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This paper investigates the problem of robust stability for linear parameter-dependent (LPD) discrete-time systems with interval
time-varying delays. Based on the combination of model transformation, utilization of zero equation, and parameter-dependent
Lyapunov-Krasovskii functional, new delay-dependent robust stability conditions are obtained and formulated in terms of linear
matrix inequalities (LMIs). Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed

methods.

1. Introduction

Systems with time delay exist in many fields such as electric
systems, chemical processes systems, networked control sys-
tems, telecommunication systems, and economical systems.
Over the past decades, the problem of robust stability analysis
for uncertain systems with time delay has been widely inves-
tigated by many researchers. Commonly, stability criteria for
uncertain systems with time delay are generally divided into
two classes: a delay-independent one and a delay-dependent
one. The delay-independent stability criteria tends to be more
conservative, especially for a small size delay; such criteria do
not give any information on the size of delay. On the other
hand, delay-dependent stability criteria are concerned with
the size of delay and usually provide a maximal delay size.
Discrete-time systems with state delay have strong back-
ground in engineering applications, among which network-
based control has been well recognized to be a typical exam-
ple. If the delay is constant in discrete systems, one can trans-
form a delayed system into a delay-free one by using state aug-
mentation techniques. However, when the delay is large, the
augmented system will become much complex and thus diffi-
cult to analyze and synthesize [1]. In recent years, robust sta-
bility analysis of continuous-time and discrete-time systems

subject to time-invariant parametric uncertainty has received
considerable attention. An important class of linear time-
invariant parametric uncertain system is a linear parameter-
dependent (LPD) system in which the uncertain state matri-
ces are in the polytope consisting of all convex combination
of known matrices. To address this problem, several results
have been obtained in terms of sufficient (or necessary and
sufficient) conditions, see [1-24] and references cited therein.
Most of these conditions have been obtained via the Lya-
punov theory approaches in which the parameter-dependent
Lyapunov functions have been employed. These conditions
are always expressed in terms of LMIs which can be solved
numerically by using available tools such as the LMI Tool-
box in MATLAB. Recently, delay-dependent robust stability
criteria for LPD continuous-time systems with time delay
have been taken into consideration. Sufficient conditions for
robust stability of time-delay systems have been presented via
Lyapunov approaches [8, 16, 21]. However, much attention has
been focused on the problem of robust stability analysis for
LPD discrete-time systems with time delay [10, 13, 22].

In this paper, we focus on the delay-dependent robust
stability criterion for LPD discrete-time systems with interval
time-varying delays. Based on the combination of model



transformation, utilization of zero equation, and parameter-
dependent Lyapunov functional, new delay-dependent
robust stability conditions are obtained and formulated in
terms of linear matrix inequalities (LMIs). Finally, numerical
examples are given to illustrate that the resulting criterion
outperforms the existing stability condition.

2. Problem Formulation and Preliminaries

We introduce some notations, definitions, and propositions
that will be used throughout the paper. Z* denotes the set of
nonnegative integer numbers; R" denotes the n-dimensional
space with the vector norm | - [|; ||| denotes the Euclidean
vector norm of x € R, that is, [ x]> = x”x; M™" denotes the
space of all real matrices of (n x r)-dimensions; AT denotes
the transpose of the matrix A; A is symmetric if A = AT 1
denotes the identity matrix; A(A) denotes the set of all eigen-
values of A; A, (A) = max{ReA : A € MA)}L A (4) =
min{ReA : A € MA}L A, (Ax) = max{A, (A;) :i=
L2,....,NE Apin(A(e)) = minfA,, (A;) : i =1,2,...,N}
matrix A is called a semipositive definite (A > 0) if xTAx > 0,
for all x € R"; A is a positive definite (A > 0) if xT Ax > 0 for
all x # 0; matrix B is called a seminegative definite (B < 0) if
x'Bx <0, forall x € R"; Bisa negative definite (B < 0) if
xTBx < 0forall x#0; A > Bmeans A — B > 0; A > B means
A - B > 0; = represents the elements below the main diagonal
of a symmetric matrix.

Consider the following uncertain LPD discrete-time sys-
tem with interval time-varying delays of the form

x(k+1)=A(x)x (k) + B(a)x (k- h(k)), @

x(s)=¢(s), se{-h,-h+1,...,-1,0,}, (2)

where k € Z*, x(k) € R" is the system state and ¢(s) is an
initial value at s. A(e), B(er) € M™" are uncertain matrices
belonging to the polytope of the form

N N
A=A,  B()=YaB,
i=1 i=1

(3)

N
Yoy=1, 0,20, A,B e M™, i=1,..,N.
i=1

In addition, we assume that the time-varying delay h(k) is
upper and lower bounded. It satisfies the following assump-
tion of the form

0<hy <h(k)<h,, (4)
where h; and h, are known positive integers.

Definition 1 (see [19]). The system (1) is said to be robustly
stable if there exists a positive definite function V (k, x(k)) :
7' xR" — R such that

AV (k,x (k) =V (k + Lx(k+1)) =V (k x (k) <0, (5)

along any trajectory of the solution of the system (1).
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Definition 2 (see [19]). The system (1) when A(«x) = A, B(a) =
B,and A, B € M™" is said to be asymptotically stable if there
exists a positive definite function V(k, x(k)) : Z* x R" — R
such that

AV (k,x(k)) =V (k+1,x(k+1)) -V (k,x(k)) <0, (6)

along any trajectory of the solution of the system (1) when
A(x) = A, B(a) = B.

Proposition 3 ([7, the Schur complement lemmal]). Given
constant symmetric matrices X,Y, and Z of appropriate
dimensions with Y > 0, then X + Z'Y'Z < 0 if and only

if

<}Z( %;) <0 or G}; f() <0. (7)

Proposition 4 (see [9]). For any constant matrix W €
MW = WT > 0, two integers ry; and r,, satisfying
Tag = Ty and vector function x : [r,,, rp] — R, the following
inequality holds:

™ T ™ ™
<Zx(i)> W(Zx(i))s(rM—rm+l) > x ()W (i)

i=t,,

(8)
Rewrite the system (1) in the following system:
x(k+1)=x(k)+ y(k),
k-1 9)
y(k)=[A(@)+B(@)-I]x(k)-B(@) Y y().
i=k—h(k)

3. Robust Stability Conditions

In this section, we study the robust stability criteria for the
system (1) by using the combination of model transforma-
tion, the linear matrix inequality (LMI) technique, and the
Lyapunov method. We introduce the following notations for
later use:

Cj(a) = Zocin, Dj () = Zoc,-D{,
i=1 i=1

Ej(@)=YaE,  Gj)=)aG,
i=1 i=1

N ) N
Li(@)=YaLll, P(a)=YaP,
i=1 i=1
N N
Q) = Z‘XiQi’ R(a) = Z“iRi’

i=1 i=1
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N N
S()=YasS,  T(x)=)eT,
i=1 i=1

N N
U(x) = ZociUi, Vix) = Zoc,-Vi,
i=1 i=1

N
W (a) = ) oW,

i=1

N
X (o) = ) o X,
i=1

N N
Y () = Y Z (@) =) &Z;
i=1 i=1

Ci]’ DIJ) E{) GIJ) LJI) 1)1‘) Qia Ri) Sl‘) Ti) Ui;
‘/ia ‘/Vi) Xi) Yi; Zi € Mnxn,

j=1,23,i=12...,N, p=h,—h,.

Moreover,
PR
* %70 0 0 0 0 XN O
o« 2P ¥ o0 2 0 0 %8
+ o+ o+ 30 0 7 o0 38
H =] x % % % Zfs 0 o0 Zilj. 0o |,
bj 0 0 0
* * % ZZZ 0 0
* k% ok x % * Zi? 0
i * * * * * * * * 21.93‘

(10)
where
211; =Q +R+T,+h M, +N; + N + K, + L; + L}
+Cl+Cl +D 4Dl B v E v 12 A,
+ AL+ LB B -1 -1

12 T;1 T 1 1 2T
Zi’jzAiLj+BiLj—Li—Li + P,

lT

13 2 1T 14 2
2" =C;-N;-C; , X, =D;-L;-D; ,

T T
°=-E +E, 3°=-C/ +C],

i i i

17 1T
37 = -D} + D},

1

18 1T 3 2T T;3 T3 3
Y= —-E +E -L; Bj+AiLj+BiLJ.—Li,

ij = i
32 = P+ KU + KV, + KW, + p°X; + h,Y;

1 1T
+h,Z, - L, - L,

i

28 1T 3
Zi,j =-L; B;-L;,

3
= —Q+,-C -G 4Gl 4G
si=G-6,  f--c-c,

2?9 = G?—G,-IT> 2?4 =-R _Si_Diz_D?T_GiZ_GiZT’
= -p-p, 2= -q-ql
= -T,-E-F, =-E-F,
5= -u-c-a, 57 =v,-pl-Df,
= -W-E - B 1B, - B{L},
0= -X,-G -G

(11)

Theorem 5. The system (1)-(2) is robustly stable if there
exist positive definite symmetric matrices P;,Q;, R;,S;, T;, U,
V., W, X,,Y,, and Z;, any appropriate dimensional matrices
M;,N,K;,L;,C/,D/,E/,G/,and L’, j =1,2,3,i=1,2,...,N
satisfying the following LMIs:

H<_I, i=1,2,...,N, (12)
ii

[T+11< %1, i=1,...,N-1, j=i+1,...,N,

oo
(13)
Mi Nz] .
i >0, i=1,2,...,N, (14)
[N,- Y;
K, L,.] .
+ >0, i=1,2,...,N. (15)
[Li Zi

Proof. Consider the following parameter-dependent
Lyapunov-Krasovskii function for the system (9) of the form

5
V (k) =)V (k), (16)

i=1
where

V, (k) = x" (k) P (a) x (k),

k-1 k-1
V(= Y x' ()Qwx(@)+ Y x (i) R(e)x (i)

i=k—h, i=k—h,
k—h;-1 k-1

+ Y A OS@x@+ Y xOT(@x(),
i=k—h, i=k—h(k)



-1 k-1

Vi) =h Y Yy @U@y ()

j=—hy i=k+j

-1 k-1

th Yy Yy OV(@y

j=—hy i=k+j

-1 k-1
thy Yy Y Y OW()yG),
j=—h, i=k+j
~h-1 k-1
Vil =p ) >y OX@yG),
j=—h, i=k+j
0 k-1
Viky= Y Y y )Y (@y)
j=—h;+1i=k-1+j
0 k-1
Y Y S OZ@y0).

j==hy+1i=k-1+j
17)

Evaluating the forward deference of V'(k), it is defined as
AV (k)y=V (k+1)-V (k). (18)
Let us define, fori = 1,2,...,5,
AV, (K) = Vi (k+1) - V; (k). (19)
Then along the solution of the system (9), we obtain

AV, (k) =V, (k +1) =V, (k)
=xT (k+1)P(a)x(k+1)—x' (k) P(a)x (k)

= 2x" (k) P (@) y (k) + y" (k) P («) y (k)

+2xT(k)Lf(a)[—y(k)+[A(a)+B(a)—1]

k-1
xx(k)=B(a) Y y(i)]

i=k—h(k)

+2y" (k) LY () [ —y (k) + [A(«) + B(a) - I]

k-1
xx(k)-B(a) Y y(i)]

i=k—h(k)
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k-1
+2 Yy Ly (@) | =y ()+[A(@)+B(0)-1]
i=k—h(k)

k-1

xx(k)-B(@) ) y()|,

i=k—h(k)
AV, (k) = V, (k+1) = V, (k)
=x () Q@) x (k) = x" (k~h) Q@ x(k~hy)
+x" (k) R(t) x (k) = x" (k = h,) R («) x (k — hy)
+x" (k=h)S(@) x(k—h)-x" (k-h,)
x S () x (k—hy) +x" (k) T () x (k)

—xT (k=h(K)T () x (k - h(k)).
(20)

From Proposition 4, we have

AV; (k) = V3 (k +1) = V5 (k)

k-1
=y (U@ y(®)-h Y ¥y (U @)y
i=k—h,

k-1

+By RV @y® -k Y ¥y OV @y
i=k—h,

k-1

By W @y (R ~hy, Y YT W (@) y ()
i=k—h,

k-1 T
< h?yT(k)Um)y(k)—( Y y(i))

i=k—h,

k-1
xU(oc)( Z y(i)) +h§yT(k)V(06)y(k)

i=k—h,

k-1 T k-1
—< > y(i)) V(a)( > y(i))
i=k—h, i=k—h,

k-1 T
+h§yT<k>w<oc>y<k)—< D y(i))

i=k—h(k)
k-1
xw«x)( Y y(i)>,
i=k—h(k)
AV, (k) = V, (k +1) = V; (k)

k—h,-1

=Py RWX@yK -p Y ¥y X @y
i=k—h,
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k=h,-1

T
SPZyT(k)X(oc)y(k)—< Y y(i)> X (o)

i=k—h,
k—hy-1

X( > y(i)>,
i=k—h,

AV; (K) = Vs (k +1) - Vs (K)

0
=hy Y @y - Y y (k=1+)Y (a)

i=—h;+1

xy(k—1+1)

0
+hy" () Z(@) y (k)= Y. " (k=1+i) Z (@)
i=—h,+1
xy(k—1+1).
(21)

We can show that

0
22" (N (@) Y y(k-1+i)

i=—h;+1

0
+ Yy (k=1+0)Y (&) y (k=1+i)+hyx" (k) M (o) x (k)

i=—h;+1

i 1+1

[ x (k) ]T[M(oc) N(oc)]
y(k-1+i)] [N () Y (a)

x (k)
X[y(k—1+i)]20'
(22)

It is easy to see that

0
2" () L(a) Y y(k-1+1i)

i=—h;+1

0
+ Yy (k=1+i) Z () y (k=1+i)+h,x" (k) K (@) x (k)

i=—h,+1

_ N [ x (k) ]T[K(a) L(cx)]
- Z yk-1+1)] [LT(0) Z ()

i=—hy+1

x [y(kx—(li)+ i)] =0

(23)
By (22) and (23), we can obtain

0
= Y Y k=1+)Y (@) y(k—1+i)

i=—h;+1

< hyx" (k) M () x (k) + 2x" (k) N ()

0

X z y(k—1+1)

i=—h;+1
= hyx" (k) M () x (k) + 2x" (k) N () x (k)

—2x" (k)N (a) x (k- hy),
(24)

and we conclude that

0
- Y Yy k-1+)Z(@y(k-1+i)

i=—h,+1
< hyx" (k) K () x (k) + 2x" (k) L («)

0
x Y yk—1+i) (25)

i=—h,+1
= hyx” (k) K () x (k) + 2x” (k) L (ex) x (k)

—2x" (k) L () x (k - hy).

It is obvious that

k-1

Y=x(k)-x(k-h)- > y@)=0,
i=k—h,
k-1

D=x(k)-x(k-h)- Y y(i)=0,
i=k—h,
(26)

k-1
Y=x(k)-x(k-h(k)- > y(@)=0,
i=k—h(k)

k—h,-1
Q=x(k-h)-x(k-h)- Y y(@=0.

i=k—h,

The following equations are true for any polytopic matrices
with appropriate dimensions:

[2;? (k) Cl (@) + 2x" (k= h,) Cl ()

(27)
k-1 T
+2< Z y(i)> Cla) | xY=0,
i=k-h,
[sz (k) DT () +2x" (k - h,) DI ()
(28)

k-1 T
+2< D y(i)> DI (@) | x® =0,

i=k—h,
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According to Theorem 5, we have Corollary 6 for the delay-
dependent asymptotically stability criterion of the system

[2# (k) E] (&) + 2x" (k- h(k)) EL ()

(29)
k-1 T
+2< D y(i)> Eg(a)] XY =0,
i=k—h(k)
[ZxT (k=h) Gl (@) +2x" (k- h,) Gs ()
(30)
k—h,-1
( Z y(z)) Gl (a) | xQ=0.
i=k—h,
It follows from (18)—(30) that
N N
AV (k) <& (k)Y Y oo [ [E ), (31)
i=1 j=1 ij

where ET(k) x(k) ()" x(k=h))T x(k=h,)" x(k- h(k))T
RIS O N B O N JETS () LD Y hj ' (i)
and [[; ; is defined in (10). Due to the fact that Zl Lo =1,
we obtam the following identities:

Mz

Suall-$T15 $om 11|,

i=1 j=1 i,] i=1 i i=1 j=i+l i,] Jok
N-1 N N-1 N
(N - I)Zoc —ZZ Zococ = Z Z [oc—oc] > 0.
i=1 j=i+l i=1 j=i+l
(33)
By (31)-(33), if the conditions (12)-(15) are true, then
AV (k) < —wlx|?, (34)

where w > 0. This means that the system (1)-(2) is robustly
stable. The proof of the theorem is complete. O

If A(0) = A and B(x) = B when A, B € M™" then the
system (1)-(2) reduces to the following system:

x(k+1) = Ax (k) + Bx (k - h(k)), (35)

x(s)=¢(s), se{-h,...,-1,0}. (36)
Take the Lyapunov-Krasovskii functional as (16), where
P(a) = P,Q(a) = Q, R(a) = R, S(a) = S, T() = T, U(ex) =
U, V(i) =V, W(ax) =W, X(a) = X,Y(x) =Y,and Z(a) = Z
when P,Q,R,S, T, U, V,W, X,Y,Z € M™". Moreover, let us
set polytopic matrices with appropriate dimensions of the
forms C;(a) = c/, Dj(a) = D/, Ei(a) = E’, Gj(a) = G’
and L;(a) = L/ when C/,D/,E/,G/,I/ ¢ M"™",j = 1,2,3.

(35)-(36). We introduce the following notations for later use:

'211 212 213 214 215 216 217 218 0 7
*« X2 0 0 0 0 0 %® o0
* * 233 234 0 236 0 0 218
* * * 244 0 0 247 0 218
H: * * * x X 0 0 =B o ,
x o+ % o+ % X 0 0 0
* * * * * 70 0
* * * * * * « 8 0
| * * * * * * % * 299_
(37)
where
11 T T
=Q+R+T+hM+N+N +hK+L+L
+C1+C1T+D1+D1T+E1+E1T+L2TA
+ AT+ 1P BB 12 1Y,
T
Ro AT 4 BT L -1 4P,
T T
13=C2—N—C1, 214:D2—L—D1,
T T
2¥= —EU B,  2=-C' +C,
sV = -p" 4D’
T
s g B 1B AT + BT - I,
S? =P+ RU+ BV + W +p’X
Y +hZ -1 -V,
528 _ —LITB—L3,
T T T
P = —Q+S-C-C* +G'+ G, »*=G*-G',
T T
3% - _ 3 _c? s¥ -G _ G
s¥_ _R_s-p*-D* —G*-G*"
47 _ —D3—D2T
249=—G3—G2T 55=—T—E2—E2T
»58 _ —E3—E2T
T
266=_U_C3_C3T) 7 - _y_p*-p*,
s8_ _wop_p -3 B- B},
2= X-G -G
(38)
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—_

system is robustly stable for discrete delay time satisfying
hy =2,h, =16,and

of 6 [43970 -0.4104
_if - b =10 ><[—0.4104 0.3531 ]

_6 1 1 1 L
0 5 10 15 20 25 30 P, = 10° [ 5.2274 —0.0613]

N B N0 O
T

x(k)

-0.0613 0.3488

W 4 [ 49438 -1.3988
— %k Q =107x [ 1.3988 1.3372
FIGURE 1: The Simulation solution of the states x,(k) and x,(k) o 1.6042 -0.3173
in Example 7 for LPD discrete-time delayed system with initial Q, =10"x —0.3173 0.1431
conditions x,(k) = —5.5 and x,(k) = 8.5, k = -16,...,-2,-1,0
and «; = 1/3, &, = 2/3 by using method of Runge-Kutta order 4 a4 1.8144 —-0.5737
(h = 0.01) with Matlab. Ry =10 x| ot e
A3 2669 —0.8605
Ry =10"x [ 0.8605 0.3167 ]
Corollary 6. The system (35)-(36) is asymptotically stable if S = 10% x 2.3161 —0.7409]
there exist positive definite symmetric matrices P,Q,R,S, T, 1= 0.7409 0.5638 |’
U, V,W,X,Y, and Z, any appropriate dimensional matrices )
M,N,K,L,C/,D/,E/,G/, and I, j = 1,2,3, satisfying the S, = 10° x [ 2.5557  —L.1238 1
following LMIs: 1.1238  0.4007 |
- 2862 —0.3474]
Ty =10"x [ 03474 02764 |’
H <0,
4 |5.0867 0.3198
M N T =10"x [0 3198 02709]
o |=0
N Y (39) U = 10t | 9:6266 ~0.3736
K L 1= 0.3736 2.6793
[LT Z] =0 7104 -1.2896
! -
Uz =107 x [ 1.2896 0.6493 ]
4. Numerical Examples Z10° x | 20354 ~0.1810
P Vi= 1071 01810 0.2286
Example 7. Consider the following LPD discrete-time system 11098 —02116
with interval time-varying delays (1)-(2) with -10° B
ying delays (1)-(2) v, 10x[02116 00795]
.4 _[1.2581 0.0031
[0.80 0 ] [0.90 0 ] Wi =107x10 0031 0.0279] :
1= > 2= >
0.01 0.60 0.05 0.90 -
(40) W. = 10° x 9.8860 0.9947
010 0 010 0 2 10.9947 0.4654 |
B1 = ) S B2 = ’ , r
0.20 0.10 -0.20 -0.10 X. = 10° x 3.6535 -0.2316
1= |—0.2316 0.3050
5 A3 [ 1.5049 —0.2858
h(k) = 2 + 14cos”(km/2) with initial condition ¢(k) = [ 32 |, X, =10 %1 15858 01068
k € [-16,0]. The numerical solutions x, (k) and x, (k) of (1)- )
(2) with (40) are plotted in Figure 1. Y. = 10° x 1.0677 —0.0668
1= -0.0668 0.3783

Solution. By using the LMI Toolbox in MATLAB (with Y. = 10t 8.4989 -1.5451
accuracy 0.01) and conditions (12)-(15) of Theorem 5, this 2= * 115451 1.0863



[ 4.8154 —0.3746]
|-0.3746 0.6475 |

[ 25697 —0.4901]
| -0.4901 0.2043 |

[~1.5983 ~0.1755]
|-0.1755 ~1.6231

[—2.1448 0.1127 ]
| 0.1127 —1.6904 |

[1.2837 0.1710
10.1710 1.5002 "

[ 1.6947 —0.0260
|—0.0260 1.6512

[-7.3049 0.2491
| 0.2491 9.7027 |’

[-0.1374 0.3389
| 0.3389 1.4742|°

[-0.9350 —0.1962
| —0.1962 -1.4853]°

[-1.7099 0.0229
| 0.0229 -1.6489 |’

[0.5714 0.2950
10.2950 1.3754)°

[1.3928 0.0393
10.0393 1.6269 ]’

[ 1.9066 —0.0891
| -0.0891 1.7055 |’

[ 1.7454 —0.0290
| —0.0290 1.6519

[-4.2910 -1.6701
|-1.6701 —1.5104 ]’

[-3.7600 —0.2382
|—-0.2382 -1.7532 "

[-7.0237 0.5763
| 0.5763 0.8408 |’

[-0.7534 —0.1269
| -0.1269 1.4957

[ 1.0553 —0.0488
| -0.0488 0.2403

[3.8446 0.2721
102721 1.7426 "

[-1.1174 —0.1492
|—0.1492 -1.4929 |’
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[-1.6145 —0.0032
|—0.0032 -1.6397

[0.6849 0.2738
10.2738 1.3873 |’

4 [1.3546 0.0545
10.0545 1.6203 |

[ 1.8742 —0.0945]

4
Gr=10"x| 90945 17071 |’
s 4 [ 17014 —0.0146]
G =107%1 0146 16454 |
1 a6 ] 53779 —0.2824]
Ly=10"x1 62824 0.4796 |’
L e [23117 0.0294
Ly =107 10,0294 0.3636]’
> 6. [ 40552 03696
Ly=10"x1 03696 02311 ]
> a4 [9.4267 09110
L3 =10"> 109110 7.4877]’
3 .5 [—2.9313 -0.2209
Ly=10"x1_6 2209 —0.4362]’
5 .5 [21784 -0.0837
Ly =107 _0.0837 —0.1597]’
K« _ | 897.9190 -266.0787
17 | -266.0787 187.1557
. _ [2367231 —47.9750
27 |-47.9750 19.2914
5[ 61473 —1.9404
M, =10 [—1.9404 1.4158]
" 1.6184 —0.3310
2= ~0.3310 0.1305
5 [-5.4598 0.9628
Ny =10 ><[09628 —2.2399]’
5 [-3.9963 0.7762
N, =10 X[ 0.7762 —0.4562]’
s [-24982 03102
Ly=10 X[ 0.3102 —0.3738]’
s [-1.1912 02324
L,=10 ><[02324 —0.0945]'

(41)

For the given h,, Table1 lists the comparison of the upper
bounds delay A, for robust stability of the system (1)-(2) with
(40) by the different method. By a conditions in Theorem 5,
we can see from Table 1 that our result is superior to those in
[22, Theorem 1].
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TaBLE 1: Comparison of the maximum allowed time delay h, for
different conditions.

h, 2 4 5 6
Liu et al. [10] (2006) 2 4 5 6
Zhang et al. [22] (2010) 12 13 14 15
Theorem 5 >15 >16 >17 >18

TaBLE 2: Comparison of the maximum allowed time delay A, for
different conditions.

h, 7 10 15 20
Fridman and Shaked [6] (2005) 13 15 19 23
Gao and Chen [1](2007) 14 15 18 22
Zhang et al. [22] (2010) 15 17 21 25
Zhang et al. [23] (2011) 15 17 21 25
Corollary 6 >18 >19 >24 >27

Example 8. Consider the system (35) with

0.80 0 -0.10 O

A= [0.05 0.90]’ B= [—0.20 —0.10]' (42)
For the given h,, we calculate the allowable maximum value
of h, that guarantees the asymptotic stability of the system
(35) with (42). By using different methods, the calculated
results are presented in Table 2. From the table, we can see
that Corollary 6 in this paper provides the less conservative
results.
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