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This paper studies the Boussinesq equations perturbed by multiplicative white noise and shows the existence and uniqueness of the
global solution. It also gets some regularity results for the unique solution.

1. Introduction

The Boussinesq equation is a mathematics model of thermo-
hydraulics, which consists of equations of fluid and tempera-
ture in the Boussinesq approximation.The deterministic case
has been studied systematically by many authors (e.g., see [1–
3]). However, in many practical circumstances, small irregu-
larity has to be taken into account.Thus, it is necessary to add
to the equation a random force, which is in general a space-
time white noise, as considered recently by many authors
for other equations (see [4–11]). The random attractors of
boussinesq equations with multiplicative noise have been
investigated by [12]. In this paper, We will study the pertur-
bation of stochastic boussinesq equations with multiplicative
white noise.

We will consider the following stochastic two-dimension
a Boussinesq equations perturbed by a multiplicative white
noise of Stratonovich form:

𝑑V + [(V ⋅ ∇) V − VΔV + ∇𝑝] 𝑑𝑡

= 𝑒
2

(𝑇 − 𝑇
1
) 𝑑𝑡 + 𝜎V ∘ 𝑑𝑤 (𝑡) ,

𝑑𝑇 + [(V ⋅ ∇) 𝑇 − 𝜆Δ𝑇] 𝑑𝑡 = 0,

div V = 0.

(1)

The domain occupied by the fluid is 𝐷 = (0, 1) × (0, 1),
and 𝑒

1
, 𝑒
2
is the canonical basis of R2. The unknown V =

(V
1
, V
2
), 𝑇, and 𝑝 stand for the velocity vector, temperature,

and pressure, respectively. 𝑇
1
is the temperature at the top,

𝑥
2

= 1, while 𝑇
0

= 𝑇
1

+ 1 is the temperature at the boundary
below, 𝑥

2
= 0. The constant numbers 𝜆 > 0, 𝛽 > 0, and 𝜎 >

0 are related to the usual Prandtl, Grashof, and Rayleigh
numbers.

𝑊(𝑡) is two-sided Wiener processes on the probability
space (Ω, F , 𝑃), where Ω = {𝜔 ∈ 𝐶(R,R) : 𝜔(0) = 0}, F is the
Borel sigma-algebra induced by the compact-open topology
of Ω, and 𝑃 is a Wiener measure.

We supplement (1) with the following boundary condi-
tion:

V = 0 at 𝑥
2

= 0, 𝑥
2

= 1,

𝑇 = 𝑇
0

at 𝑥
2

= 0, 𝑇 = 𝑇
1

= 𝑇
0

− 1 at 𝑥
2

= 1,

𝜓|
𝑥
1
=0

= 𝜓|
𝑥
1
=1

for 𝜓 = V, 𝑇, 𝑝,
𝜕V

𝜕𝑥
1

,
𝜕𝑇

𝜕𝑥
1

.

(2)

When an initial-valued problem is considered, we supple-
ment these equations with

V (𝑥, 0) = V
0

(𝑥) , 𝑇 (𝑥, 0) = 𝑇
0

(𝑥) for 𝑥 ∈ 𝐷. (3)

The existence of a compact random attractor and its
Hausdorff, fractal dimension estimates have been investi-
gated by [12]. We will solve pathwise (1)–(3). By using the
Faedo-Galerkin approximation and a priori estimates, we
prove the existence and uniqueness of the global solution and
show that the solution continuously depends on the initial
value. We also get some regularity results of the solutions.
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2. Mathematical Setting and Basic Estimates

Let

𝜂 := 𝑇 − 𝑇
0

+ 𝑥
2
, (4)

and change 𝑝 to 𝑝 − 𝑥
2

+ 𝑥
2

2
/2; then (1) can be rewritten as

𝑑V + [(V ⋅ ∇) V − 𝛽ΔV + ∇𝑝] 𝑑𝑡 = 𝑒
2
𝜂𝑑𝑡 + 𝜎V ∘ 𝑑𝑊,

𝑑𝜂 + [(V ⋅ ∇) 𝜂] 𝑑𝑡 = V
2
𝑑𝑡,

div V = 0.

(5)

Let the process be

𝛼 (𝑡) := 𝑒
−𝜎𝑊(𝑡)

. (6)

Then 𝑑𝛼 = −𝜎𝛼 ∘ 𝑑𝑊, and if we let

𝜉 := 𝛼V, (7)

we get the new equations (no stochastic differential appears
here)

𝑑𝜉

𝑑𝑡
+ 𝛼
−1

(𝜉 ⋅ ∇) 𝜉 − 𝛽Δ𝜉 + 𝛼∇𝑝 = 𝛼𝑒
2
𝜂, (8)

𝑑𝜂

𝑑𝑡
+ 𝛼
−1

(𝜉 ⋅ ∇) 𝜂 − 𝜆Δ𝜂 = 𝛼
−1

𝜉
2
, (9)

div 𝜉 = 0, (10)

with the boundary conditions

𝜉 = 0 at 𝑥
2

= 0, 𝑥
2

= 1,

𝜂 = 0 at 𝑥
2

= 0, 𝑥
2

= 1,

𝜓
󵄨󵄨󵄨󵄨𝑥
1
=0

= 𝜓
󵄨󵄨󵄨󵄨𝑥
1
=1

for 𝜓 = 𝜉, 𝜂, 𝑝,
𝜕𝜉

𝜕𝑥
1

,
𝜕𝜂

𝜕𝑥
1

(11)

and the initial value conditions

𝜉 (0) = 𝜉
0
, 𝜂 (0) = 𝜂

0
. (12)

To solve (8)–(12), we consider the Hilbert space𝐻 = 𝐻
1
×

𝐻
2
with the scalar products (⋅, ⋅) and norms | ⋅ |, where 𝐻

2
=

𝐿
2
(𝐷) and

𝐻
1

= {𝜉 ∈ 𝐿
2

(𝐷) : div 𝜉 = 0, 𝜉
𝑖

󵄨󵄨󵄨󵄨𝑥
𝑖
=0

= 𝜉
𝑖

󵄨󵄨󵄨󵄨𝑥
𝑖
=1

, 𝑖 = 1, 2} .

(13)

We also consider the subspace 𝑉 = 𝑉
1

× 𝑉
2
of 𝐻, where 𝑉

2

is the space of functions in 𝐻
1
(𝐷) vanishing at 𝑥

2
= 0 and

𝑥
2

= 1 and periodic in the direction of 𝑥
1
. 𝑉
2
is a Hilbert

space for the scalar product and the norm

((𝜂
1
, 𝜂
2
)) = ∫

𝐷

grad 𝜂
1
grad 𝜂

2
𝑑𝑥,

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩 = ((𝜂, 𝜂))

1/2

,

(14)

and 𝑉
1

= {𝜉 ∈ 𝑉
2

2
: div 𝜉 = 0}. We also denote by ((⋅, ⋅)) and

‖ ⋅ ‖ the canonical scalar product and norm in 𝑉
1
and 𝑉.

The bilinear form

𝜇 (𝑢
1
, 𝑢
2
) = 𝛽 ((𝜉

1
, 𝜉
2
)) + 𝜆 ((𝜂

1
, 𝜂
2
)) ,

∀ {𝜉
𝑖
, 𝜂
𝑖
} ∈ 𝑉, 𝑖 = 1, 2,

(15)

determines a linear isomorphism 𝐴 from 𝐷(𝐴) into 𝐻 and
from 𝑉 into the dual space 𝑉

󸀠, defined by

(𝐴𝑢
1
, 𝑢
2
) = 𝜇 (𝑢

1
, 𝑢
2
) , ∀𝑢

𝑖
= {𝜉
𝑖
, 𝜂
𝑖
} ∈ 𝑉, 𝑖 = 1, 2,

(16)

with 𝐷(𝐴) = 𝐷(𝐴
1
) × 𝐷(𝐴

2
), where

𝐷 (𝐴
1
) = {𝜉 ∈ 𝑉

1
∩ 𝐻
2
(𝐷)
2

:
𝜕𝜉

𝜕𝑥
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥
1=0

=
𝜕𝜉

𝜕𝑥
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥
1=1

}

𝐷 (𝐴
2
) = {𝜂 ∈ 𝑉

2
∩ 𝐻
2

(𝐷) :
𝜕𝜂

𝜕𝑥
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥
1=0

=
𝜕𝜂

𝜕𝑥
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥
1=1

} .

(17)

Four spaces 𝐷(𝐴), 𝑉, 𝐻, and 𝑉
󸀠 satisfy

𝐷 (𝐴) ⊂ 𝑉 ⊂ 𝐻 ⊂ 𝑉
󸀠 (18)

and all embedding injections are densely continuous. It is well
known that 𝐴 : 𝐷(𝐴) → 𝐻 is self-adjoint and positive and
𝐴
−1 is a compact self-adjoint in 𝐻.
We also consider the trilinear forms 𝛾 on 𝑉 defined by

𝛾 (𝑢
1
, 𝑢
2
, 𝑢
3
) = ((𝜉

1
⋅ ∇) 𝜉
2
, 𝜉
3
) + ((𝜉

1
⋅ ∇) 𝜂
2
, 𝜂
3
) ,

∀𝑢
𝑖
= {𝜉
𝑖
, 𝜂
𝑖
} ∈ 𝑉, 𝑖 = 1, 2, 3.

(19)

The trilinear form 𝛾 is continuous on 𝑉 or even on 𝐻
1
(𝐷)
2

×

𝐻
1
(𝐷). We associate with the form 𝛾 the bilinear continuous

operator 𝐵 which map 𝑉 × 𝑉 into 𝑉
󸀠 and 𝐷(𝐴) × 𝐷(𝐴) into

𝐻, defined by

(𝐵 (𝑢
1
, 𝑢
2
) , 𝑢
3
) = 𝛾 (𝑢

1
, 𝑢
2
, 𝑢
3
) ,

∀𝑢
𝑖
={𝜉
𝑖
, 𝜂
𝑖
}∈𝑉, 𝑖=1, 2, 3.

(20)

Finally, we define the continuous operators 𝑅(𝑡) in 𝐻

𝑅 (𝑡) : 𝑢 = {𝜉, 𝜂} 󳨀→ 𝑅𝑢 = {𝛼 (𝑡) 𝑒
2
𝜂, 𝛼
−1

(𝑡) 𝜉
2
} . (21)

Now, we can set (8) in the operator form. If 𝑢 = {𝜉, 𝜂} is the
solution of (8) and 𝜓 = {𝑓, 𝑔} is a test function in 𝑉, we
multiply (8) by 𝑓 and (9) by 𝑔, integrate over 𝐷, and add
the resulting equation.The pressure termdisappears and after
simplification we find

𝑑

𝑑𝑡
(𝑢, 𝜓) + 𝛼

−1
(𝑢, 𝑢, 𝜓) + 𝜇 (𝑢, 𝜓) + (𝑅 (𝑡) 𝑢, 𝜓) = 0,

∀𝜓∈𝑉,

(22)

which can be reinterpreted as

𝑑𝑢

𝑑𝑡
+ 𝐴𝑢 + 𝛼

−1
(𝑡) 𝐵 (𝑢, 𝑢) + 𝑅 (𝑡) 𝑢 = 0. (23)
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Note that this equation differs from the determined case, and
in determined case, the family𝑅(𝑡) of operator is independent
of the time 𝑡. Initial condition (12) can be reinterpreted as

𝑢 (0) = 𝑢
0

:= {𝜉
0
, 𝜂
0
} . (24)

To solve (23)-(24), we also need some Sobolev normestimates
on the bilinear 𝐵 and the operators 𝑅 and 𝐴.

Lemma 1. Thebilinear operators𝐵 : 𝑉 × 𝑉 → 𝑉
󸀠 and𝐷(𝐴) ×

𝐷(𝐴) → 𝐻 are continuous and satisfy
(i) (𝐵(𝑢, V), V) = 0, for all 𝑢, V ∈ 𝑉,
(ii) |(𝐵(𝑢, V), 𝑤)| ≤ 𝑐

1
|𝑢|
𝜃
1‖𝑢‖
1−𝜃
1‖V‖‖𝑤‖

𝜃
1 |𝑤|
1−𝜃
1 , for all

𝑢, V, 𝑤 ∈ 𝑉,
(iii) |𝐵(𝑢, V)| + |𝐵(V, 𝑢)| ≤ 𝑐

2
‖𝑢‖‖V‖1−𝜃2 |𝐴V|𝜃2 , for all 𝑢 ∈ 𝑉,

V ∈ 𝐷(𝐴),
(iv) |𝐵(𝑢, V)| ≤ 𝑐

3
|𝑢|
𝜃
3‖𝑢‖
1−𝜃
3 |𝐴V|𝜃3‖V‖1−𝜃3 , for all 𝑢 ∈ 𝑉,

V ∈ 𝐷(𝐴),
where 𝑐

1
, 𝑐
2
, 𝑐
3
are appropriate constants and 𝜃

𝑖
∈ [0, 1), 𝑖 =

1, 2, 3.

Proof. The proof is the same as the deterministic case (see
[10]).

Lemma 2. The linear continuous operators 𝑅 : 𝑉 → 𝑉
󸀠 and

𝐷(𝐴) → 𝐻 satisfy

|𝑅 (𝑡) 𝑢| ≤ 𝑐
4

(𝛼 (𝑡)) + 𝛼
−1

(𝑡) ‖𝑢‖ , ∀𝑢 ∈ 𝑉, ∀𝑡 ≥ 0,

(25)

|(𝑅 (𝑡) 𝑢, 𝑢)| ≤ 𝑐
4

(𝛼 (𝑡) + 𝛼
−1

(𝑡)) ‖𝑢‖ |𝑢| , ∀𝑢 ∈ 𝑉, ∀𝑡 ≥ 0.

(26)

Proof. By (21), we have

|𝑅𝑢| =
󵄨󵄨󵄨󵄨𝛼𝑒
2
𝜂
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
𝛼
−1

𝜉
2

󵄨󵄨󵄨󵄨󵄨

≤ 𝛼
󵄨󵄨󵄨󵄨𝜂

󵄨󵄨󵄨󵄨 + 𝛼
−1 󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨 ≤ (𝛼 + 𝛼
−1

) (
󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝜂

󵄨󵄨󵄨󵄨)

(27)

which implies by the Poincare inequality

|𝑢| ≤ 𝑐
4 ‖𝑢‖ , for 𝑢 ∈ 𝑉 (28)

that (25) holds true. Since |(𝑅𝑢, 𝑢)| ≤ |𝑅𝑢||𝑢|, it follows from
(25) that (26) holds true.

Lemma 3. The bilinear form 𝜇 on 𝑉 × 𝑉 satisfies

𝑐
5‖𝑢‖
2

≤ 𝜇 (𝑢, 𝑢) ≤ 𝑐
6‖𝑢‖
2
, for 𝑢 ∈ 𝑉. (29)

Proof. By (15), we have

𝜇 (𝑢, 𝑢) = 𝛽
󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩
2

+ 𝜆
󵄩󵄩󵄩󵄩𝜂

󵄩󵄩󵄩󵄩
2

≤ (𝛽 + 𝜆) (
󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝜂

󵄩󵄩󵄩󵄩)
2

= (𝛽 + 𝜆) ‖𝑢‖
2
,

𝜇 (𝑢, 𝑢) ≥ min {𝛽, 𝜆} (
󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝜂

󵄩󵄩󵄩󵄩
2

)

≥
1

2
min {𝛽, 𝜆} (

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝜂

󵄩󵄩󵄩󵄩
2

) ,

(30)

which imply (28).

3. Existence and Uniqueness

In this section, we will prove the existence and uniqueness of
the global solution of (23)-(24), equivalently (8)–(12) or (1)–
(3). We are working almost surely for 𝜔 ∈ Ω.

Theorem 4. Assume that 𝑢
0

∈ 𝐻, then there exists a unique
solution of (23)-(24), such that

𝑢 ∈ 𝐶 ([0, ∞) , 𝐻) ∩ 𝐿
2

loc (0, ∞; 𝑉) , (31)

and the mapping 𝑢
0

󳨃→ 𝑢(𝑡) is continuous from H into D(A),
for all 𝑡 > 0.

Proof. Since𝐴
−1

: 𝐻 → 𝐷(𝐴) is a self-adjoint compact oper-
ator in 𝐻, it follows from a classical spectral theorem that
there exists a sequence 𝜆

𝑗
: 0 < 𝜆

1
≤ 𝜆
2

≤ ⋅ ⋅ ⋅ , 𝜆
𝑗

→ ∞

and a family of elements 𝑤
𝑗

∈ 𝐷(𝐴) which is completely
orthogonal in 𝐻 such that

𝐴𝑤
𝑗

= 𝜆
𝑗
𝑤
𝑗
, ∀𝑗. (32)

For each 𝑚, we look for an approximate solution 𝑢
𝑚
of the

following form:

𝑢
𝑚

(𝑡) =

𝑚

∑

𝑖=1

𝑔
𝑖𝑚

(𝑡) 𝑤
𝑖 (33)

satisfying

𝑑

𝑑𝑡
(𝑢
𝑚

, 𝑤
𝑗
) + 𝜇 (𝑢

𝑚
, 𝑤
𝑗
)

+ 𝛼
−1

𝛾 (𝑢
𝑚

, 𝑢
𝑚

, 𝑤
𝑗
) + (𝑅𝑢

𝑚
, 𝑤
𝑗
) = 0, 𝑗 = 1, 2, . . . , 𝑚

(34)

and initial condition

𝑢
𝑚

(0) = 𝑃
𝑚

𝑢
0
, (35)

where 𝑃
𝑚
is the projector in 𝐻 (or 𝑉) on the space spanned

by 𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
. Since 𝐴 and 𝑃

𝑚
commute, the above

equation is also equivalent to

𝑑𝑢
𝑚

𝑑𝑡
+ 𝐴𝑢
𝑚

+ 𝛼
−1

𝑃
𝑚

𝐵 (𝑢
𝑚

, 𝑢
𝑚

) + 𝑃
𝑚

(𝑅𝑢
𝑚

) = 0, (36)

where

𝑃
𝑚

(𝑅𝑢
𝑚

) =

𝑚

∑

𝑗=1

𝑔
𝑗𝑚

(𝑡) 𝑃
𝑚

𝑅𝑤
𝑗
, (37)

in view of the linearity of 𝑃
𝑚

, 𝑅.
The existence of 𝑢

𝑚
on any finite interval [0, 𝑇

𝑚
) follows

from standard results of the existence of solutions of ordinary
differential equations that𝑇

𝑚
= +∞ is a consequence of these

results and of the following priori estimates:

𝑢
𝑚
remains bounded in 𝐿

∞
(0, 𝑇; 𝐻) ∩ 𝐿

2
(0, 𝑇; 𝑉) ,

∀𝑇 > 0.

(38)
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Indeed, multiplying (34) by 𝑔
𝑗𝑚
, summing these relations for

𝑗 = 1, 2, . . . , 𝑚, and noting that 𝛼
−1

𝜇(𝑢
𝑚

, 𝑢
𝑚

, 𝑢
𝑚

) = 0 (by
Lemma 1), we find

1

2

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨𝑢𝑚
󵄨󵄨󵄨󵄨
2

+ 𝜇 (𝑢
𝑚

, 𝑢
𝑚

) + (𝑅𝑢
𝑚

, 𝑢
𝑚

) = 0, (39)

which implies by Lemma 2, (29), and the Young inequality
that

1

2

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨𝑢𝑚
󵄨󵄨󵄨󵄨
2

+ 𝑐
5

󵄩󵄩󵄩󵄩𝑢
𝑚

󵄩󵄩󵄩󵄩
2

≤
󵄨󵄨󵄨󵄨(𝑅𝑢
𝑚

, 𝑢
𝑚

)
󵄨󵄨󵄨󵄨

≤ 𝑐
4
sup
0≤𝑡≤𝑇

(𝛼 (𝑡) + 𝛼
−1

(𝑡))
󵄩󵄩󵄩󵄩𝑢
𝑚

󵄩󵄩󵄩󵄩 ⋅
󵄨󵄨󵄨󵄨𝑢𝑚

󵄨󵄨󵄨󵄨

≤
𝑐
5

2

󵄩󵄩󵄩󵄩𝑢
𝑚

󵄩󵄩󵄩󵄩
2

+ 𝑐
󸀠

4

󵄨󵄨󵄨󵄨𝑢𝑚
󵄨󵄨󵄨󵄨
2

,

(40)

that is,

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨𝑢𝑚
󵄨󵄨󵄨󵄨
2

+ 𝑐
5

󵄩󵄩󵄩󵄩𝑢
𝑚

󵄩󵄩󵄩󵄩
2

≤ 𝑐
󸀠󵄨󵄨󵄨󵄨𝑢𝑚

󵄨󵄨󵄨󵄨
2

, (41)

where 𝑐
5
is defined in (29) and 𝑐

󸀠 is a appropriate constant.
Using the classical Gronwall lemma we find

󵄨󵄨󵄨󵄨𝑢𝑚 (𝑡)
󵄨󵄨󵄨󵄨
2

≤
󵄨󵄨󵄨󵄨𝑢𝑚 (0)

󵄨󵄨󵄨󵄨
2

𝑒
𝑐
󸀠
𝑇

≤
󵄨󵄨󵄨󵄨𝑢0

󵄨󵄨󵄨󵄨
2

𝑒
𝑐
󸀠
𝑇

= 𝑀
1
, ∀0 < 𝑡 ≤ 𝑇.

(42)

Integrating (41) for 𝑡 from 0 to 𝑇 and using above estimates
we have

∫

𝑇

0

󵄩󵄩󵄩󵄩𝑢
𝑚

󵄩󵄩󵄩󵄩
2

𝑑𝑡

≤
1

𝑐
5

(
󵄨󵄨󵄨󵄨𝑢𝑚 (0)

󵄨󵄨󵄨󵄨
2

−
󵄨󵄨󵄨󵄨𝑢𝑚 (𝑇)

󵄨󵄨󵄨󵄨
2

) +
1

𝑐
5

∫

𝑇

0

󵄨󵄨󵄨󵄨𝑢𝑚 (𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑡

≤ 𝑀
2
,

(43)

where𝑀
1
and𝑀

2
are independent of𝑚.Thus,we have proved

(38).
We also claim that

𝑑𝑢
𝑚

𝑑𝑡
remains bounded in 𝐿

2
(0, 𝑇; 𝑉

󸀠
) . (44)

Indeed, it follows from Lemma 1 that |𝐵(𝑢
𝑚

, 𝑢
𝑚

)|𝑉
󸀠

≤

𝑐|𝑢
𝑚

|‖𝑢
𝑚

‖ with appropriate constant c, which, together with
(38), implies that 𝐵(𝑢

𝑚
, 𝑢
𝑚

) and thus 𝑃
𝑚

𝐵(𝑢
𝑚

, 𝑢
𝑚

) remain
bounded in 𝐿

2
(0, 𝑇; 𝑉

󸀠
). Since both operators 𝑅 : 𝑉 → 𝑉

󸀠

and𝐴 : 𝑉 → 𝑉
󸀠 are continuous (Lemmas 2 and 3), it follows

from (38) that𝐴𝑢
𝑚

, 𝑅𝑢
𝑚
and thus𝑃

𝑚
𝑅𝑢
𝑚
remain bounded in

𝐿
2
(0, 𝑇; 𝑉

󸀠
). Therefore, by (36),

𝑑𝑢
𝑚

𝑑𝑡
= −𝐴𝑢

𝑚
− 𝛼
−1

𝑃
𝑚

𝐵 (𝑢
𝑚

, 𝑢
𝑚

) − 𝑃
𝑚

(𝑅𝑢
𝑚

) (45)

remains bounded in 𝐿
2
(0, 𝑇; 𝑉

󸀠
), which proved (44).

By weak compactness, it follows from (38) and (44) that
there exists a 𝑢 ∈ 𝐿

∞
(0, 𝑇; 𝐻) ∩ 𝐿

2
(0, 𝑇; 𝑉), for all 𝑇 > 0

subsequence still denoted by 𝑢
𝑚
, such that

𝑢
𝑚

󳨀→ 𝑢 in 𝐿
2

(0, 𝑇; 𝑉) weakly,

𝑢
𝑚

󳨀→ 𝑢 in 𝐿
∞

(0, 𝑇; 𝐻) weakly star,

𝑑𝑢
𝑚

𝑑𝑡
󳨀→

𝑑𝑢

𝑑𝑡
in 𝐿
2

(0, 𝑇; 𝑉
󸀠
) weakly.

(46)

We pass to the limit in (34) and find that

𝑑

𝑑𝑡
(𝑢, 𝜑) + 𝜇 (𝑢, 𝜑) + 𝛼

−1
𝛾 (𝑢, 𝑢, 𝜑) + (𝑅𝑢, 𝜑) , ∀𝜑 ∈ 𝑉,

(47)

which implies that 𝑢 satisfies (23). In particular, 𝑢
󸀠

=

(𝑑𝑢/𝑑𝑡) ∈ 𝐿
2
(0, 𝑇; 𝑉

󸀠
) ∈ 𝐿

1
(0, 𝑇; 𝑉

󸀠
). This implies by [10,

Lemma II.3.1] that 𝑢 is almost everywhere equal to a contin-
uous function from [0, 𝑇] into 𝑉

󸀠. Therefore initial condition
(24) follows by a passage to the limit in (35). 𝑢 ∈ 𝐶([0, 𝑇], 𝐻)

follows from [10, Lemma II.3.2] and the facts that 𝐻 ⊂

𝑉 ⊂ 𝑉
󸀠 and 𝑢

󸀠
∈ 𝐿
2
(0, 𝑇; 𝑉

󸀠
). Furthermore, if we show that

uniqueness, then the fact that 𝑢 ∈ 𝐶([0, 𝑇], 𝐻), for all 𝑇 > 0,
implies that 𝑢 ∈ 𝐶([0, ∞), 𝐻).

To prove the uniqueness and continuous dependence of
𝑢(𝑡) on 𝑢

0
(in 𝐻), we let 𝑢 be a solution of (23)-(24) such

that 𝑢 ∈ 𝐶([0, ∞), 𝐻) ∩ 𝐿
2

loc(0, ∞; 𝑉). Similar to (39), 𝑢 must
satisfy the energy equality

1

2

𝑑

𝑑𝑡
|𝑢|
2

+ 𝜇 (𝑢, 𝑢) + (𝑅𝑢, 𝑢) = 0. (48)

By using Lemmas 1–3 and Gronwall lemma, we get the fol-
lowing similar estimates:

|𝑢 (𝑡)|
2

≤ |𝑢 (0)|
2
𝑒
𝑐𝑡

, (49)

which has proved the continuous dependence. For the
uniqueness, we let 𝑢

1
, 𝑢
2
be two solutions of (23)-(24) and

𝑢 = 𝑢
1

− 𝑢
2
. Then 𝑢 is also a solution with 𝑢(0) = 0. Thus,

(49) implies that |𝑢(𝑡)|
2

≤ 0, that is, 𝑢
1

= 𝑢
2
.

4. Regularity Results

In this section, we will consider further regularity results for
the unique solution. The main result is that 𝑢 ∈ 𝐷(𝐴), and
thus 𝑢 ∈ 𝐻

2
(𝐷)
2

× 𝐻
2
(𝐷) provided the initial function 𝑢

0
∈

𝑉. More precisely, we have the following.

Theorem 5. Assume that 𝑢
0

∈ 𝑉, and let 𝑢 be the unique solu-
tion of (23)-(24). Then,

𝑢 ∈ 𝐶 ([0, ∞) , 𝑉) ∩ 𝐿
2

loc (0, ∞; 𝐷 (𝐴)) . (50)

Proof. Let 𝑢
𝑚
be the approximate solution (33) in the proof of

Theorem 4. We first claim that

𝑢
𝑚
remains bounded in 𝐿

∞
(0, 𝑇; 𝑉) ∩ 𝐿

2
(0, 𝑇; 𝐷 (𝐴)) ,

∀𝑇 > 0.

(51)
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Indeed, multiplying (34) by 𝜆
𝑗
𝑔
𝑗𝑚
, summing these relations

for 𝑗 = 1, 2, . . . , 𝑚, and using (32), we find

(
𝑑𝑢
𝑚

𝑑𝑡
, 𝐴𝑢
𝑚

) + 𝜇 (𝑢
𝑚

, 𝐴𝑢
𝑚

) + 𝛼
−1

𝛾 (𝑢
𝑚

, 𝑢
𝑚

, 𝐴𝑢
𝑚

)

+ (𝑅𝑢
𝑚

, 𝐴𝑢
𝑚

) = 0.

(52)

By Lemma 1(iv) and the Young inequality, we find
󵄨󵄨󵄨󵄨󵄨
𝛼
−1

𝛾 (𝑢
𝑚

, 𝑢
𝑚

, 𝐴𝑢
𝑚

)
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝛼
−1

(𝐵 (𝑢
𝑚

, 𝑢
𝑚

) , 𝐴𝑢
𝑚

)
󵄨󵄨󵄨󵄨󵄨

≤ sup
0≤𝑠≤𝑇

𝛼
−1

(𝑠) ⋅ 𝑐
3

󵄨󵄨󵄨󵄨𝑢𝑚
󵄨󵄨󵄨󵄨
𝜃
3󵄩󵄩󵄩󵄩𝑢
𝑚

󵄩󵄩󵄩󵄩
2(1−𝜃

3
)󵄨󵄨󵄨󵄨𝐴𝑢
𝑚

󵄨󵄨󵄨󵄨
(1+𝜃
3
)

≤
1

4

󵄨󵄨󵄨󵄨𝐴𝑢
𝑚

󵄨󵄨󵄨󵄨
2

+ 𝑐
󸀠

3
(𝑇)

󵄩󵄩󵄩󵄩𝑢
𝑚

󵄩󵄩󵄩󵄩
4

|𝑢|
2𝜃
3
/(1−𝜃

3
)
.

(53)

For 0 ≤ 𝑡 ≤ 𝑇, by Lemma 2, (25), and the Young inequality,
we have

󵄨󵄨󵄨󵄨(𝑅𝑢
𝑚

, 𝐴𝑢
𝑚

)
󵄨󵄨󵄨󵄨

≤ sup
0≤𝑠≤𝑇

(𝛼 (𝑠) + 𝛼
−1

(𝑠)) 𝑐
4

󵄩󵄩󵄩󵄩𝑢
𝑚

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝐴𝑢
𝑚

󵄨󵄨󵄨󵄨

≤
1

4

󵄨󵄨󵄨󵄨𝐴𝑢
𝑚

󵄨󵄨󵄨󵄨
2

+ 𝑐
󸀠

4

󵄩󵄩󵄩󵄩𝑢
𝑚

󵄩󵄩󵄩󵄩
2

.

(54)

Noting also that

(
𝑑𝑢
𝑚

𝑑𝑡
, 𝐴𝑢
𝑚

) = (𝐴𝑢
𝑚

, 𝑢
󸀠

𝑚
)

= 𝜇 (𝑢
𝑚

, 𝑢
󸀠

𝑚
) =

1

2

𝑑

𝑑𝑡
𝜇 (𝑢
𝑚

, 𝑢
𝑚

)

(55)

and𝜇(𝑢
𝑚

, 𝐴𝑢
𝑚

) = |𝐴𝑢
𝑚

|
2, we find from (52) and all the above

estimates that

𝑑

𝑑𝑡
𝜇 (𝑢
𝑚

, 𝑢
𝑚

) +
󵄨󵄨󵄨󵄨𝐴𝑢
𝑚

󵄨󵄨󵄨󵄨
2

≤ 2𝑐
󸀠

4

󵄩󵄩󵄩󵄩𝑢
𝑚

󵄩󵄩󵄩󵄩
2

+ 2𝑐
󸀠

3

󵄩󵄩󵄩󵄩𝑢
𝑚

󵄩󵄩󵄩󵄩
4󵄨󵄨󵄨󵄨𝑢𝑚

󵄨󵄨󵄨󵄨
2𝜃
3
/(1−𝜃

3
)

.

(56)

By (38), 𝑢
𝑚
is bounded in 𝐿

∞
(0, 𝑇; 𝐻). This, together with

Lemma 3, implies that (56) can be rewritten as

𝑑

𝑑𝑡
𝜇 (𝑢
𝑚

, 𝑢
𝑚

) +
󵄨󵄨󵄨󵄨𝐴𝑢
𝑚

󵄨󵄨󵄨󵄨
2

≤ 2𝑐 (1 +
󵄩󵄩󵄩󵄩𝑢
𝑚

󵄩󵄩󵄩󵄩
2

) 𝜇 (𝑢
𝑚

, 𝑢
𝑚

) , 0 ≤ 𝑡 ≤ 𝑇

(57)

for some appropriate constant 𝑐 > 0. By Gronwall lemma, it
follows from (57) and (38) that

𝜇 (𝑢
𝑚

(𝑡) , 𝑢
𝑚

(𝑡))

≤
󵄩󵄩󵄩󵄩𝑢
𝑚

(0)
󵄩󵄩󵄩󵄩
2 exp(∫

𝑡

0

𝑐 (1 +
󵄩󵄩󵄩󵄩𝑢
𝑚

(𝑠)
󵄩󵄩󵄩󵄩
2

) 𝑑𝑠)

≤ 𝑀
1

(𝑇) , 0 ≤ 𝑡 ≤ 𝑇,

(58)

which implies by Lemma 3 again that 𝑢
𝑚
remains bounded in

𝐿
∞

(0, 𝑇; 𝑉). Integrating in (57) from 𝑡 = 0 to 𝑡 = 𝑇, we have

∫

𝑇

0

󵄨󵄨󵄨󵄨𝐴𝑢
𝑚

(𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑠 ≤ 2𝑀
1

+ ∫

𝑇

0

𝑀
1

(1 +
󵄩󵄩󵄩󵄩𝑢
𝑚

(𝑡)
󵄩󵄩󵄩󵄩
2

) 𝑑𝑠 ≤ 𝑀
2
.

(59)

which proved the second argument of (51), and thus (51)
holds.

Taking the limit in (51) (by weak compactness), we then
find that 𝑢 is in 𝐿

∞
(0, 𝑇; 𝑉) ∩ 𝐿

2
(0, 𝑇; 𝐷(𝐴)). We need also to

prove that u is continuous from [0, 𝑇] into 𝑉. This is proved
as follows.

Since 𝑢 ∈ 𝐶([0, 𝑇], 𝐻) ∩ 𝐿
∞

(0, 𝑇; 𝑉) and 𝑉 ⊂ 𝐻 with
densely continuous injection, it follows from [10, Lemma
II.3.3] that 𝑢 : [0, 𝑇] → 𝑉 is weakly continuous; that is,
𝑡 󳨃→ ((𝑢(𝑡), V)) is continuous for every V ∈ 𝑉. Similarly
𝑡 󳨃→ 𝜇((𝑢(𝑡), V)) is continuous for every V ∈ 𝑉. Thus, by
taking the limit in (52) and applying [10, Lemma II.3.2], we
obtain an equality similar to (52) for 𝑢:

𝑑

𝑑𝑡
𝜇 (𝑢, 𝑢) + 2|𝐴𝑢|

2
+ 2𝛼
−1

𝜆 (𝑢, 𝑢, 𝐴𝑢) + 2 (𝑅𝑢, 𝑢) = 0,

(60)

which holds in the distribution sense on (0, 𝑇). Since 𝑢 ∈

𝐿
∞

(0, 𝑇; 𝑉) ∩ 𝐿
2
(0, 𝑇; 𝐷(𝐴)), it follows from Lemma 1 and

Lemma 2 that

|𝐴𝑢|
2

+ 𝛼
−1

𝛾 (𝑢, 𝑢, 𝐴𝑢) + (𝑅𝑢, 𝑢) ∈ 𝐿
1

(0, 𝑇;R) (61)

and thus (𝑑/𝑑𝑡)𝜇(𝑢(𝑡), 𝑢(𝑡)) ∈ 𝐿
1
(0, 𝑇;R), which implies by

[10, Lemma II.3.1] that the function 𝑡 󳨃→ 𝜇(𝑢(𝑡), 𝑢(𝑡)) is
continuous.Therefore, since𝜇(𝜑, 𝜑)

1/2 is a normon𝑉 equiva-
lent to ‖𝜑‖ (by Lemma 3), it follows that 𝑢 : [0, 𝑇] → 𝑉 is
continuous for the norm topology.
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