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We are concernedwith themagneto-micropolar fluid equations inR3. Using Littlewood-Paley decomposition,we obtain anOsgood
type global regularity criterion for the system.

1. Introduction

In this paper, we consider the following magneto-micropolar
fluid equations in R3:

𝜕
𝑡
𝑢 − (𝜇 + 𝜒)Δ𝑢 + 𝑢 ⋅ ∇𝑢 − 𝑏 ⋅ ∇𝑏 + ∇ (𝑝 + 𝑏

2
)

− 𝜒∇ × 𝜔 = 0,

𝜕
𝑡
𝜔 − 𝛾Δ𝜔 − 𝜅∇ div 𝜔 + 2𝜒𝜔 + 𝑢 ⋅ ∇𝜔 − 𝜒∇ × 𝑢 = 0,

𝜕
𝑡
𝑏 − ]Δ𝑏 + 𝑢 ⋅ ∇𝑏 − 𝑏 ⋅ ∇𝑢 = 0,

div 𝑢 = div 𝑏 = 0,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝜔 (0, 𝑥) = 𝜔

0
(𝑥) , 𝑏 (0, 𝑥) = 𝑏

0
(𝑥) ,

(1)

where 𝑢(𝑡, 𝑥) = (𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), 𝑢

3
(𝑡, 𝑥)) ∈ R3 denotes

the velocity of the fluid at a point 𝑥 ∈ R3, 𝑡 ∈ [0, 𝑇),
𝜔(𝑡, 𝑥) ∈ R3and 𝑏(𝑡, 𝑥) ∈ R3, and 𝑝(𝑡, 𝑥) ∈ R denote,
respectively, the microrotational velocity, the magnetic field,
and the hydrostatic pressure. 𝜇, 𝜒, 𝜅, 𝛾, and ] are positive
numbers associated with properties of the material: 𝜇 is the
kinematic viscosity, 𝜒 is the vortex viscosity, 𝜅 and 𝛾 are spin
viscosities, and 1/] is the magnetic Reynold. 𝑢

0
, 𝜔
0
, and 𝑏

0

are initial data for the velocity, the angular velocity, and the
magnetic field with properties div 𝑢

0
= 0 and div 𝑏

0
= 0.

It is well known that the question of global existence or
finite time blowup of smooth solutions for the 3D incom-
pressible Euler orNavier-Stokes equations has been one of the
most outstanding open problems in applied analysis, as well
as that for the 3D incompressible magneto-micropolar fluid
equations. This challenging problem has attracted significant
attention. Therefore, it is interesting to study the global
regularity criterion of the solutions for system (1). But there
are few theories about regularity and blow-up criteria of
magneto-micropolar fluid equations. Some blow-up criterion
are obtained by Yuan [1] in 2010. His paper implies that
most classical blow-up criteria of smooth solutions toNavier-
Stokes or magneto-hydrodynamic equations also hold for
magneto-micropolar fluid equations. In particular, using
Fourier frequency localization, Yuan proved the Beale-Kato-
Majda criterion only relying on ∇𝑢; that is, if

∫

𝑇

0

‖∇𝑢 (𝑡)‖
𝐵̇
0

∞,∞

𝑑𝑡 < ∞, (2)

then the solution (𝑢, 𝜔, 𝑏) can be extended past time 𝑡 = 𝑇. In
2008, Yuan [2] obtain the following blow-up criteria: if

lim
𝜀→0

sup
𝑗∈𝑍

∫

𝑇

𝑇−𝜀

󵄩󵄩󵄩󵄩󵄩
Δ
𝑗 (∇ × 𝑢) (𝑡)

󵄩󵄩󵄩󵄩󵄩∞
𝑑𝑡 < ∞, (3)

then the solution (𝑢, 𝜔, 𝑏) can be extended 𝑡 = 𝑇.
Recently, Xu [3] also studied the regularity of weak solutions
to magneto-micropolar fluid equations in Besov spaces.
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In this paper, we establish a refined global regularity
criterion by means of Osgood norm which improves the
results (2) and (3). As we know, Osgood condition plays
an important role in solving uniqueness of solutions to the
incompressible fluids equations.This induces us to apply it to
global regularity criterion problems of smooth solution. To
achieve this goal, taking full advantage of Fourier frequency
localization method and using the low-high decomposition
technique, we show the following main results.

Theorem 1. Suppose that for 𝑠 > 1/2, (𝑢, 𝜔, 𝑏) ∈

𝐶([0, 𝑇);𝐻
𝑠
) ∩ 𝐶
1
((0, 𝑇);𝐻

𝑠
) ∩ 𝐶((0, 𝑇);𝐻

𝑠+2
) is the smooth

solution to (1). If the following Osgood type condition:

sup
2≤𝑞<∞

∫

𝑇

0

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑞
∇𝑢 (𝑡)

󵄩󵄩󵄩󵄩󵄩∞

𝑞 log 𝑞
𝑑𝑡 < ∞, (4)

then the solution (𝑢, 𝜔, 𝑏) can be extended past time 𝑡 = 𝑇.
Here one denotes that 𝑆

𝑞
:= ∑
𝑞

𝑘=−𝑞
Δ̇
𝑘
.

Remark 2. TheOsgood type condition (4) is weaker than (2)
and (3). Note that, for 𝑞 ∈ [2,∞), we have

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑞
∇𝑢

󵄩󵄩󵄩󵄩󵄩∞

𝑞 log 𝑞
≤

∑
𝑞

𝑘=−𝑞

󵄩󵄩󵄩󵄩󵄩
Δ̇
𝑘
(∇𝑢)

󵄩󵄩󵄩󵄩󵄩∞

𝑞 log 𝑞
≤ 𝐶‖∇𝑢‖

𝐵̇
0

∞,∞

. (5)

2. Preliminaries

The proof of the results presented in this paper is based on
a dyadic partition of unity in Fourier variables, the so-called
homogeneous Littlewood-Paley decomposition. So, we first
introduce the Littlewood-Paley decomposition and review
the so-called Beinstein estimate and commutator estimate,
which are to be used in the proof of our theorem.

Let S(R3) be the Schwartz class of rapidly decreasing
functions. Given 𝑓 ∈ S(R3), the Fourier transform of 𝑓 is
defined by

𝑓̂ (𝜉) = (2𝜋)
−(3/2)

∫
R3

𝑒
−𝑖𝑥⋅𝜉

𝑓 (𝑥) 𝑑𝑥. (6)

We consider that 𝜒, 𝜑 ∈ S(R3), respectively, support in 𝐵 =

{𝜉 ∈ R3, |𝜉| ≤ 4/3} andC = {𝜉 ∈ R3, 3/4 ≤ |𝜉| ≤ 8/3}, such
that

𝜒 (𝜉) + ∑

𝑗≥0

𝜑 (2
−𝑗
𝜉) = 1, ∀𝜉 ∈ R

3
,

∑

𝑗∈Z

𝜑 (2
−𝑗
𝜉) = 1, ∀𝜉 ∈ R

3
\ {0} .

(7)

Setting 𝜑
𝑗
= 𝜑(2

−𝑗
𝜉), then supp𝜑

𝑗
∩ supp𝜑󸀠

𝑗
= 0 if |𝑗 − 𝑗󸀠| ≥ 2

and supp𝜒 ∩ supp𝜑󸀠
𝑗
= 0 if |𝑗 − 𝑗

󸀠
| ≥ 1. Let ℎ = 𝐹

−1
𝜑 and

ℎ̃ = 𝐹
−1
𝜒; the dyadic blocks are defined as follows:

Δ
𝑗
𝑓 = 𝜑 (2

−𝑗
𝐷)𝑓 = 2

3𝑗
∫
R3

ℎ (2
𝑗
𝑦)𝑓 (𝑥 − 𝑦) 𝑑𝑦,

𝑆
𝑗
𝑓 = ∑

𝑘≤𝑗−1

Δ
𝑘
𝑓 = 2

3𝑗
∫
R3

ℎ̃ (2
𝑗
𝑦)𝑓 (𝑥 − 𝑦) 𝑑𝑦, 𝑗 ∈ Z.

(8)

Informally, Δ
𝑗
= 𝑆
𝑗+1

− 𝑆
𝑗
is a frequency projection to the

annulus |𝜉| ≈ 2
𝑗, while 𝑆

𝑗
is frequency projection to the ball

|𝜉| ≲ 2
𝑗. The details of Littlewood-Paley decomposition can

be found in Triebel [4] and Chemin [5]. Now Besov spaces in
R3 can be defined as follows:

𝐵̇
𝑠

𝑝,𝑞
=
{

{

{

𝑓 ∈ Z
󸀠
(R
3
) |

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵̇
𝑠

𝑝,𝑞

=(∑

𝑗∈Z

2
𝑗𝑠𝑞󵄩󵄩󵄩󵄩󵄩

Δ
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩

𝑞

𝑝
)

1/𝑞

<∞
}

}

}

,

𝑞 ̸=∞,

𝐵̇
𝑠

𝑝,∞
= {𝑓 ∈ Z

󸀠
(R
3
) |

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵̇
𝑠

𝑝,𝑞

= sup
𝑗∈Z

2
𝑗𝑠󵄩󵄩󵄩󵄩󵄩

Δ
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝑝

< ∞} ,

(9)

whereZ󸀠 denotes the dual space ofZ = {𝑓 ∈ S; 𝐷
𝛼
𝑓̂(0) =

0; ∀𝛼 ∈ N𝑛 multi-index}.
Now we introduce well-known Bernstetin’s Lemma and

commutator estimate, the proof is omitted here, and we can
find the details in Chemin [5], Chemin and Lerner [6], and
Kato and Ponce [7].

Lemma 3 (Bernstein’s lemma). Let 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞.
Assume that 𝑓 ∈ 𝐿

𝑝, then there exist constants 𝐶, 𝐶
1
, and 𝐶

2

independent of 𝑓, 𝑗, such that

sup
|𝛼|=𝑘

󵄩󵄩󵄩󵄩𝜕
𝛼
𝑓
󵄩󵄩󵄩󵄩𝑞 ≤ 𝐶2

𝑗𝑘+3𝑗(1/𝑝−1/𝑞)󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝

supp 𝑓̂ ⊂ {
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ≲ 2
𝑗
} ,

𝐶
1
2
𝑗𝑘󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑝 ≤ sup
|𝛼|=𝑘

󵄩󵄩󵄩󵄩𝜕
𝛼
𝑓
󵄩󵄩󵄩󵄩𝑝 ≤ 𝐶

2
2
𝑗𝑘󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑝

supp 𝑓̂ ⊂ {
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ≈ 2
𝑗
} .

(10)

Remark 4. From the aboveBeinstein estimate, we easily know
that in R3, for the Reisz transform 𝑅

𝑘
(𝑘 = 1, 2, 3), it has for

∀1 ≤ 𝑝 ≤ 𝑞 ≤ ∞

󵄩󵄩󵄩󵄩󵄩
𝑅
𝑘
Δ
𝑗
𝑢
󵄩󵄩󵄩󵄩󵄩𝑞

≤ 𝐶2
3𝑗(1/𝑝−1/𝑞)

‖𝑢‖𝑝. (11)

If suppose vector valued funtion 𝑢 be divergence free, by Biot
Savard law ∇𝑢 = (−Δ)

−1
∇∇ × V with V = ∇ × 𝑢 and the

boundedness of Reisz transform on 𝐿
𝑝
(1 < 𝑝 < ∞), we

have, there exist constants 𝐶 independent 𝑢 such that

‖∇𝑢‖𝑝 ≤ 𝐶‖V‖𝑝, ∀1 < 𝑝 < ∞. (12)

If the frequency of 𝑢 is restricted to annulus |𝜉| ≈ 2
𝑗, then (11)

implies that

‖∇𝑢‖𝑝 ≤ 𝐶‖V‖𝑝, ∀1 ≤ 𝑝 ≤ ∞. (13)

Now we denote that Λ = (𝐼 − Δ)
1/2, which satisfies

Λ̂𝑓 (𝜉) = (1 +
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2
)
1/2

𝑓̂ (𝜉) . (14)
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Λ
𝑠
(𝑠 ∈ R) can be defined in the same way as follows:

̂
Λ
𝑠
𝑓 (𝜉) = (1 +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2
)
s/2

𝑓̂ (𝜉) . (15)

Using the perivious notation, we define the norm of Sobolev
space𝑊𝑠,𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊𝑠,𝑝 ≜

󵄩󵄩󵄩󵄩Λ
𝑠
𝑓
󵄩󵄩󵄩󵄩𝐿𝑝 , (16)

especially by Fourier transform, and 𝐻
𝑠

≜ 𝑊
𝑠,2 can be

defined as

𝐻
𝑠
≜ {𝑓 ∈ S

󸀠
(R
3
) |

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑠 < ∞} , (17)

where

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑠 ≜

󵄩󵄩󵄩󵄩Λ
𝑠
𝑓
󵄩󵄩󵄩󵄩𝐿2(∫

R3
(1 +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2
)
𝑠󵄨󵄨󵄨󵄨󵄨
𝑓̂ (𝜉)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜉)

1/2

. (18)

Lemma 5 (Commutator estimate). Let 1 < 𝑝 < ∞, s >

0; assume that 𝑓, 𝑔 ∈ 𝑊
𝑠,𝑝, then there exists a constant 𝐶

independent of 𝑓, 𝑔, such that

󵄩󵄩󵄩󵄩[Λ
𝑠
, 𝑓] 𝑔

󵄩󵄩󵄩󵄩𝐿𝑝 ≤ 𝐶 (
󵄩󵄩󵄩󵄩∇𝑓

󵄩󵄩󵄩󵄩𝐿𝑝1
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑊𝑠−1,𝑝2 +

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊𝑠,𝑝3

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑝4 )

(19)

with 1 < 𝑝
2
, 𝑝
3
< ∞, such that

1

𝑝
=

1

𝑝
1

+
1

𝑝
2

=
1

𝑝
3

+
1

𝑝
4

. (20)

Here [Λ𝑠, 𝑓]𝑔 = Λ
𝑠
(𝑓𝑔) − 𝑓Λ

𝑠
𝑔.

3. Proof of the Theorem 1

First we go on with the𝐻1 estimates of the solution (𝑢, 𝜔, 𝑏)

under the condition (3). Denote that 𝐻 = ∇ × 𝑢, 𝐼 = ∇ ×

𝜔, and 𝐽 = ∇ × 𝑏 we take curl on both sides of (1); we get the
following equation:

𝜕
𝑡
𝐻 − (𝜇 + 𝜒)Δ𝐻 + 𝑢 ⋅ ∇𝐻 − 𝐻 ⋅ ∇𝑢 − 𝑏 ⋅ ∇𝐽 + 𝐽 ⋅ ∇𝑏

− 𝜒∇ × 𝐼 = 0,

𝜕
𝑡
𝐼 − 𝛾Δ𝐼 + 2𝜒𝐼 + 𝑢 ⋅ ∇𝐼 − 𝐻 ⋅ ∇𝜔 − 𝜒∇ × 𝐻 = 0,

𝜕
𝑡
𝐽 − ]Δ𝐽 + 𝑢 ⋅ ∇𝐽 − 𝐻 ⋅ ∇𝑏 − 𝑏 ⋅ ∇𝐻 + 𝐽 ⋅ ∇𝑢 = 2𝑇 (𝑏, 𝑢)

(21)

with

𝑇 (𝑏, 𝑢) = (

𝜕
2
𝑏 ⋅ 𝜕
3
𝑢 − 𝜕
3
𝑏 ⋅ 𝜕
2
𝑢

𝜕
3
𝑏 ⋅ 𝜕
1
𝑢 − 𝜕
1
𝑏 ⋅ 𝜕
3
𝑢

𝜕
1
𝑏 ⋅ 𝜕
2
𝑢 − 𝜕
2
𝑏 ⋅ 𝜕
1
𝑢

) (22)

which uses the fact ∇ × ∇ div 𝜔 = 0.

Multiplying the three equations with (𝐻, 𝐼, 𝐽), respec-
tively, integrating by parts over R3 about the variable 𝑥, then
adding the resulting equations yields that

1

2

𝑑

𝑑𝑡
(‖𝐻‖
2

2
+ ‖𝐼‖
2

2
+ ‖𝐽‖
2

2
)

+ (𝜇 + 𝜒) ‖∇𝐻‖
2

2
+ 𝛾‖∇𝐼‖

2

2
+ ]‖∇𝐽‖

2

2
+ 2𝜒‖𝐼‖

2

2

= ∫
R3

(𝐻 ⋅ ∇) 𝑢 ⋅ 𝐻𝑑𝑥 + ∫
R3

(𝐻 ⋅ ∇) 𝜔 ⋅ 𝐼 𝑑𝑥

+ ∫
R3

(𝐽 ⋅ ∇) 𝑢 ⋅ 𝐽 𝑑𝑥

− ∫
R3

(𝐽 ⋅ ∇) 𝑏 ⋅ 𝐻𝑑𝑥 + ∫
R3

(𝐻 ⋅ ∇) 𝑏 ⋅ 𝐽 𝑑𝑥

+ 2𝜒∫
R3

(∇ × 𝐻) ⋅ 𝐼 𝑑𝑥 + 2∫
R3

𝑇 (𝑏, 𝑢) ⋅ 𝐽 𝑑𝑥

= 𝐼𝐼
1
+ 𝐼𝐼
2
+ 𝐼𝐼
3
+ 𝐼𝐼
4
+ 𝐼𝐼
5
+ 𝐼𝐼
6
+ 𝐼𝐼
7
,

(23)

where we use the following fact due to the divergence free
condition of 𝑢, 𝑏:

∫
R3

(𝑢 ⋅ ∇)𝐻 ⋅ 𝐻𝑑𝑥 = ∫
R3

(𝑢 ⋅ ∇) 𝐼 ⋅ 𝐼 𝑑𝑥

= ∫
R3

(𝑢 ⋅ ∇) 𝐽 ⋅ 𝐽 𝑑𝑥 = 0,

∫
R3

(𝑏 ⋅ ∇) 𝐽 ⋅ 𝐻𝑑𝑥 + ∫
R3

(𝑏 ⋅ ∇)𝐻 ⋅ 𝐽 𝑑𝑥 = 0,

∫
R3

(∇ × 𝐻) ⋅ 𝐼 𝑑𝑥 = ∫
R3

(∇ × 𝐼) ⋅ 𝐻𝑑𝑥.

(24)

Let us begin with estimating 𝐼𝐼
1

and 𝐼𝐼
3
. Using

Littlewood-Paley decomposition to ∇𝑢, we have

𝐼𝐼
1
= ∑

𝑗<−𝑁

∫
R3

(𝐻 ⋅ ∇) Δ
𝑗
𝑢 ⋅ 𝐻𝑑𝑥

+ ∑

−𝑁≤𝑗≤𝑁

∫
R3

(𝐻 ⋅ ∇) Δ 𝑗𝑢 ⋅ 𝐻𝑑𝑥

+ ∑

𝑗>𝑁

∫
R3

(𝐻 ⋅ ∇) Δ
𝑗
𝑢 ⋅ 𝐻𝑑𝑥,

= 𝐼𝐼
1

1
+ 𝐼𝐼
2

1
+ 𝐼𝐼
3

1
.

(25)

For the terms 𝐼𝐼1
1
and 𝐼𝐼

2

1
, using Hölder’s inequality, Bein-

stein’s inequality, and (12), (13), we obtain
󵄨󵄨󵄨󵄨󵄨
𝐼𝐼
1

1

󵄨󵄨󵄨󵄨󵄨
≤ ‖𝐻‖

2

2
∑

𝑗<−𝑁

󵄩󵄩󵄩󵄩󵄩
∇Δ
𝑗
𝑢
󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐶‖𝐻‖
2

2
∑

𝑗<−𝑁

2
(3/2)𝑗󵄩󵄩󵄩󵄩󵄩

Δ
𝑗
𝐻
󵄩󵄩󵄩󵄩󵄩2

≤ 𝐶2
−(3/2)𝑁

‖𝐻‖
3

2
,

󵄨󵄨󵄨󵄨󵄨
𝐼𝐼
2

1

󵄨󵄨󵄨󵄨󵄨
≤ ‖𝐻‖

2

2
∑

−𝑁≤𝑗≤𝑁

󵄩󵄩󵄩󵄩󵄩
∇Δ
𝑗
𝑢
󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐶‖𝐻‖
2

2

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁
∇𝑢

󵄩󵄩󵄩󵄩󵄩∞
,

(26)
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for 𝐼𝐼3
1
, we get

󵄨󵄨󵄨󵄨󵄨
𝐼𝐼
3

1

󵄨󵄨󵄨󵄨󵄨
≤ ‖𝐻‖

2

3
∑

𝑗>𝑁

󵄩󵄩󵄩󵄩󵄩
∇Δ
𝑗
𝑢
󵄩󵄩󵄩󵄩󵄩3

≤ 𝐶‖𝐻‖
2

3
∑

𝑗>𝑁

2
𝑗/2󵄩󵄩󵄩󵄩󵄩

Δ
𝑗
𝐻
󵄩󵄩󵄩󵄩󵄩2

≤ 𝐶‖𝐻‖
2

3
(∑

𝑗>𝑁

2
−(𝑗/2)⋅2

)

1/2

(∑

𝑗>𝑁

2
𝑗⋅2
‖𝐻‖
2

2
)

1/2

≤ 𝐶2
−(𝑁/2)

‖𝐻‖2‖∇𝐻‖
2

2
,

(27)

where we use the interpolation inequality

‖𝐻‖3 ≤ 𝐶‖𝐻‖
1/2

2
‖∇𝐻‖

1/2

2
. (28)

Summing up (26)-(27), we have

󵄨󵄨󵄨󵄨𝐼𝐼1
󵄨󵄨󵄨󵄨 ≤ 𝐶 (2

−(3/2)𝑁
‖𝐻‖
3

2
+ ‖𝐻‖

2

2

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁
∇𝑢

󵄩󵄩󵄩󵄩󵄩∞

+2
−(N/2)

‖𝐻‖2‖∇𝐻‖
2

2
) .

(29)

𝐼𝐼
3
can be treated in the same way, and we decompose it as

𝐼𝐼
3
= ∑

𝑗<−𝑁

∫
R3

(𝐽 ⋅ ∇) Δ
𝑗
𝑢 ⋅ 𝐽 𝑑𝑥

+ ∑

−𝑁≤𝑗≤𝑁

∫
R3

(𝐽 ⋅ ∇) Δ
𝑗
𝑢 ⋅ 𝐽 𝑑𝑥

+ ∑

𝑗>𝑁

∫
R3

(𝐽 ⋅ ∇) Δ
𝑗
𝑢 ⋅ 𝐽 𝑑𝑥,

(30)

then we obtain

󵄨󵄨󵄨󵄨𝐼𝐼3
󵄨󵄨󵄨󵄨 ≤ 𝐶 (2

−(3/2)𝑁
‖𝐽‖
2

2
‖𝐻‖2 + ‖𝐽‖

2

2

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁
∇𝑢

󵄩󵄩󵄩󵄩󵄩∞

+2
−(N/2)

‖𝐽‖2‖∇𝐽‖2‖∇𝐻‖2) .

(31)

Now we study 𝐼𝐼
2
, we decompose 𝐻 by using Littlewood-

Paley theory; that is,

𝐼𝐼
2
= ∑

𝑗<−𝑁

∫
R3

(Δ
𝑗
𝐻 ⋅ ∇)𝜔 ⋅ 𝐼 𝑑𝑥

+ ∑

−𝑁≤𝑗≤𝑁

∫
R3

(Δ
𝑗
𝐻 ⋅ ∇)𝜔 ⋅ 𝐼 𝑑𝑥

+ ∑

𝑗>𝑁

∫
R3

(Δ
𝑗
𝐻 ⋅ ∇)𝜔 ⋅ 𝐼 𝑑𝑥,

(32)

then

󵄨󵄨󵄨󵄨𝐼𝐼2
󵄨󵄨󵄨󵄨 ≤ 𝐶 (2

−(3/2)𝑁
‖𝐼‖
2

2
‖𝐻‖2 + ‖𝐼‖

2

2

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁
∇𝑢

󵄩󵄩󵄩󵄩󵄩∞

+2
−(N/2)

‖𝐼‖2‖∇𝐼‖2‖∇𝐻‖2) .

(33)

Similarly for 𝐼𝐼
4
, 𝐼𝐼
5
, and 𝐼𝐼

7
, we have

󵄨󵄨󵄨󵄨𝐼𝐼4
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝐼𝐼5
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝐼𝐼7
󵄨󵄨󵄨󵄨

≤ 𝐶 (2
−(3/2)𝑁

‖𝐽‖
2

2
‖𝐻‖2 + ‖𝐽‖

2

2

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁
∇𝑢

󵄩󵄩󵄩󵄩󵄩∞

+2
−(N/2)

‖𝐽‖2‖∇𝐽‖2‖∇𝐻‖2) .

(34)

Using Young’s inequality, the term 𝐼𝐼
6
can be written as

󵄨󵄨󵄨󵄨𝐼𝐼6
󵄨󵄨󵄨󵄨 ≤ 2𝜒‖∇ × 𝐻‖2‖𝐼‖2 ≤

𝜒

2
‖∇𝐻‖

2

2
+ 2𝜒‖𝐼‖

2

2
. (35)

Summing up (29)–(35) and taking the sum into (23), by
Young’s inequality, we get

𝑑

𝑑𝑡
(‖𝐻‖
2

2
+ ‖𝐼‖
2

2
+ ‖𝐽‖
2

2
) + (2𝜇 + 𝜒) ‖∇𝐻‖

2

2

+ 2𝛾∇𝐼
2

2
+ 2]‖∇𝐽‖

2

2

≤ 𝐶 (2
−(3/2)𝑁

(‖𝐻‖
3

2
+ ‖𝐼‖
3

2
+ ‖𝐽‖
3

2
))

+
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁
∇𝑢

󵄩󵄩󵄩󵄩󵄩∞
(‖𝐻‖
2

2
+ ‖𝐼‖
2

2
+ ‖𝐽‖
2

2
)

+ 2
−(N/2)

(‖𝐻‖2 + ‖𝐼‖2 + ‖𝐽‖2)

× (‖∇𝐻‖
2

2
+ ‖∇𝐼‖

2

2
+ ‖∇𝐽‖

2

2
) .

(36)

If we let 2−(N/2)(‖𝐻‖
2
+ ‖𝐼‖
2
+ ‖𝐽‖
2
) ≤ min(𝜇, 𝛾, ]), that is, if

we choose

𝑁 ≥ [
2

log 2
log+ ( 𝐶

min (𝜇, 𝛾, ])
(‖𝐻‖2 + ‖𝐼‖2 + ‖𝐽‖2))] + 1,

(37)

where [𝑎] stands for the integral parts of 𝑎 ∈ R, log+(𝑥) =

log(𝑥 + 𝑒), then we have

𝑑

𝑑𝑡
(‖𝐻‖
2

2
+ ‖𝐼‖
2

2
+ ‖𝐽‖
2

2
) + (𝜇 + 𝜒) ‖∇𝐻‖

2

2

+ 𝛾‖∇𝐼‖
2

2
+ ]‖∇𝐽‖

2

2

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁
∇𝑢

󵄩󵄩󵄩󵄩󵄩∞
(‖𝐻‖
2

2
+ ‖𝐼‖
2

2
+ ‖𝐽‖
2

2
) + 𝐶

≤ 𝐶𝑓
𝑁
𝑁 log𝑁(‖𝐻‖

2

2
+ ‖𝐼‖
2

2
+ ‖𝐽‖
2

2
) + 𝐶

≤ 𝐶𝑓
𝑁
log+ (‖𝐻‖2 + ‖𝐼‖2 + ‖𝐽‖2)

× log+log+ (‖𝐻‖2 + ‖𝐼‖2 + ‖𝐽‖2)

× (‖𝐻‖
2

2
+ ‖𝐼‖
2

2
+ ‖𝐽‖
2

2
) + 𝐶,

(38)

where 𝑓
𝑁
= ‖𝑆
𝑁
∇𝑢‖
∞
/𝑁 log𝑁.
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Using Gronwall’s inequality, we have

(‖𝐻‖
2

2
+ ‖𝐼‖
2

2
+ ‖𝐽‖
2

2
)

+ ∫

𝑡

0

[(𝜇 + 𝜒) ‖∇𝐻‖
2

2
+ 𝛾‖∇𝐼‖

2

2
+ ]‖∇𝐽‖

2

2
] 𝑑𝑡

≤ exp exp exp(𝐶∫

𝑡

0

𝑓
𝑁
(𝑡
󸀠
) 𝑑𝑡
󸀠
) .

(39)

On the other hand, by multiplying (𝑢, 𝜔, 𝑏), it can be easily
derived from magneto-micropolar fluid equation (1) that

‖𝑢‖
2

2
+ ‖𝜔‖

2

2
+ ‖𝑏‖
2

2
+ 2𝜇∫

𝑡

0

‖∇𝑢‖
2

2
𝑡
󸀠
+ 2𝛾∫

𝑡

0

‖∇𝜔‖
2

2
𝑑𝑡
󸀠

+ 2]∫
𝑡

0

‖∇𝑏‖
2

2
𝑑𝑡
󸀠
+ 2𝜅∫

𝑡

0

‖div 𝜔‖2
2
𝑑𝑡
󸀠
+ 2𝜒∫

𝑡

0

‖𝜔‖
2

2
𝑑𝑡
󸀠

≤
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩𝜔0

󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩𝑏0

󵄩󵄩󵄩󵄩
2

2
.

(40)

Equation (39) along with (40) implies that the𝐻1 estimate of
solution (𝑢, 𝜔, 𝑏).

Next, we will show how to deduce𝐻𝑠 estimates based on
the 𝐻1 estimates. We apply operator Λ𝑠 on the two sides of
(1), multiply (Λ

𝑠
𝑢, Λ
𝑠
𝜔,Λ
𝑠
𝑏) by the resulting equations and

integrate the final form over R3, and ge

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩Λ
𝑠
𝑢
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩Λ
𝑠
𝜔
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩Λ
𝑠
𝑏
󵄩󵄩󵄩󵄩
2

2
)

+ (𝜇 + 𝜒)
󵄩󵄩󵄩󵄩∇Λ
𝑠
𝑢
󵄩󵄩󵄩󵄩
2

2
+ 𝛾

󵄩󵄩󵄩󵄩∇Λ
𝑠
𝜔
󵄩󵄩󵄩󵄩
2

2

+ ]
󵄩󵄩󵄩󵄩∇Λ
𝑠
𝑏
󵄩󵄩󵄩󵄩
2

2
+ 𝜅

󵄩󵄩󵄩󵄩div Λ
𝑠
𝜔
󵄩󵄩󵄩󵄩
2

2
+ 2𝜒

󵄩󵄩󵄩󵄩Λ
𝑠
𝑏
󵄩󵄩󵄩󵄩
2

2

= −∫
R3

Λ
𝑠
(𝑢 ⋅ ∇𝑢)Λ

𝑠
𝑢 𝑑𝑥 − ∫

R3
Λ
𝑠
(𝑢 ⋅ ∇𝜔)Λ

𝑠
𝜔𝑑𝑥

− ∫
R3

Λ
𝑠
(𝑢 ⋅ ∇𝑏) Λ

𝑠
𝑏 𝑑𝑥 + ∫

R3
Λ
𝑠
(𝑏 ⋅ ∇𝑏) Λ

𝑠
𝑢 𝑑𝑥

+ ∫
R3

Λ
𝑠
(𝑏 ⋅ ∇𝑢)Λ

𝑠
𝑏 𝑑𝑥 − 2𝜒∫

R3
Λ
𝑠
(∇ × 𝑢)Λ

𝑠
𝜔𝑑𝑥,

(41)

where we use the fact

∫
R3

Λ
𝑠
(∇ × 𝜔)Λ

𝑠
𝑢 𝑑𝑥 = ∫

R3
Λ
𝑠
(∇ × 𝑢)Λ

𝑠
𝜔𝑑𝑥. (42)

Furthermore, the divergence free conditions of (𝑢, 𝑏) imply
that

∫
R3

(𝑢 ⋅ ∇Λ
𝑠
𝑢)Λ
𝑠
𝑢 𝑑𝑥

= ∫
R3

(𝑢 ⋅ ∇Λ
𝑠
𝜔)Λ
𝑠
𝜔𝑑𝑥 = ∫

R3
(𝑢 ⋅ ∇Λ

𝑠
𝑏) Λ
𝑠
𝑏 𝑑𝑥 = 0,

∫
R3

(𝑏 ⋅ ∇Λ
𝑠
𝑏) Λ
𝑠
𝑢 𝑑𝑥 + ∫

R3
(𝑏 ⋅ ∇Λ

𝑠
𝑢)Λ
𝑠
𝑏 𝑑𝑥 = 0,

(43)

then

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩Λ
𝑠
𝑢
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩Λ
𝑠
𝜔
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩Λ
𝑠
𝑏
󵄩󵄩󵄩󵄩
2

2
)

+ (𝜇 + 𝜒)
󵄩󵄩󵄩󵄩∇Λ
𝑠
𝑢
󵄩󵄩󵄩󵄩
2

2
+ 𝛾

󵄩󵄩󵄩󵄩∇Λ
𝑠
𝜔
󵄩󵄩󵄩󵄩
2

2
+ ]

󵄩󵄩󵄩󵄩∇Λ
𝑠
𝑏
󵄩󵄩󵄩󵄩
2

2

+ 𝜅
󵄩󵄩󵄩󵄩div Λ

𝑠
𝜔
󵄩󵄩󵄩󵄩
2

2
+ 2𝜒

󵄩󵄩󵄩󵄩Λ
𝑠
𝜔
󵄩󵄩󵄩󵄩
2

2

= −∫
R3

[Λ
𝑠
, 𝑢] ∇𝑢Λ

𝑠
𝑢 𝑑𝑥 − ∫

R3
[Λ
𝑠
, 𝑢] ∇𝜔Λ

𝑠
𝜔𝑑𝑥

− ∫
R3

[Λ
𝑠
, 𝑢] ∇𝑏Λ

𝑠
𝑏 𝑑𝑥

+ ∫
R3

([Λ
𝑠
, 𝑏] ∇𝑏Λ

𝑠
𝑢 + [Λ

𝑠
, 𝑏] ∇𝑢Λ

𝑠
𝑏) 𝑑𝑥

+ −2𝜒∫
R3

Λ
𝑠
(∇ × 𝑢)Λ

𝑠
𝜔𝑑𝑥.

= 𝐼𝐼𝐼
1
+ 𝐼𝐼𝐼
2
+ 𝐼𝐼𝐼
3
+ 𝐼𝐼𝐼
4
+ 𝐼𝐼𝐼
5
.

(44)

By Lemma 5, Hölder’s inequality, Gagliardo-Nirenberg’s
inequality

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊𝑠,4 ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
1/4

𝑊
𝑠,2

󵄩󵄩󵄩󵄩∇𝑓
󵄩󵄩󵄩󵄩
3/4

𝑊
𝑠,2 , (45)

and Young’s inequality

𝑎𝑏 ≤
1

𝑝
𝑎
𝑝
+
1

𝑞
𝑏
𝑞
,

1

𝑝
+
1

𝑞
= 1, (46)

we deduce that

󵄨󵄨󵄨󵄨𝐼𝐼𝐼1
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩[Λ
𝑠
, 𝑢] ∇𝑢

󵄩󵄩󵄩󵄩4/3
󵄩󵄩󵄩󵄩Λ
𝑠
𝑢
󵄩󵄩󵄩󵄩4

≤ 𝐶 (‖∇𝑢‖2‖∇𝑢‖𝑊𝑠−1,4 + ‖𝑢‖𝑊𝑠,4‖∇𝑢‖2) ‖𝑢‖𝑊𝑠,4

≤ 𝐶‖∇𝑢‖2‖𝑢‖
1/2

𝐻
𝑠 ‖∇𝑢‖

3/2

𝐻
𝑠

≤ 𝐶‖∇𝑢‖
4

2
‖𝑢‖
2

𝐻
𝑠 +

𝜇

4
‖∇𝑢‖
2

𝐻
𝑠 .

(47)

Similarly, we estimate 𝐼𝐼𝐼
2
, 𝐼𝐼𝐼
3
, and 𝐼𝐼𝐼

4
as follows:

󵄨󵄨󵄨󵄨𝐼𝐼𝐼2 + 𝐼𝐼𝐼
3
+ 𝐼𝐼𝐼
4

󵄨󵄨󵄨󵄨 ≤ 𝐶 (‖∇𝑢‖
4

2
+ ‖∇𝜔‖

4

2
+ ‖∇𝑏‖

4

2
)

× (‖𝑢‖
2

𝐻
𝑠 + ‖𝜔‖

2

𝐻
𝑠 + ‖𝑏‖

2

𝐻
𝑠)

+
𝜇

4
‖∇𝑢‖
2

𝐻
𝑠 +

𝛾

2
‖∇𝜔‖
2

𝐻
𝑠 +

]

2
‖∇𝑏‖
2

𝐻
𝑠 .

(48)

Finally, we estimate the last term

󵄨󵄨󵄨󵄨𝐼𝐼𝐼5
󵄨󵄨󵄨󵄨 ≤ 2𝜒

󵄩󵄩󵄩󵄩Λ
𝑠
(∇ × 𝑢)

󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩Λ
𝑠
𝜔
󵄩󵄩󵄩󵄩2

≤
𝜒

2
‖∇𝑢‖
2

𝐻
𝑠 + 2𝜒‖𝜔‖

2

𝐻
𝑠 .

(49)
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Summing up (47)–(49) with (44), we obtain

𝑑

𝑑𝑡
(‖𝑢‖
2

𝐻
𝑠 + ‖𝜔‖

2

𝐻
𝑠 + ‖𝑏‖

2

𝐻
𝑠)

+ (𝜇 + 𝜒) ‖∇𝑢‖
2

𝐻
𝑠 + 𝛾‖∇𝜔‖

2

𝐻
𝑠 + ]‖∇𝑏‖

2

𝐻
𝑠

+ 𝜅‖div 𝜔‖2
𝐻
𝑠

≤ 𝐶 (‖𝑢‖
4

𝐻
1 + ‖𝜔‖

4

𝐻
1 + ‖𝑏‖

4

𝐻
1)

× (‖𝑢‖
2

𝐻
𝑠 + ‖𝜔‖

2

𝐻
𝑠 + ‖𝑏‖

2

𝐻
𝑠) .

(50)

Using Gronwall’s inequality we obtain

(‖𝑢‖
2

𝐻
𝑠 + ‖𝜔‖

2

𝐻
𝑠 + ‖𝑏‖

2

𝐻
𝑠)

+ ∫

𝑡

0

((𝜇 + 𝜒) ‖∇𝑢‖
2

𝐻
𝑠 + 𝛾‖∇𝜔‖

2

𝐻
𝑠 + ]‖∇𝑏‖

2

𝐻
𝑠

+𝜅‖div 𝜔‖2
𝐻
𝑠) (𝑡
󸀠
) 𝑑𝑡
󸀠

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
2

𝐻
𝑠 +

󵄩󵄩󵄩󵄩𝜔0
󵄩󵄩󵄩󵄩
2

𝐻
𝑠 +

󵄩󵄩󵄩󵄩𝑏0
󵄩󵄩󵄩󵄩
2

𝐻
𝑠)

× exp(𝑡 sup
𝑡
󸀠
∈[0,𝑡)

(‖𝑢‖
4

𝐻
1 + ‖𝜔‖

4

𝐻
1 + ‖𝑏‖

4

𝐻
1)) .

(51)

Hence by (39) and (51), we can get the 𝐻𝑠 regularity at time
𝑡 = 𝑇; that is, the smooth solution (𝑢, 𝜔, 𝑏) can be extended
past time 𝑇.
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