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The investigations are made on the exponential synchronization of the stochastic Lur’e system with nonlinear coupling and
impulsive disturbance. The impulsive effects in complex networks could play a positive or a negative role for synchronization.
For the sake of simplification and efficiency, a single impulsive controller is designed to realize the synchronization of the impulsive
dynamical network with respect to stabilizing and destabilizing impulsive effects. Sufficient conditions are derived to guarantee
the realization of the exponential synchronization for all initial values by means of the Lyapunov stability theorem, the comparison
principle, and the linearmatrix inequalities (LMIs). Numerical simulations are given to support the validity of the analytical results.

1. Introduction

For reasons that the synchronization of complex dynamical
networks are ubiquity in both the natural and the artificial
worlds and it can interpret the essence of the collective behav-
ior in nature, it has attracted more and more attention of
scientists and engineers from various fields such as sociology,
biology,mathematics, and physics [1–9]. Synchronization can
be understood as the adjustment of rhythms or coherence of
states by interaction and realized via a sufficient information
exchange among the nodes’ interconnection in dynamical
networks. It has many potential applications in such areas as
biological systems [1], secure communications [3], informa-
tion processing, mechanical engineering, identification and
pattern recognition [4], and neuronal networks [2, 6, 7, 9].

Regarding the already known results on complex dynam-
ical networks synchronization, there are three types of main
communication methods between nodes normally consid-
ered: continuous coupling [7–9], intermittent communica-
tion [10], and impulsive exchange [11–14]. Impulsive exchange
is a common phenomenon inmany evolving networks. In the
impulsive communication framework, the dynamics of each
node is only affected by its neighbors at the impulsive instants
and there exist impulsive effects in the dynamical behavior
of nodes. For example, the states of electronic networks
and biological networks are often subject to instantaneous

disturbances and experience abrupt changes at certain in-
stants, which may be caused by switching phenomenon,
frequency change, or other sudden noise, which could be
expressed as impulsive effects. Thus, impulsive dynamical
networks, which involve sudden changes at certain discrete
times, are receiving more and more attention of researchers
for various fields, that is, [15].The impulsive effects could play
a positive or a negative role for synchronization of complex
networks; see [13, 14] and the reference therein.Then, a natu-
ral question comes up when the researches about impulsive
dynamical networks go deeper: How to design an efficient
controller to make such networks achieve synchronization
with respect to different types of impulsive effects? In partic-
ular, an impulsive controller, which means the information
interchanging between nodes occurs impulsively only at
some discrete time instants, proves that it can save the occu-
pation of the communication channels. A rough idea is that
when the impulsive effects are stabilizing, impulsive con-
trollers could be used for synchronizing. Good prior works
had been made on the synchronization of complex works
with impulses controllers; see [11–13, 16] and the references
therein. When the impulsive effects are destabilizing, feed-
back controllers should be involved to cancel some negative
effects of impulsive disturbance. Mentions should be made
that are in [14], the authors show that the complex networks
with destabilizing impulses could reach a self-synchronized
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state if the impulses do not happen too frequently. However,
the self-synchronized state depends on the network structure
as well as the initial values of the nodes, which is difficult to
predict. The previous research works motivate us to investi-
gate the synchronization problem of complex networks via a
single impulsive controller, in case the impulsive effects are
stabilizing and destabilizing, respectively. With the help of
a single controller, we are able to synchronize the complex
networks to required states. Our work is complementary to
the existing known results.

In this paper, the global and exponential synchronization
problem of the Lur’e system will be discussed. The Lur’e sys-
tems, including the Goodwin model [17], repressilator [18],
toggle switch [19], swarm model [20] and Chua’s circuit [21],
are a class of nonlinear systems which can be represented as
a linear dynamical system with feedback interconnected to
a nonlinearity satisfying a sector condition. Since the Lur’e
system was first proposed by Lur’e and Postnikov, many
researchers have attached much importance to the dynamics
on such systems, and a large number of results have been
obtained for the synchronization problem of the Lur’e system,
such as [22–27]. Every node in the complex dynamical net-
work studied in this paper is a Lur’e system; it has nonlinear
local dynamical behaviors 𝐴𝑥

𝑖
(𝑡) + 𝐵𝑓(𝐶𝑥

𝑖
(𝑡)) for the 𝑖th

node. Due to the instantaneous perturbations and abrupt
change existing in many realistic networks, in order to fit
with the real world, the stochastic phenomenon is going to
be considered in the synchronization analysis; see [28]. The
information interchange between each two nodes occurs
impulsively at some certain impulsive instants but happens
commonly at the nonimpulsive instants. Based on pinning
impulsive control scheme, a single impulsive controller is
imposed to the impulsive dynamical network with respect to
different types of impulsive effects. Sufficient conditions are
derived to guarantee the realization of the exponential syn-
chronization pattern for all initial values by means of the
Lyapunov stability theorem, the comparison principle, and
linearmatrix inequalities (LMIs). In addition, numerical sim-
ulations are given to support the validity of the main results.

The rest of the paper is organized as follows. In Section 2,
we give some preparatory works, such as definitions and lem-
mas and next present the impulsive stochastic dynamical
Lur’e networkmodel. In Section 3, we analyze the exponential
synchronization of the impulsive network by using a single
impulsive controller when the impulsive effects are stabilizing
and destabilizing, respectively. A numerical simulation is
given to verify our theoretical results in Section 4. We
conclude the paper in Section 5.

Notations. The mark 𝐴𝑇 denotes the transport of the matrix
𝐴. 𝑅𝑛 denotes the 𝑛-dimensional Euclidean space. 𝑅𝑛×𝑛 are
𝑛 × 𝑛 real matrices. diag{⋅ ⋅ ⋅ } stands for a diagonal matrix.
The sign ‖ ⋅ ‖ stands for the Euclid norm of the matrix or
the vector. A symmetric real matrix 𝐴 is positive definite
(semidefinite) if 𝑥𝑇𝐴𝑥 > 0(≥ 0) for all nonzero 𝑥, we denote
this as 𝐴 > 0 (𝐴 ≥ 0). 𝐼 stands for the identity matrix with
proper dimension. 𝜆max(⋅) is used to denote the maximum
eigenvalue of a real symmetric matrix. Let 𝐸(𝜁) be the

expectation value of 𝜁. The dimension of these vectors and
matrices will be cleared in the context.

2. Preliminaries and Model Description

In this section, some preliminaries such as definitions and
lemmas will be firstly given, which are necessary throughout
the paper. Then, we will present the impulsive dynamical
network model with stochastic perturbations, which is com-
posed of the Lur’e systems; it will be converted into the error
impulsive dynamical network.

Definition 1. A dynamical network is said to realize global
exponential synchronization, if there exist ] > 0, 𝑇

0
> 0 and

𝜃 > 0 such that for any initial values 𝜙
𝑖
(⋅) (𝑖 = 1, 2, . . . , 𝑁),

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖 (𝑡) − 𝑥𝑗 (𝑡)

󵄩󵄩󵄩󵄩󵄩
≤ 𝜃𝑒
−]𝑡 (1)

hold for all 𝑡 > 𝑇
0
, and for any 𝑖, 𝑗 = 1, 2, . . . , 𝑁.

Definition 2 (see [29]). The average impulsive interval of the
impulsive sequence 𝜁 = {𝑡

1
, 𝑡
2
, . . .} is less than𝑇

𝑎
, if there exist

a positive integer𝑁
0
and a positive number 𝑇

𝑎
, such that

𝑁
𝜁 (𝑇, 𝑡) ≥

𝑇 − 𝑡

𝑇
𝑎

− 𝑁
0
, ∀𝑇 ≥ 𝑡 ≥ 0, (2)

where 𝑁
𝜁
(𝑇, 𝑡) denotes the number of impulsive times of

the impulsive sequence 𝜁 in the time interval (𝑡, 𝑇). As a
consequence, the average impulsive interval of the impulsive
sequence 𝜁 = {𝑡

1
, 𝑡
2
, . . .} is not less than 𝑇

𝑎
, if there exist a

positive integer𝑁
0
and a positive number 𝑇

𝑎
, such that

𝑁
𝜁 (𝑇, 𝑡) ≤

𝑇 − 𝑡

𝑇
𝑎

+ 𝑁
0
, ∀𝑇 ≥ 𝑡 ≥ 0. (3)

Lemma 3 (see [30]). Suppose𝐷 = (𝑑
𝑖𝑗
) ∈ 𝑅
𝑛×𝑛, and it satisfies

𝑑
𝑖𝑗
= 𝑑
𝑗𝑖
, 𝑑
𝑖𝑖
= −∑

𝑛

𝑗=1,𝑗 ̸= 𝑖
𝑑
𝑖𝑗
; then, for any two vectors 𝑥 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
∈ 𝑅
𝑛, 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)
𝑇
∈ 𝑅
𝑛, one has

𝑥
𝑇
𝐷𝑦 = −∑

𝑗>𝑖

𝑑
𝑖𝑗
(𝑥
𝑗
− 𝑥
𝑖
) (𝑦
𝑗
− 𝑦
𝑖
) . (4)

Lemma4 ([31] comparison principle). Consider the following
stochastic system with impulsive:

𝑑𝑥 (𝑡) = 𝜙 (𝑡, 𝑥 (𝑡)) 𝑑𝑡 + 𝜂 (𝑡, 𝑥 (𝑡)) 𝑑𝑤 (𝑡) 𝑡 ≥ 0, 𝑡 ̸= 𝑡𝑘,

𝑥 (𝑡
+

𝑘
) − 𝑥 (𝑡

−

𝑘
) = 𝑈
𝑘
(𝑥 (𝑡
−

𝑘
)) 𝑘 ∈ 𝑁.

(5)

Assume that there exist a Lyapunov function𝑉(𝑡, 𝑥(𝑡)) and
functions 𝜑, 𝜓

𝑘
with 𝜑(𝑡, 0) = 𝜓

𝑘
(0) = 0 for any 𝑡 ≥ 0, 𝑘 ∈ 𝑁,

such that:

(1) there exist positive constants 𝑐
1
, 𝑐
2
such that for all 𝑡 ≥

𝑡
0
, 𝑐
1
‖𝑥(𝑡)‖ ≤ 𝑉(𝑡, 𝑥(𝑡)) ≤ 𝑐

2
‖𝑥(𝑡)‖;

(2) there exists continuous function 𝜑 : 𝑅+×𝑅+ → 𝑅, and
𝜑 (𝑡, 𝑥(𝑡)) is concave on 𝑠 for each 𝑡 ∈ 𝑅+, such that
L𝑉(𝑡, 𝑥) = 𝑉

𝑡
(𝑡, 𝑥)+𝑉

𝑥
(𝑡, 𝑥)𝜑(𝑡, 𝑥)+(1/2)trace[𝜂𝑇(𝑡,

𝑥)𝑉
𝑥𝑥
𝜂 (𝑡, 𝑥)];
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(3) there exist continuous and concave functions 𝜓
𝑘
:

𝑅
+
→ 𝑅
+
, 𝑘 ∈ 𝑁, such that 𝑉(𝑡+

𝑘
, 𝑥(𝑡
+

𝑘
)) ≤ 𝜓

𝑘
(𝑉(𝑡
−

𝑘
,

𝑥(𝑡
−

𝑘
)));

then, the exponential stability of the trivial solution of the
following comparison systems,

𝑤̇ (𝑡) = 𝜙 (𝑡, 𝑤 (𝑡)) 𝑡 ≥ 0, 𝑡 ̸= 𝑡𝑘,

𝑤 (𝑡
+

𝑘
) = 𝜓
𝑘
(𝑤 (𝑡
−

𝑘
)) 𝑘 ∈ 𝑁,

𝑤 (𝑡
0
) = 𝐸 (𝑉 (𝑡

0
, 𝑥
0
)) ,

(6)

implies the exponential stability of the trivial solution of the
stochastic impulsive system (5).

Consider the following network model with nonlinear
and asymmetrical coupling, and the nodes are composed of
the Lur’e system:

𝑥̇
𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑓 (𝐶𝑥𝑖 (𝑡)) + 𝑐

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
Γ𝐻̃ (𝑥

𝑗 (𝑡))

𝑖 = 1, 2, . . . , 𝑁,

(7)

where 𝑥
𝑖
(𝑡) = [𝑥

1

𝑖
(𝑡), 𝑥
2

𝑖
(𝑡), . . . , 𝑥

𝑛

𝑖
(𝑡)]
𝑇
∈ 𝑅
𝑛, for 𝑖 = 1, 2,

. . . , 𝑁. 𝐴 ∈ 𝑅𝑛×𝑛, 𝐵 ∈ 𝑅𝑛×𝑚, 𝐶 ∈ 𝑅𝑚×𝑛 are constant matrices.
The constant 𝑐 > 0 denotes the coupling strength and Γ =
diag{𝛾

1
, 𝛾
2
, . . . , 𝛾

𝑛
} ∈ 𝑅
𝑛×𝑛 is the inner-linking matrix, which

is a diagonal matrix with 𝛾
𝑖
≥ 0. Function 𝑓 : 𝑅𝑚 → 𝑅

𝑚

is a memoryless nonlinear vector valued function which is
continuously differentiable on 𝑅, 𝑓(0) = 0. Matrix 𝐿 = (𝑙

𝑖𝑗
) ∈

𝑅
𝑁×𝑁 is the coupling matrix, which indicates the connection

topology, and it is decided by the network structure. 𝑙
𝑖𝑗
> 0 if

there is a connection from node 𝑖 to node 𝑗 (𝑖 ̸= 𝑗), otherwise
𝑙
𝑖𝑗
= 0 and it satisfies zero-sum-row condition, that is, 𝑙

𝑖𝑖
=

−∑
𝑁

𝑗 ̸= 𝑖𝑗=1
𝑙
𝑖𝑗
.We do not assume that 𝑙

𝑖𝑗
= 𝑙
𝑗𝑖
, whichmeans that

𝐿 is an asymmetry matrix. The nonlinear coupling function
𝐻̃(𝑥
𝑗
(𝑡)) = (ℎ̃(𝑥

𝑗1
(𝑡)), ℎ̃(𝑥

𝑗2
(𝑡)), . . . , ℎ̃(𝑥

𝑗𝑛
(𝑡)))
𝑇 satisfies the

following conditions: (ℎ̃(𝑢) − ℎ̃(V))/(𝑢 − V) ≥ 𝜗 > 0 for any
𝑢, V ∈ 𝑅.

For many realistic complex networks, the state of node
always suffers from instantaneous perturbations and is sub-
ject to abrupt change at certain instants. Taking those situa-
tions into consideration, we present the following stochastic
impulsive dynamical Lur’e network with nonlinear coupling:

𝑑𝑥
𝑖 (𝑡) = [𝐴𝑥𝑖 (𝑡) + 𝐵𝑓 (𝐶𝑥𝑖 (𝑡))] 𝑑𝑡 + 𝑔 (𝑥𝑖 (𝑡) , 𝑡) 𝑑𝑤 (𝑡)

+ 𝑐

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
Γ𝐻̃ (𝑥

𝑗 (𝑡)) 𝑑𝑡 𝑡 > 0, 𝑡 ̸= 𝑡𝑘,

𝑥
𝑗
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
+

𝑘
) = 𝜇 (𝑥

𝑗
(𝑡
−

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
)) for (𝑖, 𝑗) : 𝑙

𝑖𝑗
> 0,

(8)

where 𝑤(𝑡) ∈ 𝑅𝑚 is an 𝑚-dimensional Brownian motion,
𝑔 : 𝑅
𝑛
×𝑅
+
→ 𝑅
𝑛×𝑚 is the noise intensity functionmatrix sat-

isfying 𝑔(𝑡, 0𝑛) = 0𝑛×𝑚.

Remark 5. Throughout this paper, we always assume that
𝑥
𝑖
(𝑡) is left-hand continuous at 𝑡 = 𝑡

𝑘
, that is, 𝑥

𝑖
(𝑡
−

𝑘
) = 𝑥
𝑖
(𝑡
𝑘
).

Therefore, according to the above assumption, we can get
that the solutions of (8) are piecewise left-hand continuous
functions with discontinuities at 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . . On

the other sides, from the second equation of (5), we can get
that, in this paper, we focus on the impulsive effects (sudden
changing) in the process of signal exchanging rather than the
impulsive effects on the nodes’ states.

In order to derive themain results of the stochastic impul-
sive dynamical Lur’e network, wemake the following assump-
tions.

Assumption 6. The nonlinear function 𝑓(⋅) is assumed to
satisfy a Lipschitz condition, that is, there exists a constant
𝜅 > 0 such that ‖𝑓(𝑢) − 𝑓(V)‖ ≤ 𝜅‖𝑢 − V‖ holds for any
𝑢, V ∈ 𝑅𝑛.

Assumption 7. Assume that the noise intensity function
matrix 𝑝 : 𝑅𝑛 × 𝑅+ → 𝑅𝑛×𝑚 is uniformly Lipschitz continu-
ous in terms of the norm induced by the trace inner product
on the following matrices:

trace [(𝑔(𝑢(𝑡), 𝑡) − 𝑔(V(𝑡), 𝑡))𝑇 ⋅ (𝑔 (𝑢 (𝑡) , 𝑡) − 𝑔 (V (𝑡) , 𝑡))]

≤ ‖𝑀 (𝑢 (𝑡) − V (𝑡))‖
2
,

(9)

for any 𝑢, V ∈ 𝑅𝑛, where𝑀 is a known constant matrix with
compatible dimensions.

3. Synchronization Analysis for the Stochastic
Lur’e System under a Single Controller

In this section, we will investigate the global and exponential
synchronization of the Lur’e system with stochastic pertur-
bations. Define the error vectors as 𝑒

𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑠(𝑡), 𝑖 =

1, 2, . . . , 𝑁, where 𝑠(𝑡) = [𝑠1(𝑡), 𝑠2(𝑡), . . . , 𝑠𝑛(𝑡)] ∈ 𝑅𝑛 is the
solution of an isolated node in the Lur’e network satisfying

𝑑𝑠 (𝑡) = [𝐴𝑠 (𝑡) + 𝐵𝑓 (𝐶𝑠 (𝑡))] 𝑑𝑡 + 𝑔 (𝑠 (𝑡) , 𝑡) 𝑑𝑤 (𝑡) , (10)

with initial condition 𝑠
0
∈ 𝑅
𝑛. In this paper, 𝑠(𝑡) is the

objective trajectory that the nonlinear stochastic impulsive
dynamical network (8) will be forced to.

For |𝜇| < 1 in (8), which means that the corresponding
impulsive effects are synchronizing, we propose a single
impulsive controller to the network. Without loss of gener-
ality, the first node is selected to be controlled.The controlled
impulsive dynamical Lur’e network is obtained as follows:

𝑑𝑒
𝑖 (𝑡) = [𝐴𝑒𝑖 (𝑡) + 𝐵𝑓 (𝐶𝑒𝑖 (𝑡))] 𝑑𝑡 + 𝑔 (𝑥𝑖 (𝑡) , 𝑡) 𝑑𝑤 (𝑡)

+ 𝑐

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
Γ𝐻(𝑒

𝑗 (𝑡)) 𝑑𝑡 𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
,

𝑒
𝑗
(𝑡
+

𝑘
) − 𝑒
𝑖
(𝑡
+

𝑘
) = 𝜇 (𝑒

𝑗
(𝑡
−

𝑘
) − 𝑒
𝑖
(𝑡
−

𝑘
)) for (𝑖, 𝑗) : 𝑙

𝑖𝑗
> 0,

𝑒
1
(𝑡
+

𝑘
) = 𝜇𝑒

1
(𝑡
−

𝑘
) ,

(11)
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where

𝑓 (𝐶𝑒
𝑖 (𝑡)) = 𝑓 (𝐶𝑥𝑖 (𝑡)) − 𝑓 (𝐶𝑠 (𝑡)) ,

𝑔 (𝑒
𝑖 (𝑡) , 𝑡) = 𝑔 (𝑥𝑖 (𝑡) , 𝑡) − 𝑔 (𝑠 (𝑡) , 𝑡) ,

𝐻 (𝑒
𝑖 (𝑡)) = [ℎ(𝑒𝑖1(𝑡)), ℎ(𝑒𝑖2(𝑡)), . . . , ℎ(𝑒𝑖𝑛(𝑡))]

𝑇
,

ℎ (𝑒
𝑖𝑗 (𝑡)) = ℎ̃ (𝑥𝑖𝑗 (𝑡)) − ℎ̃ (𝑠 (𝑡)) ,

(12)

for 𝑖 = 1, 2, . . . , 𝑁; 𝑗 = 1, 2, . . . , 𝑛. Since (ℎ̃(𝑢)−ℎ̃(V))/(𝑢−V) ≥
𝜗 > 0, we have (ℎ(𝑢) − ℎ(V))/(𝑢 − V) ≥ 𝜗 > 0.

In the following part, we are devoted to studying the
global exponential stability for the controlled impulsive
stochastic dynamical Lur’e network (3). Suppose that 𝜉 =
(𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑁
)
𝑇 is the normalized left eigenvector of the

configuration matrix 𝐿 with respect to the eigenvalue 0
satisfying ‖𝜉‖ = 1. Since the coupling matrix 𝐿 is irreducible,
𝜉
𝑖
> 0 for 𝑖 = 1, 2, . . . , 𝑁. Let Ξ = diag{𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑁
} > 0.

Theorem 8. Consider the controlled impulsive stochastic
dynamical Lur’e network (3) when |𝜇| < 1. Suppose that
Assumptions 6 and 7 hold, and the average impulsive interval of
the impulsive sequence 𝜁 = {𝑡

1
, 𝑡
2
, . . .} is less than 𝑇

𝑎
. Then, the

controlled impulsive stochastic dynamical network (3) is glob-
ally exponentially stable if

2 ln (󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨)

𝑇
𝑎

+ 𝛿 < 0, (13)

where 𝛿 = 𝜆max(𝐴+𝐴
𝑇
+𝑀
𝑇
𝑀)+2𝜅√𝜆max(𝐵

𝑇𝐵)𝜆max(𝐶
𝑇𝐶).

Proof. Construct a Lyapunov function candidate in the form
of

𝑉 (𝑡) =

𝑁

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) . (14)

For 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
], 𝑘 = 1, 2, . . ., we have

L𝑉 (𝑡) = 2
𝑁

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

𝑖
(𝑡)
{

{

{

𝐴𝑒
𝑖 (𝑡) + 𝐵𝑓 (𝐶𝑒𝑖 (𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
Γ𝐻(𝑒

𝑗 (𝑡))
}

}

}

+

𝑁

∑

𝑖=1

trace [𝑔𝑇 (𝑒
𝑖 (𝑡) , 𝑡) Ξ𝑔 (𝑒𝑖 (𝑡) , 𝑡)]

≤ 2

𝑁

∑

𝑖=1

𝜉i𝑒
𝑇

𝑖
(𝑡) [𝐴𝑒𝑖 (𝑡) + 𝐵𝑓 (𝐶𝑒𝑖 (𝑡))]

+ 2𝑐

𝑁

∑

𝑖=1

𝜉
𝑖

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) Γ𝐻 (𝑒𝑗 (𝑡))

+

𝑁

∑

𝑖=1

trace [𝑔𝑇 (𝑒
𝑖 (𝑡) , 𝑡) 𝑔 (𝑒𝑖 (𝑡) , 𝑡)] .

(15)

By Assumptions 6 and 7, the following inequalities can be
obtained:

2𝑒
𝑇

𝑖
(𝑡) 𝐵𝑓 (𝐶𝑒𝑖 (𝑡))

≤ 2
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩𝐵𝑓 (𝐶𝑒𝑖 (𝑡))

󵄩󵄩󵄩󵄩

= 2
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩 ⋅
√𝑓𝑇 (𝐶 (𝑒

𝑖 (𝑡))) 𝐵
𝑇𝐵𝑓 (𝐶𝑒

𝑖 (𝑡))

≤ 2
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩 ⋅
√𝜆max (𝐵

𝑇𝐵) ⋅
󵄩󵄩󵄩󵄩𝑓 (𝐶𝑒𝑖 (𝑡))

󵄩󵄩󵄩󵄩

≤ 2√𝜆max (𝐵
𝑇𝐵)
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩 ⋅ 𝜅
√󵄩󵄩󵄩󵄩𝐶𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩

2

= 2√𝜆max (𝐵
𝑇𝐵)𝜅

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩 ⋅
√𝑒
𝑇

𝑖
(𝑡) 𝐶
𝑇𝐶𝑒
𝑖 (𝑖)

≤ 2𝜅√𝜆max (𝐵
𝑇𝐵)√𝜆max (𝐶

𝑇𝐶)𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) ,

trace [𝑝𝑇 (𝑒
𝑖 (𝑡) , 𝑡) 𝑝 (𝑒𝑖 (𝑡) , 𝑡)] ≤

󵄩󵄩󵄩󵄩𝑀𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩

2

= 𝑒
𝑇

𝑖
(𝑡)𝑀
𝑇
𝑀𝑒
𝑖 (𝑡) .

(16)

Let 𝑒𝑘(𝑡) = [𝑒
1𝑘
(𝑡), 𝑒
2𝑘
, . . . , 𝑒

𝑁𝑘
(𝑡)]
𝑇 and 𝑄 = Ξ𝐿 + 𝐿𝑇Ξ =

(𝑞
𝑖𝑗
)
𝑁×𝑁

. Note that 𝑄 is a symmetric irreducible matrix with
zero row sum. We have

2𝑐

𝑁

∑

𝑖=1

𝜉
𝑖

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) Γ𝐻 (𝑒𝑗 (𝑡))

= 2𝑐

𝑁

∑

𝑖=1

𝜉
𝑖

𝑁

∑

𝑗=1

𝑙
𝑖𝑗

𝑛

∑

𝑘=1

𝑒
𝑖𝑘 (𝑡) 𝛾𝑘ℎ (𝑒𝑗𝑘 (𝑡))

= 2𝑐

𝑛

∑

𝑘=1

𝛾
𝑘

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑒
𝑖𝑘 (𝑡) 𝑙𝑖𝑗ℎ (𝑒𝑗𝑘 (𝑡))

= 2𝑐

𝑛

∑

𝑘=1

𝛾
𝑘
𝑒
𝑘
(𝑡)
𝑇
𝑄ℎ (𝑒

𝑘
(𝑡))

= −𝑐

𝑛

∑

𝑘=1

𝛾
𝑘

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑞
𝑖𝑗
(𝑒
𝑖𝑘 (𝑡) − 𝑒𝑗𝑘 (𝑡))

× ℎ (𝑒
𝑖𝑘 (𝑡) − ℎ (𝑒𝑗𝑘 (𝑡)))

≤ −𝑐𝜗

𝑛

∑

𝑘=1

𝛾
𝑘

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑞
𝑖𝑗
(𝑒
𝑖𝑘
(𝑡) − 𝑒

𝑗𝑘
(𝑡))
2

≤ 0.

(17)

Combining (16) and (17) gives

L𝑉 (𝑡) ≤ 𝛿𝑉 (𝑡) (18)

for 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
).

In the second equation in the system (8), 𝑥
𝑗
(𝑡
+

𝑘
)−𝑥
𝑖
(𝑡
+

𝑘
) =

𝜇(𝑥
𝑗
(𝑡
−

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
)) for any pair of (𝑖, 𝑗) which satisfies 𝑙

𝑖𝑗
>

0. Based on the coupling matrix 𝐿, is irreducible; we have
assumed yet, for any suffix 𝑖 (𝑖 ̸= 1), there exist a reachable
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route between the 1-node and the 𝑖-node even though the
route is not limited in one and immediate. That is, there exist
suffixes 𝜏

1
, 𝜏
1
, . . . , 𝜏

𝑚
such that 𝑙

1,𝜏
1

> 0, 𝑙
𝜏
1
,𝜏
2

> 0, . . . , 𝑙
𝜏
𝑚
,𝑖
> 0.

Hence, from the analysis, for the pair of suffixes 1 and 𝑖 (𝑖 =
2, 3, . . . , 𝑁), we obtain

𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
1
(𝑡
+

𝑘
)

= [𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝜏
𝑚

(𝑡
+

𝑘
)] + [𝑥

𝜏
𝑚

(𝑡
+

𝑘
) − 𝑥
𝜏
𝑚−1

(𝑡
+

𝑘
)]

+ ⋅ ⋅ ⋅ + [𝑥
𝜏
1

(𝑡
+

𝑘
) − 𝑥
1
(𝑡
+

𝑘
)]

= 𝜇 [𝑥
𝑖
(𝑡
−

𝑘
) − 𝑥
𝜏
𝑚

(𝑡
−

𝑘
)] + 𝜇 [𝑥

𝜏
𝑚

(𝑡
−

𝑘
) − 𝑥
𝜏
𝑚−1

(𝑡
−

𝑘
)]

+ ⋅ ⋅ ⋅ + 𝜇 [𝑥
𝜏
1

(𝑡
−

𝑘
) − 𝑥
1
(𝑡
−

𝑘
)]

= 𝜇 [𝑥
𝑖
(𝑡
−

𝑘
) − 𝑥
𝜏
𝑚

(𝑡
−

𝑘
) + 𝑥
𝜏
𝑚

(𝑡
−

𝑘
) − 𝑥
𝜏
𝑚−1

(𝑡
−

𝑘
)

+ ⋅ ⋅ ⋅ + 𝑥
𝜏
1

(𝑡
−

𝑘
) − 𝑥
1
(𝑡
−

𝑘
)]

= 𝜇 [𝑥
𝑖
(𝑡
−

𝑘
) − 𝑥
1
(𝑡
−

𝑘
)] .

(19)

Recall the definition of the error vectors, we get 𝑥
𝑖
(𝑡
+

𝑘
)−𝑠(𝑡) =

𝜇(𝑥
𝑖
(𝑡
−

𝑘
) − 𝑠(𝑡)), that is

𝑒
𝑖
(𝑡
+

𝑘
) = 𝜇𝑒

𝑖
(𝑡
−

𝑘
) . (20)

Therefore, when 𝑡 = 𝑡
𝑘
, 𝑘 ∈ 𝑁, one gets that

𝑉 (𝑡
+

𝑘
) =

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡
+

𝑘
) 𝑒
𝑖
(𝑡
+

𝑘
)

= 𝜇
2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡
−

𝑘
) 𝑒
𝑖
(𝑡
−

𝑘
) = 𝜇
2
𝑉 (𝑡
−

𝑘
) .

(21)

By (18) and (21), we can obtain the following comparison
system for the controlled impulsive stochastic dynamical
Lur’e network (3):

𝑤̇ (𝑡) = 𝛿𝑤 (𝑡) 𝑡 ≥ 0, 𝑡 ̸= 𝑡𝑘,

𝑤 (𝑡
+

𝑘
) = 𝜇
2
𝑤 (𝑡
−

𝑘
) 𝜇
2
∈ (0, 1) , 𝑘 ∈ 𝑁,

𝑤 (𝑡
0
) = 𝐸 (𝑉 (𝑡

0
)) .

(22)

For 𝑡 ∈ (𝑡
0
, 𝑡
1
],

𝑤 (𝑡) = 𝑒
𝛿(𝑡−𝑡
0
)
𝑤 (𝑡
+

0
) , 𝑤 (𝑡

−

1
) = 𝑒
𝛿(𝑡
1
−𝑡
0
)
𝑤 (𝑡
+

0
) . (23)

For 𝑡 ∈ (𝑡
1
, 𝑡
2
],

𝑤 (𝑡
+

1
) = 𝜇
2
𝑤 (𝑡
−

1
) = 𝜇
2
𝑒
𝛿(𝑡
1
−𝑡
0
)
𝐸 (𝑉 (𝑡

0
)) ,

𝑤 (𝑡) = 𝑒
𝛿(𝑡−𝑡
1
)
𝑤 (𝑡
+

1
) = 𝑒
𝛿(𝑡−𝑡
1
)
𝜇
2
𝑤 (𝑡
−

1
)

= 𝑒
𝛿(𝑡−𝑡
1
)
𝑒
𝛿(𝑡−𝑡
0
)
𝜇
2
𝑤 (𝑡
+

0
) ,

𝑤 (𝑡
−

2
) = 𝜇
2
𝑒
𝛿(𝑡
2
−𝑡
0
)
𝐸 (𝑉 (𝑡

0
)) .

(24)

Similarly, for 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
],

𝑤 (𝑡) = 𝑒
𝛿(𝑡−𝑡
𝑘−1
)
𝑤 (𝑡
+

𝑘−1
) = 𝑒
𝛿(𝑡−𝑡
𝑘−1
)
𝜇
2
𝑤 (𝑡
𝑘−1
)

= 𝑒
𝛿(𝑡−𝑡
𝑘−1
)
𝜇
2
𝜇
2(𝑘−1)
𝑒
𝛿(𝑡
𝑘−1
−𝑡
0
)
𝑤 (𝑡
+

0
)

= 𝑒
𝛿(𝑡−𝑡
0
)
𝜇
2𝑘
𝐸 (𝑉 (𝑡

0
)) .

(25)

Based on the above analysis, for any 𝑡 > 0, one has

𝑤 (𝑡) = 𝑒
𝛿(𝑡−𝑡
0
)
𝜇
2𝑘
𝐸 (𝑉 (𝑡

0
))

= 𝑒
𝛿(𝑡−𝑡
0
)
𝜇
2𝑁
𝜁
(𝑡,𝑡
0
)
𝐸 (𝑉 (𝑡

0
))

≤ 𝑒
𝛿(𝑡−𝑡
0
)
𝜇
2((𝑡−𝑡

0
)/𝑇
𝑎
)−2𝑁
0𝐸 (𝑉 (𝑡

0
))

= 𝜇
−2𝑁
0𝑒
((2 ln |𝜇|/𝑇

𝑎
)+𝛿)(𝑡−𝑡

0
)
𝐸 (𝑉 (𝑡

0
)) .

(26)

By Lemma 4, it can be concluded that the controlled
impulsive stochastic dynamical Lur’e network (3) is expo-
nentially stable, which can further imply that the dynamical
network (7) can be exponentially stabilized to the objective
trajectory 𝑠(𝑡) by only imposing a single impulsive controller
on the first node. Theorem 8 is proved completely.

Remark 9. It means that the nonlinear and asymmetric cou-
pled impulsive stochastic dynamical Lur’e network (8) can be
globally and exponentially controlled to the objective trajec-
tory 𝑠(𝑡) by using a single impulsive controller. In the proving
process, the Lyapunov stability theorem and the comparison
principle are combined to derive the synchronization criteria
for the impulsive stochastic dynamical Lur’e network by using
a single impulsive controller. In fact, the node to be controlled
can be selected randomly. In this paper, without loss of gen-
erality, we chose the first node as the impulsive controller was
imposed to. It has been proved that the impulsive stochastic
dynamical Lur’e network can achieve synchronization by only
applying a single controller, not to speak of more controllers.

As a special case of the main result, we give the following
stochastic impulsive dynamical Lur’e network with linear
coupling:

𝑑𝑥
𝑖 (𝑡) = [𝐴𝑥𝑖 (𝑡) + 𝐵𝑓 (𝐶𝑥𝑖 (𝑡))] 𝑑𝑡 + 𝑔 (𝑥𝑖 (𝑡) , 𝑡) 𝑑𝑤 (𝑡)

+ 𝑐

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
Γ𝑥
𝑗 (𝑡) 𝑑𝑡 𝑡 > 0, 𝑡 ̸= 𝑡𝑘,

𝑥
𝑗
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
+

𝑘
) = 𝜇 (𝑥

𝑗
(𝑡
−

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
)) for (𝑖, 𝑗) : 𝑙

𝑖𝑗
> 0.

(27)

Correspondingly, we have the following conclusion for the
stochastic impulsive dynamical Lur’e network with linear
coupling.

Corollary 10. Consider the impulsive stochastic dynamical
Lur’e network (27)under the same impulsive controller imposed
on the first node. Suppose that Assumptions 6 and 7 hold, and
the average impulsive interval of the impulsive sequence 𝜁 = {𝑡

1
,

𝑡
2
, . . .} is less than 𝑇

𝑎
. Then, the impulsive stochastic dynamical
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network (27) with a single impulsive controller is globally
exponentially stable, if the following condition holds:

2 ln 󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨

𝑇
𝑎

+ 𝜆max (𝐴 + 𝐴
𝑇
+𝑀
𝑇
𝑀)

+ 2𝜅√𝜆max (𝐵
𝑇𝐵) 𝜆max (𝐶

𝑇𝐶) < 0.

(28)

This means that the impulsive stochastic dynamical Lur’e
network (27) can be globally and exponentially controlled to the
objective trajectory 𝑠(𝑡) by using a single impulsive controller.

If we consider the following impulsive dynamical Lur’e
network with linear coupling without stochastic distortions

𝑑𝑥
𝑖 (𝑡) = [𝐴𝑥𝑖 (𝑡) + 𝐵𝑓 (𝐶𝑥𝑖 (𝑡))] 𝑑𝑡

+ 𝑐

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
Γ𝑥
𝑗 (𝑡) 𝑑𝑡 𝑡 > 0, 𝑡 ̸= 𝑡𝑘,

𝑥
𝑗
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
+

𝑘
) = 𝜇 (𝑥

𝑗
(𝑡
−

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
)) for (𝑖, 𝑗) : 𝑙

𝑖𝑗
> 0,

(29)

we have another corollary, we give it in the form of the fol-
lowing.

Corollary 11. Consider the impulsive dynamical Lur’e network
(29). Suppose that Assumptions 6 and 7 hold, and the average
impulsive interval of the impulsive sequence 𝜁 = {𝑡

1
, 𝑡
2
, . . .} is

less than 𝑇
𝑎
. Then, the impulsive dynamical network (32) with

a single impulsive controller is globally exponentially stable, if
the following condition holds:

2 ln 󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨

𝑇
𝑎

+ 𝜆max (𝐴 + 𝐴
𝑇
) + 2𝜅√𝜆max (𝐵

𝑇𝐵) 𝜆max (𝐶
𝑇𝐶) < 0.

(30)

This means that the impulsive dynamical Lur’e network (29)
can be globally and exponentially controlled to the objective tra-
jectory 𝑠(𝑡) by using a single impulsive controller.

Remark 12. FromTheorem 8 and its corollaries, it can be seen
that condition (13), namely,

2 ln (󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨)

𝑇
𝑎

+ 𝜆max (𝐴 + 𝐴
𝑇
+𝑀
𝑇
𝑀)

+ 2𝜅√𝜆max (𝐵
𝑇𝐵) 𝜆max (𝐶

𝑇𝐶) < 0,

(31)

can be realized with the help of the term 2 ln(|𝜇|)/𝑇
𝑎
, which is

negative once |𝜇| < 1. It corresponds to the observation that
the impulsive effects are synchronizing. However, sometimes
impulses can play a negative role for the synchronization of
dynamical networks. We label this case as |𝜇| > 1 in (8).
Then, with a rough idea, the term 2 ln(|𝜇|)/𝑇

𝑎
> 0 can play

a negative effect to realize condition (13), though a few of
the systems (8) can still achieve synchronization under (13).
We need to add a single feedback controller to cancel the
desynchronization effects caused by impulses if |𝜇| > 1,
which is an effective way to drive the system (8) into desirable
synchronization states.

When |𝜇| > 1, after adding the feedback controller 𝑢(𝑡) =
−𝑐𝑙Γ𝑒
1
(𝑡) to the first node of network (3), we have

𝑑𝑒
1 (𝑡) = [𝐴𝑒1 (𝑡) + 𝐵𝑓 (𝐶𝑒1 (𝑡))] 𝑑𝑡 + 𝑔 (𝑥𝑖 (𝑡) , 𝑡) 𝑑𝑤 (𝑡)

+ 𝑐

𝑁

∑

𝑗=1

𝑙
1𝑗
Γ𝐻(𝑒

𝑗 (𝑡)) 𝑑𝑡 − 𝑐𝑙Γ𝑒1 (𝑡) 𝑑𝑡,

𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
,

𝑑𝑒
𝑖 (𝑡) = [𝐴𝑒𝑖 (𝑡) + 𝐵𝑓 (𝐶𝑒𝑖 (𝑡))] 𝑑𝑡 + 𝑔 (𝑥𝑖 (𝑡) , 𝑡) 𝑑𝑤 (𝑡)

+ 𝑐

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
Γ𝐻(𝑒

𝑗 (𝑡)) 𝑑𝑡, 𝑡 > 0, 𝑡 ̸= 𝑡𝑘, 𝑖 ≥ 2,

𝑒
𝑗
(𝑡
+

𝑘
) − 𝑒
𝑖
(𝑡
+

𝑘
) = 𝜇 (𝑒

𝑗
(𝑡
−

𝑘
) − 𝑒
𝑖
(𝑡
−

𝑘
)) , for (𝑖, 𝑗) : 𝑙

𝑖𝑗
> 0,

𝑒
1
(𝑡
+

𝑘
) = 𝜇𝑒

1
(𝑡
−

𝑘
) .

(32)

Define the Laplacian matrix 𝐿̃ = (̃𝑙
𝑖𝑗
)
𝑁×𝑁

as follows:

𝑙̃
𝑖𝑗
=
{

{

{

𝑙
𝑖𝑗
−
𝑙

𝜗
, 𝑖 = 𝑗 = 1,

𝑙
𝑖𝑗
, otherwise.

(33)

Let 𝛾min = min{𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑛
}, where 𝛾

𝑖
is the diagonal ele-

ments of Γ, and 𝑄 = (𝑞
𝑖𝑗
)
𝑁×𝑁
= Ξ𝑄 + 𝑄

𝑇
Ξ.

Theorem 13. Consider the controlled impulsive stochastic
dynamical Lur’e network (3) when |𝜇| > 1. Suppose that
Assumptions 6 and 7 hold, and the average impulsive interval
of the impulsive sequence 𝜁 = {𝑡

1
, 𝑡
2
, . . .} is not less than 𝑇

𝑎
.

Then, the controlled impulsive stochastic dynamical network
(3) is globally exponentially stable if

2 ln (󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨)

𝑇
𝑎

+ 𝛿 < 0, (34)

where 𝛿 = 𝜆max(𝐴+𝐴
𝑇
+𝑀
𝑇
𝑀)+2𝜅√𝜆max(𝐵

𝑇𝐵)𝜆max(𝐶
𝑇𝐶)+

𝑐𝜗𝛾min𝜆max(𝑄).

Proof. Consider a Lyapunov function as follows:

𝑉 (𝑡) =

𝑁

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) . (35)

For 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
], 𝑘 = 1, 2, . . ., we have

L𝑉 (𝑡) = 2
𝑁

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

𝑖
(𝑡)

×
{

{

{

𝐴𝑒
𝑖 (𝑡) + 𝐵𝑓 (𝐶𝑒𝑖 (𝑡))

+𝑐

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
Γ𝐻(𝑒

𝑗 (𝑡)) − 𝑐𝑙Γ𝑒1 (𝑡)
}

}

}

+

𝑁

∑

𝑖=1

trace [𝑔𝑇 (𝑒
𝑖 (𝑡) , 𝑡) Ξ𝑔 (𝑒𝑖 (𝑡) , 𝑡)]
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≤ 2

𝑁

∑

i=1
𝜉
𝑖
𝑒
𝑇

𝑖
(𝑡) [𝐴𝑒𝑖 (𝑡) + 𝐵𝑓 (𝐶𝑒𝑖 (𝑡))]

+ 2𝑐

𝑁

∑

𝑖=1

𝜉
𝑖

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) Γ𝐻 (𝑒𝑗 (𝑡))

− 2𝑐

𝑁

∑

𝑖=1

𝜉
𝑖
𝑙𝑒
𝑇

𝑖
(𝑡) Γ𝑒1 (𝑡)

+

𝑁

∑

𝑖=1

trace [𝑔𝑇 (𝑒
𝑖 (𝑡) , 𝑡) 𝑔 (𝑒𝑖 (𝑡) , 𝑡)] .

(36)

Note that all the eigenvalues of 𝑄 are negative; we have

2𝑐

𝑁

∑

𝑖=1

𝜉
𝑖

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) Γ𝐻 (𝑒𝑗 (𝑡))

= 2𝑐

𝑁

∑

𝑖=1

𝜉
𝑖

𝑁

∑

𝑗=1

𝑙
𝑖𝑗

𝑛

∑

𝑘=1

𝑒
𝑖𝑘 (𝑡) 𝛾𝑘ℎ (𝑒𝑗𝑘 (𝑡))

− 2𝑐

𝑁

∑

𝑖=1

𝜉
𝑖
𝑙𝑒
𝑇

𝑖
(𝑡) Γ𝑒1 (𝑡)

= 2𝑐

𝑛

∑

𝑘=1

𝛾
𝑘

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑒
𝑖𝑘 (𝑡) 𝑙𝑖𝑗ℎ (𝑒𝑗𝑘 (𝑡))

− 2𝑐

𝑁

∑

𝑖=1

𝜉
𝑖
𝑙𝑒
𝑇

𝑖
(𝑡) Γ𝑒1 (𝑡)

= 𝑐

𝑛

∑

𝑘=1

𝛾
𝑘
𝑒
𝑘
(𝑡)
𝑇
𝑄ℎ (𝑒

𝑘
(𝑡))

− 2𝑐

𝑁

∑

𝑖=1

𝜉
𝑖
𝑙𝑒
𝑇

𝑖
(𝑡) Γ𝑒1 (𝑡)

= −𝑐

𝑛

∑

𝑘=1

𝛾
𝑘

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑞
𝑖𝑗
(𝑒
𝑖𝑘 (𝑡) − 𝑒𝑗𝑘 (𝑡))

× ℎ (𝑒
𝑖𝑘 (𝑡) − ℎ (𝑒𝑗𝑘 (𝑡)))

− 2𝑐

𝑁

∑

𝑖=1

𝜉
𝑖
𝑙𝑒
𝑇

𝑖
(𝑡) Γ𝑒1 (𝑡)

≤ −𝑐𝜗

𝑛

∑

𝑘=1

𝛾
𝑘

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑞
𝑖𝑗
(𝑒
𝑖𝑘
(𝑡) − 𝑒

𝑗𝑘 (𝑡))
2

− 2𝑐

𝑁

∑

𝑖=1

𝜉
𝑖
𝑙𝑒
𝑇

𝑖
(𝑡) Γ𝑒1 (𝑡)

= 𝑐𝜗

𝑛

∑

𝑘=1

𝛾
𝑘
[𝑒
𝑘
(𝑡)
𝑇
𝑄𝑒
𝑘
(𝑡)]

−5

0

5

−4

−2

0
2

4
−1

−0.5

0

0.5

1

(a)

(b)

Figure 1: Phase trajectories ofChua’s circuit without Browniannoise
(a) and the network structure (b).

≤ 𝑐𝜗𝜆max (𝑄)
𝑛

∑

𝑘=1

𝛾
𝑘
(𝑒
𝑘
(𝑡))
𝑇

𝑒
𝑘
(𝑡)

≤ 𝑐𝜗𝛾min𝜆max (𝑄)
𝑛

∑

𝑘=1

(𝑒
𝑘
(𝑡))
𝑇

𝑒
𝑘
(𝑡)

= 𝑐𝜗𝛾min𝜆max (𝑄)
𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇
𝑒
𝑖 (𝑡)

≤ 𝑐𝜗𝛾min𝜆max (𝑄)
𝑁

∑

𝑖=1

𝜉
𝑖
𝑒
𝑖
(𝑡)
𝑇
𝑒
𝑖 (𝑡)

= 𝑐𝜗𝛾min𝜆max (𝑄)𝑉 (𝑡) .

(37)

For the remaining parts in (36), we can use similar anal-
ysis in (16). Then, it could be obtained that

L𝑉 (𝑡) ≤ 𝛿𝑉 (𝑡) , (38)

for 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
).
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Figure 2: State variables 𝑥
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 100 of the coupled dynamical network with impulsive disturbances when |𝜇| < 1.

Similar procedures in (19) and (20) give

𝑉 (𝑡
+

𝑘
) =

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡
+

𝑘
) 𝑒
𝑖
(𝑡
+

𝑘
)

= 𝜇
2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡
−

𝑘
) 𝑒
𝑖
(𝑡
−

𝑘
) = 𝜇
2
𝑉 (𝑡
−

𝑘
) ,

(39)

when 𝑡 = 𝑡
𝑘
, 𝑘 ∈ 𝑁.

By (36) and (39), we can obtain the following comparison
system for the controlled impulsive stochastic dynamical
Lur’e network (32):

𝑤̇ (𝑡) = 𝛿𝑤 (𝑡) 𝑡 ≥ 0, 𝑡 ̸= 𝑡𝑘,

𝑤 (𝑡
+

𝑘
) = 𝜇
2
𝑤 (𝑡
−

𝑘
) 𝜇
2
> 1, 𝑘 ∈ 𝑁,

𝑤 (𝑡
0
) = 𝐸 (𝑉 (𝑡

0
)) .

(40)

Then, for any 𝑡 > 0, we have

𝑤 (𝑡) = 𝑒
𝛿(𝑡−𝑡
0
)
𝜇
2𝑘
𝐸 (𝑉 (𝑡

0
))

= 𝑒
𝛿(𝑡−𝑡
0
)
𝜇
2𝑁
𝜁
(𝑡,𝑡
0
)
𝐸 (𝑉 (𝑡

0
))

≤ 𝑒
𝛿(𝑡−𝑡
0
)
𝜇
2((𝑡−𝑡

0
)/𝑇
𝑎
)+2𝑁
0𝐸 (𝑉 (𝑡

0
))

= 𝜇
2𝑁
0𝑒
((2 ln |𝜇|/𝑇

𝑎
)+𝛿)(𝑡−𝑡

0
)
𝐸 (𝑉 (𝑡

0
)) .

(41)

By Lemma 4, it can be concluded that the controlled
impulsive stochastic dynamical Lur’e network (32) is expo-
nentially stable, which can further imply that the dynamical
network (7) can be exponentially stabilized to the objective
trajectory 𝑠(𝑡) by a single controller on the first node.
Theorem 13 is proved completely.

Remark 14. Considering when |𝜇| > 1, the term 2 ln(|𝜇|)/𝑇
𝑎

is positive, it can be concluded from condition (34) in the
Theorem 13 that the term 𝑐𝜗𝛾min𝜆max(𝑄) < 0 plays an
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Figure 3: Error variables 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑠(𝑡), 𝑖 = 1, 2, . . . , 100 of the coupled dynamical network with impulsive disturbances when |𝜇| < 1.

important role for the synchronization of the network (7)
under a single controller. The feedback controller is added to
smooth the desynchronization effects caused by impulse.

4. Numerical Simulation

The above criteria can be applied to networks with different
topologies and sizes. We present two examples with respect
to two kinds of impulsive effects for illustrating the validity
of the theory in the previous sections.

Example 15. We use Chua’s circuit as one of a special case of
the Lur’e system to verify the results in Theorem 8, namely,
the impulsive effects are stabilizing. Chua’s circuit has the
following dimensionless equation:

[

[

𝑥̇
1 (𝑡)

𝑥̇
2 (𝑡)

𝑥̇
3 (𝑡)

]

]

= [

[

𝛼 (−𝑥
1 (𝑡) + 𝑥2 (𝑡) + 𝑔 (𝑥1 (𝑡)))

𝑥
1 (𝑡) − 𝑥2 (𝑡) + 𝑥3 (𝑡)

−𝛽𝑥
2 (𝑡) − 𝛾𝑥3 (𝑡)

]

]

, (42)

where 𝑔(𝑦) = 𝑚
1
𝑦 + (1/2)(𝑚

0
− 𝑚
1
)(|𝑦 + 1| − |𝑦 − 1|). 𝛼, 𝛽,

𝛾,𝑚
1
, and𝑚

0
are constants. Take 𝛼 = 10, 𝛽 = 15, 𝛾 = 0.0385,

𝑚
0
= 1.27, and𝑚

1
= 0.68. Then, we have

𝑥 = [

[

𝑥
1

𝑥
2

𝑥
3

]

]

, 𝐴 = [

[

−3.2 10 0

1 −1 0

0 −15 −0.0385

]

]

,

𝐵 = [

[

5.9

0

0

]

]

, 𝐶 = [1 0 0]

(43)

and 𝑓(𝐶𝑥
1
(𝑡)) = (1/2)(|𝑥

1
(𝑡) + 1| − |𝑥

1
(𝑡) − 1|). Considering

the system (42) with (43), a chaotic attractor is plotted in
Figure 1(a) with initial value [0.1, 0, 0].
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Figure 4: State variables 𝑥
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 100 of the coupled dynamical network with impulsive disturbances when |𝜇| > 1.

Chua’s circuit with above permeates and Brownian noise
are selected as the isolated node of the Lur’e dynamical
network, and the 𝑖th node is described as follows:

𝑑𝑥
𝑖 (𝑡) = [𝐴𝑥𝑖 (𝑡) + 𝐵𝑓 (𝐶𝑥𝑖 (𝑡))] 𝑑𝑡

+ 𝑔 (𝑥
𝑖 (𝑡) , 𝑡) 𝑑𝑤 (𝑡) , 𝑖 = 1, 2, . . . , 100,

(44)

where 𝑑𝑤(𝑡) is an 3D Brownian motion, the noise intensity
function matrix 𝑔(𝑥

𝑖
(𝑡), 𝑡) = 0.5 ⋅ ‖𝑥

𝑖
(𝑡)‖ ⋅ 𝐼

3
. Then, we have

𝜅 = 1 forAssumption 6 and𝑀 = 0.5⋅𝐼
3
forAssumption 7.We

consider that a network consists of 100 nodes. The network
structure is shown in Figure 1(b). Define the coupling matrix
as follows: if there is a connection from nodes 𝑖 to 𝑗, then
𝑙
𝑖𝑗
= 1, otherwise 𝑙

𝑖𝑗
= 0. The nonlinear coupling function

ℎ(⋅) is selected as ℎ(𝑥) = 8𝑥 + 0.2 sin(𝑥) with 𝜗 = 7. Let
the coupling strength 𝑐 = 1 and the inner coupling matrix
Γ = 5𝐼

3
. Suppose that the average impulsive interval 𝑇

𝑎
of

the impulsive sequence is less than 0.1, because the impulsive

strength |𝜇| < 1; here, we assume that 𝜇 = 0.23. By simple
computation, it can be obtained that 2 ln(|𝜇|)/𝑇

𝑎
= −29.3935,

𝛿 = 𝜆max(𝐴 + 𝐴
𝑇
+ 𝑀
𝑇
𝑀) + 2𝜅√𝜆max(𝐵

𝑇𝐵)𝜆max(𝐶
T𝐶) =

28.7250. Then, we can get that 2 ln |𝜇|/𝑇
𝑎
+ 𝜆max(𝐴 + 𝐴

𝑇
+

𝑀
𝑇
𝑀) + 2𝜅√𝜆max(𝐵

𝑇𝐵)𝜆max(𝐶
𝑇𝐶) < 0 for condition (13) in

Theorem 8.
We use 𝑒

𝑖
(𝑡) which stands for the error between 𝑖th

state and the synchronization goal 𝑠(𝑡), for 𝑖 = 1, 2, 3.
Figure 2 is plotted to show the 𝑖th variable state. The curves
of the synchronization errors 𝑒

𝑖
(𝑡) at each state are plotted

in Figure 3. It can be seen that the synchronization for the
chaotic Chua’s circuit is achieved because 𝑒

𝑖
(𝑡) converges to

zero as 𝑡 → +∞.
According to this example, one can get that the syn-

chronization of the nonlinear and asymmetric impulsive
stochastic Lur’e networks can be realized by applying a single
impulsive controller.
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Figure 5: Error variables 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑠(𝑡), 𝑖 = 1, 2, . . . , 100 of the coupled dynamical network with impulsive disturbances when |𝜇| > 1.

Moreover, from Figure 3, it can be seen that the synchro-
nization is achieved around 𝑡 = 1. Comparedwith the numer-
ical results obtained in [12], in which the synchronization is
reached near 𝑡 = 0.2, we could conjecture that the stochastic
term in (8), which is absent in the studies of [12], could slow
down the speed of synchronization.

Example 16. We still use the complex network built in
Example 15 with |𝜇| = 1.1 to verify the results inTheorem 13,
namely, the impulsive effects are destabilizing. We choose
the coupling strength 𝑐 = 87.68. Calculation shows that
𝛿 = 𝜆max(𝐴 + 𝐴

𝑇
+ 𝑀
𝑇
𝑀) + 2𝜅√𝜆max(𝐵

𝑇𝐵)𝜆max(𝐶
𝑇𝐶) +

𝑐𝜗𝛾min𝜆max(𝑄) = −0.2587 and 2 ln(|𝜇|)/𝑇𝑎 = 0.1906.

We use 𝑒
𝑖
(𝑡) which stands for the error between 𝑖th

state and the synchronization goal 𝑠(𝑡), for 𝑖 = 1, 2, 3.
Figure 4 is plotted to show the 𝑖th variable state. The curves
of the synchronization errors 𝑒

𝑖
(𝑡) at each state are plotted

in Figure 5. It can be seen that the synchronization for the
chaotic Chua’s circuit is achieved because 𝑒

𝑖
(𝑡) converges to

zero as 𝑡 → +∞.
Compared with Figures 3 and 5, it can be seen that both

of them achieve synchronization around 𝑡 = 1. However,
it should be pointed out that since the impulsive effects are
destabilizing, the coupling strength is chosen to be 𝑐 = 87.68,
which is much larger than 𝑐 = 1 in Example 15. Moreover, a
single feedback controller is added in (32), which reflects the
influence of the destabilizing impulsive effects.

5. Conclusion

In this paper, we investigated the impulsive stochastic dynam-
ical network models with nonlinear and asymmetrical cou-
plings.Thenodeswhich consisted of the network are the Lur’e
systems, and the dynamics of each node is nonlinear. The
manners of communication between nodes are impulsive at
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some certain impulsive instants, and interconnect normally
at nonimpulsive instants. Due to the instantaneous pertur-
bations and abrupt change at certain instants, the stochastic
terms are considered when we analyze the stability. We
transmitted the synchronization problem into proving the
stability of the error system. By using the pinning control
scheme, we applied a single impulsive controller to the Lur’e
network for stabilizing impulsive effects and destabilizing
impulsive effects, respectively. It was proved as an effective
way for the realization of the global synchronization. We also
made use of two examples to illustrate the theoretical analysis.
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