𝑥 + 𝑒) + 𝑏𝐼
𝐶
,

= − 𝜙 ∘ 𝑉 (𝑥) + 𝑏𝐼
𝐶
, ∀𝑥 ∈ 𝑅

+
,

(74)

where 𝛽 = (1/2)(1 − 𝜌) > 0, 𝜙(𝑧) = 𝛽log𝛼𝑧 (i.e., condition
𝐷(𝜙, 𝑉, 𝐶) holds). A straightforward calculation shows that

𝑟
𝜙
(𝑛) ≍ log𝛼𝑛. (75)

That is,

lim
𝑛→∞

log𝛼𝑛 󵄩󵄩󵄩󵄩
󵄩
𝑃
(𝑛)
(𝑥, ⋅) − 𝜋 (⋅)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0. (76)

By Theorem 1, we know that there exists a unique invariant
distribution 𝜋, 𝜋(𝜙 ∘ 𝑉) < ∞ (i.e., ∫+∞

1
log𝛼𝑥𝜋(𝑑𝑥) < ∞)

and

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
(𝑛)
(𝑥, 𝐴) − 𝜋 (𝐴)

󵄩
󵄩
󵄩
󵄩
󵄩𝜙∘𝑉
= 0, 𝜋-𝑎.𝑒.. (77)

4.1. Conclusion and Future Research. We studied the M/G/1
queueing system, and the waiting time process of the queue-
ing system is a Markov process. For the workload process
of the M/G/1 queueing system, we got an ℎ-skeleton process
and discussed its properties of the irreducible and aperiodic
and the property of stochastic monotone. Then, we got the
parameters 𝜀

0
and 𝑠
0
for geometric rate of convergence and

the geometric decay of the stationary tail, respectively. For
three specific types of subgeometric cases: Case 1: the rate
function 𝑟(𝑛) = exp(𝑠𝑛1/(1+𝛼)), 𝛼 > 0, 𝑠 > 0; Case
2: polynomial rate function 𝑟(𝑛) = 𝑛𝛼, 𝛼 > 0; Case 3:
logarithmic rate function 𝑟(𝑛) = log𝛼𝑛, 𝛼 > 0, we gave
explicit criteria for the rate of convergence and decay of
stationary tail. We gave the parameters 𝜀

1
and 𝑠
1
of the rate of

convergence and the decay of the stationary tail, respectively,
for the subgeometric rate 𝑟(𝑛) = exp(𝑠𝑛1/(1+𝛼)), 𝛼 > 0, 𝑠 > 0.
These results are important in the study of the stability of
M/G/1 queueing system.

For future research, much could be done. Our work
could be used to the convergence analysis of Markov chain
Monte Carlo (MCMC) theory. It could also be used to further
discuss queue length, congestion, and so forth. Using similar
techniques, these results may be extended to storage models,
nonlinear autoregressive model, stochastic unit root models,
multidimensional randomwalk, and other queueing systems.
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