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This paper is devoted to introduce a new approach to investigate the existence of solutions for a three-point boundary value problem
of fractional difference equations as fllows: Δ]

𝑦(𝑡) = 𝑓(𝑡 + ] − 1, 𝑦(𝑡 + ] − 1), Δ𝑦(𝑡 + ] − 2)), 𝑦(] − 2) = 0, and [Δ
𝛼

𝑦(𝑡)]
𝑡=]+𝑏−𝛼+1 =

𝛾[Δ
𝛼

𝑦(𝑡)]
𝑡=]+𝜉−𝛼. We present an existence result at resonance case. The proof relies on coincidence degree theory.

1. Introduction

In this paper, we consider a discrete fractional boundary value
problem, for 𝑡 ∈ [0, 𝑏 + 1]N0

, of the form

Δ
]
𝑦 (𝑡) = 𝑓 (𝑡 + ] − 1, 𝑦 (𝑡 + ] − 1) , Δ𝑦 (𝑡 + ] − 2)) , (1)

subject to the conjugate boundary conditions

𝑦 (] − 2) = 0, [Δ
𝛼

𝑦 (𝑡)]
𝑡=]+𝑏−𝛼+1

= 𝛾[Δ
𝛼

𝑦 (𝑡)]
𝑡=]+𝜉−𝛼

, (2)

where 𝑓(𝑡 + ] − 1, ⋅, ⋅) : [] − 1, ] + 𝑏]N]−1
× R × R → R is a

continuous function, 𝑏 ∈ N∗, ] ∈ (1, 2], 𝛼 ∈ (0, 1), 𝛾 > 0,
and 𝜉 ∈ [0, 𝑏]N0

, and satisfies both ] − 𝛼 − 1 ≥ 0 and (] + 𝑏 −

𝛼 + 1)
]−𝛼−1

= 𝛾(] + 𝜉 − 𝛼)
]−𝛼−1.

The three-point boundary value problem (1), (2) happens
to be at resonance in the sense that associated linear homo-
geneous boundary value problem

Δ
]
𝑦 (𝑡) = 0, 𝑡 ∈ [0, 𝑏 + 1]N0

,

𝑦 (] − 2) = 0, [Δ
𝛼

𝑦 (𝑡)]
𝑡=]+𝑏−𝛼+1

= 𝛾[Δ
𝛼

𝑦 (𝑡)]
𝑡=]+𝜉−𝛼

(3)

has nontrivial solution 𝑦(𝑡) = 𝐶𝑡
]−1

, 𝐶 ∈ R.
The research into the boundary value problems for differ-

ential equation and fractional differential equation have been
always very active subjects. Rich results has been obtained
due to the various powerful devices such as coincidence
degree theory and cone theory. For details, see [1–7] and the
references therein. Discrete fractional calculus has generated

interest in recent years. There are many literatures dealing
with the discrete fractional difference equation subject to
various boundary value conditions or initial value conditions.
We refer to [8–18] and references therein. However, we note
that these results were usually obtained by analytic techniques
and various fixed point theorems. For example, in [13–16],
authors investigated the existence to some boundary value
problems by fixed point theorems on a cone. In [17], we given
the existence of multiple solutions for a fractional difference
boundary value problem with parameter by establishing the
corresponding variational framework and using the moun-
tain pass theorem, linking theorem, and Clark theorem in
critical point theory. As we know, the coincidence degree
theory has played an important role in dealing with the
existence and multiple solutions for differential equations,
which include the boundary value problems. To the best
of our knowledge, it has not be used in discrete fractional
boundary value problems.The aim of this paper is to establish
the existence conditions for boundary value problem (1), (2).
The proof relies on the coincidence degree theory.

Now, we will briefly recall some notations and an abstract
existence result.

Let Y ,Z be real Banach space, let Φ : dom(Φ) ⊂ Y →

Z be a Fredholm map of index zero, and let 𝑃 : Y → Y ,
𝑄 : Z → Z be continuous projectors such that Im(𝑃) =

Ker(Φ), Ker(𝑄) = Im(Φ),Y = Ker(Φ) ⊕ Ker(𝑃), and Z =

Im(Φ) ⊕ Im(𝑄). It follows that Φ|dom(Φ)∩Ker(𝑃) : dom(Φ) ∩

Ker(𝑃) → Im(Φ) is invertible. We denote the inverse of the
map by 𝐾

𝑝
. If Ω is an open bounded subset of Y such that
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dom(Φ) ∩ Ω ̸= 0, and the map 𝑁 : Y → Z will be called L-
compact onΩ, if𝑄𝑁(Ω) is bounded and𝐾

𝑝
(𝐼 −𝑄)𝑁 : Ω →

Y is compact.
We need the following known result for the sequel.

Theorem 1 (Mawhin continuation theorem, see [2]). Let 𝐿 be
a Fredholm operator of index zero, and let𝑁 be 𝐿-𝑐𝑜𝑚𝑝𝑎𝑐𝑡 on
Ω. Assume that the following conditions are satisfied:

(i) 𝐿𝑥 ̸= 𝜆𝑁𝑥 for every (𝑥, 𝜆) ∈ [(dom(𝐿)\Ker(𝐿))∩𝜕Ω]×

(0, 1);
(ii) 𝑁𝑥 ∉ Im(𝐿) for every 𝑥 ∈ Ker(𝐿) ∩ 𝜕Ω;
(iii) deg(𝐽𝑄𝑁|Ker(𝐿), Ω∩Ker(𝐿), 0) ̸= 0, where𝑄 : Z → Z

is a projection as above with Im(𝐿) = Ker(𝑄), and 𝐽 :

Im(𝑄) → Ker(𝐿) is any isomorphism.

Then the equation 𝐿𝑥 = 𝑁𝑥 has at least one solution in
dom(𝐿) ∩ Ω.

2. Preliminaries

We first collect some basic lemmas for manipulating discrete
fractional operators.

First, for any real number𝛽, we letN
𝛽
= {𝛽, 𝛽+1, 𝛽+2, ...}.

We define 𝑡
𝛼

:= Γ(𝑡 + 1)/Γ(𝑡 + 1 − 𝛼), for any 𝑡 and 𝛼 for
which the right-hand side is defined. We also appeal to the
convention that if 𝑡 + 1 − 𝛼 is a pole of the Gamma function
and 𝑡 + 1 is not a pole, then 𝑡

𝛼

= 0.

Definition 2 (see [13]). The ]th fractional sum of𝑓 defined on
N
𝑎
, for ] > 0, is defined to be

Δ
−]
𝑎
𝑓 (𝑡) = Δ

−]
𝑎
𝑓 (𝑡; 𝑎) :=

1

Γ (])

𝑡−]

∑

𝑠=𝑎

(𝑡 − 𝑠 − 1)
]−1

𝑓 (𝑠) , (4)

where 𝑡 ∈ N
𝑎+]. We also define the ]th fractional difference,

where ] > 0 and 0 ≤ 𝑁 − 1 < ] ≤ 𝑁 with 𝑁 ∈ N, to be
Δ
]
𝑓(𝑡) := Δ

𝑁

Δ
−(𝑁−])

𝑓(𝑡) where 𝑡 ∈ N
𝑎+𝑁−].

Lemma 3 (see [13]). Let 𝑡 and ] be any numbers for which 𝑡
]

and 𝑡
]−1 are defined. Then

Δ𝑡
]
= ]𝑡

]−1
. (5)

Lemma 4 (see [13]). Let 0 ≤ 𝑁 − 1 < ] ≤ 𝑁. Then

Δ
−]
Δ
]
𝑦 (𝑡) = 𝑦 (𝑡) + 𝐶

1
𝑡
]−1

+ 𝐶
2
𝑡
]−2

+ ⋅ ⋅ ⋅ + 𝐶
𝑁
𝑡
]−𝑁

, (6)

for some 𝐶
𝑖
∈ R, with 1 ≤ 𝑖 ≤ 𝑁.

Lemma 5 (see [11]). For 𝛽 > 0 and all 𝜇 ∈ R, for which the
following is defined, we find that

Δ
𝛽

𝑡
𝜇

=
Γ (𝜇 + 1)

Γ (𝜇 − 𝛽 + 1)
𝑡
𝜇−𝛽

. (7)

Lemma 6 (see [10]). Let 𝑝 be a positive integer, and let ] > 𝑝.
Then Δ

𝑝

Δ
−]
𝑦(𝑡) = Δ

−(]−𝑝)
𝑦(𝑡).

Lemma 7 (see [17]). A real symmetric matrix 𝐴 is positive
definite if there exists a real nonsingular matrix 𝑀 such that
𝐴 = 𝑀

†

𝑀, where 𝑀† is the transpose.

We define the Banach space Y = C([] − 2, ] + 𝑏 +

1]N]−2
,R) with the norm ‖𝑦‖ = max

𝑡∈[]−2,]+𝑏+1]N]−2
|𝑦(𝑡)| and

Banach space Z = C([0, 𝑏 + 1]N0
,R) with the norm ‖𝑧‖ =

max
𝑡∈[0,𝑏+1]N0

|𝑦(𝑡)|. For 𝑦 ∈ Y , since

Δ
]
𝑦 (𝑡) =

1

Γ (−])

𝑡+]

∑

𝑠=]−2

(𝑡 − 𝑠 − 1)
−]−1

𝑦 (𝑠) , (8)

we can easily see that Δ]
𝑦 ∈ C([0, 𝑏 + 1]N0

,R).
DefineΦ to be the linear operator from dom(Φ) ∩Y toZ

with

dom (Φ) = {𝑦 ∈ Y | Δ
]
𝑦 ∈ C ([0, 𝑏 + 1]N0

,R) ,

𝑦 (] − 2) = 0, Δ
𝛼

𝑦 (] + 𝑏 − 𝛼 + 1)

= 𝛾Δ
𝛼

𝑦 (] + 𝜉 − 𝛼) } ,

Φ𝑦 = Δ
]
𝑦, 𝑦 ∈ dom (Φ) .

(9)

We define 𝑁 : Y → Z as

𝑁𝑦 (𝑡) = 𝑓 (𝑡 + ] − 1, 𝑦 (𝑡 + ] − 1) ,

Δ𝑦 (𝑡 + ] − 2)) , 𝑡 ∈ [0, 𝑏 + 1]N0
.

(10)

Then the boundary value problem (1), (2) can be written by

Φ𝑦 = 𝑁𝑦. (11)

Lemma 8. Φ : dom(Φ) ∩ Y → Z is a Fredholm operator of
index zero.

Proof. By Lemma 4 and the condition 𝑦(] − 2) = 0, we have
Ker(Φ) = {𝐶𝑡

]−1
| 𝐶 ∈ R}.

Let ℎ(𝑡 + ] − 1) ∈ Z, 𝐶
1
∈ R, and

𝑦 (𝑡) =
1

Γ (])

𝑡−]

∑

𝑠=0

(𝑡 − 𝑠 − 1)
]−1

ℎ (𝑠 + ] − 1) + 𝐶
1
𝑡
]−1

, (12)

thenΦ𝑦(𝑡) = Δ
]
𝑦(𝑡) = ℎ(𝑡 + ] − 1) and

Im (Φ) = {ℎ (𝑡 + ] − 1) ∈ Z |

𝑏+1

∑

𝑠=0

𝐺 (𝑠) ℎ (𝑠 + ] − 1) = 0} ,

(13)
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where

𝐺 (𝑠) :=

{{{{{{

{{{{{{

{

(] + 𝑏 − 𝛼 − 𝑠)
]−𝛼−1

−
(]+𝑏 − 𝛼+1)

]−𝛼−1

(] + 𝜉 − 𝛼)
]−𝛼−1

×(] + 𝜉 − 𝛼 − 𝑠 − 1)
]−𝛼−1

, 0 ≤ 𝑠 ≤ 𝜉,

(]+ 𝑏 − 𝛼 − 𝑠)
]−𝛼−1

, 𝜉+1 ≤ 𝑠 ≤ 𝑏+1.

(14)

In fact, if 𝑔 ∈ Im(Φ), then there exists 𝑦 ∈ dom(Φ) such that
𝑔(𝑡 + ] − 1) = Φ𝑦(𝑡) = Δ

]
𝑦(𝑡).

In view of Lemma 4, we have

𝑦 (𝑡) = Δ
−]
𝑔 (𝑡 + V − 1) + 𝐶

1
𝑡
]−1

+ 𝐶
2
𝑡
]−2

. (15)

By 𝑦(] − 2) = 0, we get 𝐶
2
= 0. By Lemmas 5 and 6, we

get

Δ
𝛼

𝑦 (𝑡) = Δ
𝛼

Δ
−]
𝑔 (𝑡 + V − 1) + 𝐶

1
Δ
𝛼

𝑡
]−1

= Δ
−(]−𝛼)

𝑔 (𝑡 + V − 1) + 𝐶
1
Δ
𝛼

𝑡
]−1

=
1

Γ (] − 𝛼)

𝑡−]+𝛼

∑

𝑠=0

(𝑡 − 𝑠 − 1)
]−𝛼−1

𝑔 (𝑠 + ] − 1)

+ 𝐶
1

Γ (])

Γ (] − 𝛼)
𝑡
]−𝛼−1

,

(16)

then
Δ
𝛼

𝑦 (] + 𝑏 − 𝛼 + 1)

=
1

Γ (] − 𝛼)

𝑏+1

∑

𝑠=0

(] + 𝑏 − 𝛼 − 𝑠)
]−𝛼−1

𝑔 (𝑠 + ] − 1)

+ 𝐶
1

Γ (])

Γ (] − 𝛼)
(] + 𝑏 − 𝛼 + 1)

]−𝛼−1
,

(17)

Δ
𝛼

𝑦 (] + 𝜉 − 𝛼)

=
1

Γ (] − 𝛼)

𝜉

∑

𝑠=0

(] + 𝜉 − 𝛼 − 𝑠 − 1)
]−𝛼−1

𝑔 (𝑠 + ] − 1)

+ 𝐶
1

Γ (])

Γ (] − 𝛼)
(] + 𝜉 − 𝛼)

]−𝛼−1
.

(18)

By [Δ
𝛼

𝑦(𝑡)]
𝑡=]+𝑏−𝛼+1 = 𝛾[Δ

𝛼

𝑦(𝑡)]
𝑡=]+𝜉−𝛼 and (] + 𝑏 − 𝛼 +

1)
]−𝛼−1

= 𝛾(] + 𝜉 − 𝛼)
]−𝛼−1, we have

𝑏+1

∑

𝑠=0

(] + 𝑏 − 𝛼 − 𝑠)
]−𝛼−1

𝑔 (𝑠 + ] − 1) −
(] + 𝑏 − 𝛼 + 1)

]−𝛼−1

(] + 𝜉 − 𝛼)
]−𝛼−1

×

𝜉

∑

𝑠=0

(] + 𝜉 − 𝛼 − 𝑠 − 1)
]−𝛼−1

𝑔 (𝑠 + ] − 1) = 0.

(19)

Therefore,
𝑏+1

∑

𝑠=0

𝐺 (𝑠) 𝑔 (𝑠 + ] − 1) = 0, (20)

that is,

𝑔 (𝑡+]−1) ∈ {ℎ (𝑡+]−1) ∈ Z |

𝑏+1

∑

𝑠=0

𝐺 (𝑠) ℎ (𝑠+]−1)=0} .

(21)

Next, we will show that 𝐺(𝑠) > 0, for all 𝑠 ∈ [0, 𝑏 + 1]N0
.

Obviously 𝐺(𝑠) > 0 for 𝜉 + 1 ≤ 𝑠 ≤ 𝑏 + 1. Suppose that
0 ≤ 𝑠 ≤ 𝜉, then

𝐺 (𝑠) = (] + 𝑏 − 𝛼 − 𝑠)
]−𝛼−1

−
(] + 𝑏 − 𝛼 + 1)

]−𝛼−1

(] + 𝜉 − 𝛼)
]−𝛼−1

× (] + 𝜉 − 𝛼 − 𝑠 − 1)
]−𝛼−1

= (] + 𝜉 − 𝛼 − 𝑠 − 1)
]−𝛼−1

× [
(]+𝑏−𝛼−𝑠)

]−𝛼−1

(]+ 𝜉− 𝛼− 𝑠− 1)
]−𝛼−1

−
(]+𝑏−𝛼+1)

]−𝛼−1

(]+ 𝜉−𝛼)
]−𝛼−1

]

= (] + 𝜉 − 𝛼 − 𝑠 − 1)
]−𝛼−1

× [
Γ (] + 𝑏 − 𝛼 − 𝑠 + 1) Γ (𝜉 − 𝑠 + 1)

Γ (𝑏 − 𝑠 + 2) Γ (] + 𝜉 − 𝛼 − 𝑠)

−
Γ (] + 𝑏 − 𝛼 + 2) Γ (𝜉 + 2)

Γ (𝑏 + 3) Γ (] + 𝜉 − 𝛼 + 1)
]

= (] + 𝜉 − 𝛼 − 𝑠 − 1)
]−𝛼−1

× [
(]+𝑏−𝛼−𝑠) (]+𝑏−𝛼−𝑠−1) ⋅ ⋅ ⋅ (]+𝜉−𝛼− 𝑠)

(𝑏−𝑠+1) (𝑏−𝑠) ⋅ ⋅ ⋅ (𝜉−𝑠 + 1)

−
(]+𝑏−𝛼+1) (]+𝑏−𝛼) ⋅ ⋅ ⋅ (]+𝜉−𝛼+1)

(𝑏+2) (𝑏+1) ⋅ ⋅ ⋅ (𝜉+2)
] .

(22)

Since ] − 𝛼 − 1 ≥ 0, we may imply that

] + 𝑏 − 𝛼 − 𝑠 − 𝑖

𝑏 − 𝑠 + 1 − 𝑖
−
] + 𝑏 − 𝛼 + 1 − 𝑖

𝑏 + 2 − 𝑖

=
(] + 𝑏−𝛼 − 𝑖) (𝑏+1 − 𝑖)+(] + 𝑏 − 𝛼− 𝑖)− 𝑠 (𝑏 + 2 − 𝑖)

(𝑏 − 𝑠 + 1 − 𝑖) (𝑏 + 2 − 𝑖)

−
(]+𝑏−𝛼−𝑖) (𝑏+1−𝑖)+(𝑏+1−𝑖)−𝑠 (]+𝑏−𝛼+1−𝑖)

(𝑏 − 𝑠+1−𝑖) (𝑏+2−𝑖)

=
(] − 𝛼 − 1) (𝑠 + 1)

(𝑏 − 𝑠 + 1 − 𝑖) (𝑏 + 2 − 𝑖)
> 0,

(23)

for 𝑖 = 0, 1, 2, . . . , 𝑏 − 𝜉, then 𝐺(𝑠) > 0.
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Let ℎ(𝑡 + ] − 1) ∈ Z, consider continuous linear mapping
𝑄 : Z → Z defined by

𝑄ℎ = 𝛿
0

𝑏+1

∑

𝑠=0

𝐺 (𝑠) ℎ (𝑠 + ] − 1) , (24)

where 𝛿
0
= (1/∑

𝑏+1

𝑠=0
𝐺(𝑠)) > 0.

Note that

𝑄
2

ℎ = 𝛿
0

𝑏+1

∑

𝑠=0

𝐺 (𝑠)𝑄ℎ (𝑠 + ] − 1) = 𝑄ℎ. (25)

That is, themap𝑄 is idempotent. In fact,𝑄 is a continuous
linear projector. Note that ℎ ∈ Im(Φ) implies 𝑄ℎ = 0.
Conversely, if 𝑄ℎ = 0, then ℎ ∈ Im(Φ). Therefore, Im(Φ) =

Ker(𝑄).
Take ℎ ∈ Z in the form ℎ = (ℎ−𝑄ℎ)+𝑄ℎ, so that ℎ−𝑄ℎ ∈

Im(Φ) and 𝑄ℎ ∈ Im(𝑄). Thus, Z = Im(Φ) + Im(𝑄). Let ℎ ∈

Im(Φ) ∩ Im(𝑄), and assume that ℎ(𝑠 + ] − 1) = 𝑏 ̸= 0. Then,
since ℎ ∈ Im(Φ), we have 𝑏 = 0, which is a contradiction.
Hence, Im(𝑄) ∩ Im(Φ) = {𝜃}, thus Z = Im(Φ) ⊕ Im(𝑄).

Now, dimKer(Φ) = 1 = codimIm(Φ), and soΦ is a Fred-
holm operator of index zero. The proof is accomplished.

Define a mapping 𝑃 : Y → Y by

𝑃𝑦 (𝑡) =
1

Γ (])
Δ𝑦 (] − 2) 𝑡

]−1
, 𝑡 ∈ [] − 2, ] + 𝑏 + 1]N]−2

,

(26)

we see that

Ker (𝑃) = {𝑦 ∈ Y | Δ𝑦 (] − 2) = 0} . (27)

Next, we will show that Ker(𝑃) ⊕ Ker(Φ) = Y .
In fact, for ∀𝑢 ∈ Ker(𝑃) ∩Ker(Φ), there exists 𝑦 ∈ Y such

that 𝑃𝑦(𝑡) = (1/Γ(]))Δ𝑦(] − 2)𝑡
]−1

= 𝑢(𝑡) and Δ𝑢(] − 2) = 0,
and then

Δ𝑢 (𝑡) |
𝑡=]−2 =

1

Γ (])
(] − 1) Δ𝑦 (] − 2) (] − 2)

]−2
= 0. (28)

That is, Δ𝑦(] − 2) = 0, and hence Ker(𝑃) ∩ Ker(Φ) = {𝜃}.
Next, if 𝑦 ∈ Y , then there exists a 𝜑(𝑡) ∈ 𝐶([0, 𝑏 + 1]N0

,R)

such that Δ]
𝑦(𝑡) = 𝜑(𝑡); therefore 𝑦(𝑡) = (1/Γ(])) ∑

𝑡−2+]
𝑠=0

(𝑡 −

𝑠 − 1)
]−1

𝜑(𝑠) + 𝑐
1
𝑡
]−1

+ 𝑐
2
𝑡
]−2. Since Φ(𝑐

1
𝑡
]−1

+ 𝑐
2
𝑡
]−2

) = 0

and Δ(1/Γ(])) ∑
𝑡−2+]
𝑠=0

(𝑡 − 𝑠 − 1)
]−1

𝜑(𝑠)|
𝑡=]−2 = 0, we see that

Ker(𝑃) ⊕ Ker(Φ) = Y .
Note that the projectors 𝑃 and 𝑄 are exact. Define 𝐾

𝑝
:

Im(Φ) → dom(Φ) ∩ Ker(𝑃) by

𝐾
𝑝
𝑦 (𝑡) = Δ

−]
𝑦 (𝑡) . (29)

If 𝑦 ∈ Im(Φ), then

(Φ𝐾
𝑝
) 𝑦 (𝑡) = Δ

]
Δ
−]
𝑦 (𝑡) = 𝑦 (𝑡) . (30)

Also, if 𝑦 ∈ dom(Φ) ∩ Ker(𝑃), then

(𝐾
𝑝
Φ)𝑦 (𝑡) = Δ

−]
Δ
]
𝑦 (𝑡) = 𝑦 (𝑡) + 𝐶

1
𝑡
]−1

+ 𝐶
2
𝑡
]−2

. (31)

We can easily see that𝐾
𝑝
Φ(𝑦) ∈ dom(Φ)∩Ker(𝑃); then𝐶

2
=

0 andΔ(𝑦(𝑡)+𝐶
1
𝑡
]−1

)|
𝑡=]−2 = Δ𝑦(]−2)+𝐶

1
(]−1)(]−2)]−2 = 0;

in view of 𝑦 ∈ Ker(𝑃), we have Δ𝑦(] − 2) = 0, then 𝐶
1
= 0,

thus

(𝐾
𝑝
Φ)𝑦 (𝑡) = 𝑦 (𝑡) , (32)

hence, 𝐾
𝑝
= (Φ|dom(Φ)∩Ker(𝑃))

−1.

Lemma 9. 𝐾
𝑝
(𝐼 − 𝑄)𝑁 : Y 󳨀→ Y is completely continuous.

Proof. Since𝐾
𝑝
(𝐼 − 𝑄)𝑁 is continuous and𝐾

𝑝
(𝐼 − 𝑄)𝑁𝑓(𝑡 +

] − 1, 𝑦(𝑡 + ] − 1), Δ𝑦(𝑡 + ] − 2)) is a finite sum for 𝑡 ∈ [] −

2, ] + 𝑏 + 1]N]−2
, 𝐾
𝑝
(𝐼 − 𝑄)𝑁 is completely continuous.

3. Existence Results

Observe by Lemma 6 that for 𝑡 ∈ [0, 𝑏 + 1]N0
,

Δ
]
𝑦 (𝑡) = Δ

1

Γ (1 − ])

𝑡−(1−])

∑

𝑠=]−2

(𝑡 − 𝑠 − 1)
−]
𝑦 (𝑠) . (33)

We let 𝑦 ∈ dom(Φ) and

𝑧 (𝑡 + ] − 1) =
1

Γ (1 − ])

𝑡−(1−])

∑

𝑠=]−1

(𝑡 − 𝑠 − 1)
−]
𝑦 (𝑠) , (34)

then

𝑧 (] − 1) =
1

Γ (1 − ])

0−(1−])

∑

𝑠=]−1

(−𝑠 − 1)
−]
𝑦 (𝑠) = 𝑦 (] − 1) , (35)

𝑧 (]) =
1

Γ (1 − ])

1−(1−])

∑

𝑠=]−1

(1 − 𝑠 − 1)
−]
𝑦 (𝑠)

= (1 − ]) 𝑦 (] − 1) + 𝑦 (]) ,

(36)

𝑧 (] + 1) =
1

Γ (1 − ])

2−(1−])

∑

𝑠=]−1

(2 − 𝑠 − 1)
−]
𝑦 (𝑠)

=
(2−]) (1−])

2!
𝑦 (]−1)+(1−]) 𝑦 (])+𝑦 (]+ 1) ,

...
(37)

𝑧 (] + 𝑏) =
1

Γ (1 − ])

𝑏+1−(1−])

∑

𝑠=]−1

(𝑏 + 1 − 𝑠 − 1)
−]
𝑦 (𝑠)

=
(𝑏 − ] + 1) (𝑏 − ]) ⋅ ⋅ ⋅ (1 − ])

(𝑏 + 1)!
𝑦 (] − 1)

+
(𝑏 − ]) (𝑏 − ] − 1) ⋅ ⋅ ⋅ (1 − ])

𝑏!
𝑦 (])

+ ⋅ ⋅ ⋅ + (1 − ]) 𝑦 (𝑏 + ] − 1) + 𝑦 (𝑏 + ]) .

(38)
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That is, 𝑧 = 𝐵𝑦, where 𝑧 = (𝑧(] − 1), 𝑧(]), . . . , 𝑧(] + 𝑏))
†

, 𝑦 =

(𝑦(] − 1), 𝑦(]), . . . , 𝑦(] + 𝑏))
†.

One has

𝐵 =
(
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0

1 − ] 1 0 ⋅ ⋅ ⋅ 0

(2 − ]) (1 − ])

2!
1 − ] 1 ⋅ ⋅ ⋅ 0

...
...

...
...

(𝑏 − ] + 1) (𝑏 − ]) ⋅ ⋅ ⋅ (1 − ])

(𝑏 + 1)!

(𝑏 − ] + 1) (𝑏 − ]) (𝑏 − ] − 1) ⋅ ⋅ ⋅ (1 − ])

𝑏!
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

)
)
)

)
(𝑏+2)×(𝑏+2)

. (39)

By Lemma 7, 𝐵†𝐵 is a positive definite matrix. Let 𝜆min and
𝜆max denote, respectively, the minimum and the maximum
eigenvalues of 𝐵†𝐵.

Since 𝑧 = 𝐵𝑦, we may easyly see that

𝜆min (
󵄨󵄨󵄨󵄨𝑦(] − 1)

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑦(])

󵄨󵄨󵄨󵄨

2

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑦 (] + 𝑏)

󵄨󵄨󵄨󵄨

2

)

≤ (|𝑧(] − 1)|
2

+ |𝑧 (])|
2

+ ⋅ ⋅ ⋅ + |𝑧(] + 𝑏)|
2

)

≤ 𝜆max (
󵄨󵄨󵄨󵄨𝑦 (] − 1)

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑦 (])

󵄨󵄨󵄨󵄨

2

+ ⋅ ⋅ ⋅ + |𝑦(] + 𝑏)|
2

) ,

(40)

furthermore,

(
𝜆min
𝑏 + 2

)

1/2

max
𝑡∈[]−1,]+𝑏]N]−1

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨

≤ max
𝑡∈[0,𝑏+1]N0

|𝑧 (𝑡 + ] − 1)|

≤ (𝜆max (𝑏 + 2))
1/2 max
𝑡∈[]−1,]+𝑏]N]−1

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 .

(41)

Theorem10. Let𝑓 : [0, 𝑏 + 1]N0
×R×R → R be a continuous

function in the second and the third variables. Assume that 𝜆 ∈

[0, 1] and

(𝐴
1
) there exist nonnegative constants 𝑎, 𝑑, 𝑙, 𝑚, and 𝑛 and
constants 𝑘, 𝑟 ∈ [0, 1) which satisfy 𝑎 + 2𝑑 < (1/(𝑏 +

1))(𝜆min/(𝑏 + 2))
1/2 such that for all (𝑥, 𝑦) ∈ R2, 𝑡 ∈

[] − 2, ] + 𝑏 + 1]N]−2
,

𝑓 (𝑡, 𝑥, 𝑦) ≤ 𝑎 |𝑥| + 𝑑
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 + 𝑙|𝑥|
𝑘

+ 𝑚
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨

𝑟

+ 𝑛, (42)

(𝐴
2
) there exists 𝑀

1
> 0 such that for 𝑦 ∈ dom(Φ), if

|Δ
]−1

𝑦(𝑡)| > 𝑀
1
for any 𝑡 ∈ [] − 2, ] + 𝑏 + 1]N]−2

,
then

𝑏+1

∑

𝑠=0

𝐺 (𝑠) 𝑓 (𝑠 + ] − 1, 𝑦 (𝑠 + ] − 1) , Δ𝑦 (𝑠 + ] − 2)) ̸= 0, (43)

(𝐴
3
) there exists 𝑀∗ > 0 such that for any 𝑐 ∈ R, if |𝑐| >

𝑀
∗, then either

𝑐

𝑏+1

∑

𝑠=0

𝐺 (𝑠) 𝑓 (𝑠 + V − 1, 𝑐(𝑠 + V − 1)
]−1

,

𝑐 (] − 1) (𝑠 + V − 2)
]−2

) < 0,

(44)

or else

𝑐

𝑏+1

∑

𝑠=0

𝐺 (𝑠) 𝑓 (𝑠 + V − 1, 𝑐(𝑠 + V − 1)
]−1

,

𝑐 (] − 1) (𝑠 + V − 2)
]−2

) > 0.

(45)

Then the boundary value problem (1), (2) has at least one
solution in Y .

Proof. Set Ω
1

= {𝑦 ∈ dom(Φ) \ Ker(Φ) | Φ𝑦 =

𝜆𝑁𝑦 for some 𝜆 ∈ (0, 1]}. Then for 𝑦 ∈ Ω
1
, Φ𝑦 = 𝜆𝑁𝑦,

thus𝑁𝑦 ∈ Im(Φ) = Ker(𝑄), and hence

𝑏+1

∑

𝑠=0

𝐺 (𝑠) 𝑓 (𝑠 + V − 1, 𝑦 (𝑠 + V − 1) , Δ𝑦 (𝑠 + V − 2)) = 0. (46)

From (𝐴
2
), there exists 𝑡

0
∈ [] − 2, ] + 𝑏 + 1]N]−2

such that
|Δ

]−1
𝑦(𝑡
0
)| ≤ 𝑀

1
.

Next, for 𝑦 ∈ Ω
1
, we have ΔΔ

]−1
𝑦(𝑡) = 𝜆𝑓(𝑡 + ]− 1, 𝑦(𝑡 +

] − 1), Δ𝑦(𝑡 + ] − 2)), and hence

𝑡−1

∑

𝑠=𝑡0

ΔΔ
]−1

𝑦 (𝑡)

=

𝑡−1

∑

𝑠=𝑡0

𝜆𝑓 (𝑡 + ] − 1, 𝑦 (𝑡 + ] − 1) , Δ𝑦 (𝑡 + ] − 2)) ,

(47)
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then we get

|𝑧 (𝑡 + ] − 1)|

≤
󵄨󵄨󵄨󵄨𝑧 (𝑡
0
+ ] − 1)

󵄨󵄨󵄨󵄨

+

𝑡−1

∑

𝑠=𝑡0

󵄨󵄨󵄨󵄨𝑓 (𝑠 + ] − 1, 𝑦 (𝑠 + ] − 1) , Δ𝑦 (𝑠 + ] − 2))
󵄨󵄨󵄨󵄨

≤ 𝑀
1
+

𝑡−1

∑

𝑠=𝑡0

[𝑎
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 + 𝑑
󵄨󵄨󵄨󵄨Δ𝑦

󵄨󵄨󵄨󵄨 + 𝑙
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨

𝑘

+ 𝑚
󵄨󵄨󵄨󵄨Δ𝑦

󵄨󵄨󵄨󵄨

𝑟

+ 𝑛]

≤ 𝑀
1
+

𝑏

∑

𝑠=0

[(𝑎 + 2𝑑)
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 + 𝑙
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨

𝑘

+ 2
𝑟

𝑚
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨

𝑟

+ 𝑛]

≤ 𝑀
1
+ (𝑏 + 1) [ (𝑎 + 2𝑑) max

𝑡∈[]−1,]+𝑏+1]N]−1

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨

+ 𝑙( max
𝑡∈[]−1,]+𝑏+1]N]−1

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨)

𝑘

+2
𝑟

𝑚( max
𝑡∈[]−1,]+𝑏+1]N]−1

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨)

𝑟

+𝑛] ,

(48)

then

max
𝑡∈[0,𝑏+1]N0

|𝑧 (𝑡 + ] − 1)|

≤ 𝑀
1
+ 𝜆 (𝑏 + 1)

× [ (𝑎 + 2𝑑) max
𝑡∈[]−1,]+𝑏+1]N]−1

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨

+ 𝑙( max
𝑡∈[]−1,]+𝑏+1]N]−1

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨)

𝑘

+2
𝑟

𝑚( max
𝑡∈[]−1,]+𝑏+1]N]−1

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨)

𝑟

+ 𝑛] ,

(49)

from (41), then we can get

max
𝑡∈[]−1,]+𝑏]N]−1

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨

≤ 𝑀
1
+ (𝑏 + 1) [𝑙( max

𝑡∈[]−1,]+𝑏+1]N]−1

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨)

𝑘

+2
𝑟

𝑚( max
𝑡∈[]−1,]+𝑏+1]N]−1

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨)

𝑟

+𝑛]

× ((𝜆min/ (𝑏 + 2))
1/2

− (𝑏 + 1) (𝑎 + 2𝑑))

−1

.

(50)

Furthermore, since𝑦(]−2) = 0, Δ
𝛼

𝑦(]+𝑏−𝛼+1) = 𝛾Δ
𝛼

𝑦(]+
𝜉 − 𝛼) and for any 𝑡 ∈ [] − 𝛼 − 2, ] + 𝑏 − 𝛼 + 1]N]−𝛼−2

,

Δ
𝛼

𝑦 (𝑡) = ΔΔ
𝛼−1

𝑦 (𝑡) = Δ[
1

Γ (1 − 𝛼)

𝑡+𝛼−1

∑

𝑠=]−2

(𝑡 − 𝑠 − 1)
−𝛼

𝑦 (𝑠)]

=
1

Γ (1 − 𝛼)

𝑡+𝛼

∑

𝑠=]−1

(𝑡 − 𝑠)
−𝛼

𝑦 (𝑠) −
1

Γ (1 − 𝛼)

×

𝑡+𝛼−1

∑

𝑠=]−1

(𝑡 − 𝑠 − 1)
−𝛼

𝑦 (𝑠)

=
−𝛼

Γ (1 − 𝛼)

𝑡+𝛼

∑

𝑠=]−2

(𝑡 − 𝑠 − 1)
−𝛼−1

𝑦 (𝑠)

(51)

holds, and we may see that 𝑦(] + 𝑏 + 1) can be expressed
by a linear combination with 𝑦(] − 1), 𝑦(]), . . . , 𝑦(] + 𝑏).
Therefore, ‖𝑦‖ = max

𝑡∈[]−2,]+𝑏+1]N]−2
|𝑦(𝑡)| is bounded. Thus,

Ω
1
is bounded.
Let Ω

2
= {𝑦 ∈ Ker(Φ) | 𝑁𝑦 ∈ Im(Φ)}. For 𝑦 ∈ Ω

2
,𝑦 ∈

Ker(Φ), since Im(Φ) = Ker(𝑄), then 𝑄𝑁𝑦 = 0, thus
𝑏+1

∑

𝑠=0

𝐺 (𝑠) 𝑓 (𝑠 + V − 1, 𝑐(𝑠 + V − 1)
]−1

,

𝑐 (] − 1) (𝑠 + V − 2)
]−2

) = 0.

(52)

From Lemma 5 and in view of 𝑦 ∈ Ker(Φ), we see that
|Δ

]−1
𝑦(𝑡)| = |𝑐||Δ

]−1
𝑡
]−1

| = |𝑐||Γ(])|, then from (𝐴
2
) we

get |𝑐||Γ(])| ≤ 𝑀
1
; that is, |𝑐| ≤ (𝑀

1
/|Γ(])|). Hence, Ω

2
is

bounded. Next, according to (𝐴
3
), for any 𝑐 ∈ R, if |𝑐| > 𝑀

∗,
then either

𝑐𝛿
0

𝑏+1

∑

𝑠=0

𝐺 (𝑠) 𝑓 (𝑠 + V − 1, 𝑐(𝑠 + V − 1)
]−1

,

𝑐 (] − 1) (𝑠 + V − 2)
]−2

) < 0,

(53)

or

𝑐𝛿
0

𝑏+1

∑

𝑠=0

𝐺 (𝑠) 𝑓 (𝑠 + V − 1, 𝑐(𝑠 + V − 1)
]−1

,

𝑐 (] − 1) (𝑠 + V − 2)
]−2

) > 0.

(54)

If (53) holds, set

Ω
3
= {𝑦 ∈ Ker (Φ) | −𝜆𝐽

−1

𝑦 + (1 − 𝜆)𝑄𝑁𝑦 = 0, 𝜆 ∈ [0, 1]} ,

(55)

where 𝐽 : Im(𝑄) → Ker(Φ) is the linear isomorphism given
by 𝐽(𝑐) = 𝑐𝑡

]−1
, ∀𝑐 ∈ R, and 𝑡 ∈ [0, 𝑏 + 1]N0

. Since 𝑦 ∈

𝑐
0
𝑡
]−1

∈ Ω
3
, 𝑐
0
∈ R, then

𝜆𝑐
0
= (1 − 𝜆) 𝛿

0

𝑏+1

∑

𝑠=0

𝐺 (𝑠) 𝑓 (𝑠 + V − 1, 𝑐(𝑠 + V − 1)
]−1

,

𝑐 (] − 1) (𝑠 + V − 2)
]−2

) .

(56)
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If 𝜆 = 1, then 𝑐
0
= 0. Otherwise, if |𝑐

0
| > 𝑀

∗, in view of
(53), one has

0 ≤ 𝜆𝑐
2

0

= 𝑐
0
(1 − 𝜆) 𝛿

0

𝑏+1

∑

𝑠=0

𝐺 (𝑠) 𝑓 (𝑠 + V − 1, 𝑐(𝑠 + V − 1)
]−1

,

𝑐 (] − 1) (𝑠 + V − 2)
]−2

) < 0,

(57)

which is a contradiction. Thus Ω
3

⊂ {𝑦 ∈ Ker(Φ) | 𝑦 =

𝑐𝑡
]−1

, |𝑐| ≤ 𝑀
∗

} is bounded.
If (54) holds, then the set

Ω
3
= {𝑦 ∈ Ker (Φ) | 𝜆𝐽

−1

𝑦 + (1 − 𝜆)𝑄𝑁𝑦 = 0, 𝜆 ∈ [0, 1]} ,

(58)

where 𝐽 is mentioned as above. By the analogous argument,
we can show thatΩ

3
is bounded too.

Now,wewill prove that all the conditions ofTheorem 1 are
satisfied. SetΩ to be bounded open set ofY such that∪3

𝑖=1
Ω
𝑖
⊂

Ω. By Lemma 9, 𝐾
𝑝
(𝐼 − 𝑄)𝑁 : Ω → Y is compact; hence 𝑁

is 𝐿-compact onΩ; then by the above argument, we have

(i) Φ𝑥 ̸= 𝜆𝑁𝑥 for every (𝑥, 𝜆) ∈ [(dom(Φ) \ Ker(Φ)) ∩

𝜕Ω] × (0, 1),
(ii) 𝑁𝑥 ∉ Im(Φ) for every 𝑥 ∈ Ker(Φ) ∩ 𝜕Ω,

then the conditions (i), (ii) of Theorem 1 are hold.
At last we will prove that the condition (iii) of Theorem 1

is satisfied. In fact, let 𝐻(𝑦, 𝜆) ̸= 0 for all 𝑦 ∈ Ker(Φ) ∩ 𝜕Ω,
thus, by the homotopy property of degree as follows:

deg (𝐽𝑄𝑁|Ker(Φ), Ω ∩ Ker (Φ) , 0)

= deg (𝐻 (⋅, 0) , Ω ∩ Ker (Φ) , 0)

= deg (±𝐼, Ω ∩ Ker (Φ) , 0) ̸= 0.

(59)

Then by Theorem 1, Φ𝑦 = 𝑁𝑦 has at least one solution in
dom(Φ) ∩ Ω; therefore the boundary value problem (1), (2)
has at least one solution in Y .

Remark 11. We may obtain similarly result when the third
variable of 𝑓 is instead by fractional difference of 𝑦(𝑡) with
the order 𝛽 which satisfies 0 < 𝛽 ≤ ] − 1.

Example 12. Consider the boundary value problem

Δ
3/2

𝑦 (𝑡)=𝑓(𝑡+
1

2
, 𝑦 (𝑡+

1

2
) , Δ𝑦 (𝑡−

1

2
)) , 𝑡 ∈ [0, 2]N0

,

𝑦 (−
1

2
) = 0, Δ

1/4

𝑦(
13

4
) = 𝛾Δ

1/4

𝑦(
9

4
) ,

(60)

where 𝑓(𝑡 + ] − 1, 𝑦(𝑡 + ] − 1), Δ𝑦(𝑡 + ] − 2)) = (1/8)|𝑦| +

(1/64)Δ𝑦 cos𝑦 + cos(𝑦Δ𝑦).

It is clearly that 𝑓 is continuous. ] = 3/2, 𝛼 = 1/4, 𝑏 =

𝜉 = 1, and 𝛾 = 13/12, then ] − 𝛼 − 1 = (1/4) > 0 and
(]+𝑏−𝛼+1)

]−𝛼−1
= 𝛾(]+𝜉−𝛼)

]−𝛼−1; therefore, the boundary
value problem (1), (2) is at resonance case. By ] = 3/2, we have

𝐵 = (

1 0 0

−
1

2
1 0

−
1

8
−
1

2
1

)

3×3

. (61)

By calculating, 𝜆min = 0.4344. Choosing 𝑎 = 1/8, 𝑑 =

(1/64), 𝑙 = 𝑚 = 𝑟 = 𝑘 = 0, and 𝑛 = 1, we can get
𝑎 + 2𝑑 = 1/8 + 2 × (1/64) ≤ (1/(𝑏 + 1))(𝜆min/(𝑏 + 2))

1/2

=

(1/2)(0.4344/3)
1/2, furthermore, for all (𝑦, Δ𝑦) ∈ R2, 𝑡 ∈

[0, 𝑏 + 1]N0
,

󵄨󵄨󵄨󵄨𝑓 (𝑡 + ] − 1, 𝑦 (𝑡 + ] − 1) , Δ𝑦 (𝑡 + ] − 2))
󵄨󵄨󵄨󵄨

≤
1

8

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 +

1

64

󵄨󵄨󵄨󵄨Δ𝑦
󵄨󵄨󵄨󵄨 + 1.

(62)

Therefore, the condition (𝐴
1
) ofTheorem 10 holds.Moreover,

we can choose 𝑀
1

= 1620,𝑀
∗

= 10; then the condition
(𝐴
2
), (𝐴
3
) ofTheorem 10 hold too. In fact, by the expression

of 𝑓, it is clear that if |𝑧| = |Δ
]−1

𝑦| > 1620, then |𝑦(] − 1)| =

|𝑧(] − 1)| > 1620. Therefore, we can see

2

∑

𝑠=0

𝐺 (𝑠) 𝑓 (𝑠 + ] − 1, 𝑦 (𝑠 + ] − 1) , Δ𝑦 (𝑠 + ] − 2))

= 𝐺 (0) [
1

8

󵄨󵄨󵄨󵄨𝑦 (] − 1)
󵄨󵄨󵄨󵄨 +

1

64
Δ𝑦 (] − 2) cos (𝑦 (] − 1))

+ cos (𝑦 (] − 1) Δ𝑦 (] − 2)) ]

+ 𝐺 (1) [
1

8

󵄨󵄨󵄨󵄨𝑦 (])
󵄨󵄨󵄨󵄨 +

1

64
Δ𝑦 (] − 1) cos (𝑦 (]))

+ cos (𝑦 (]) Δ𝑦 (] − 1)) ]

+ 𝐺 (2) [
1

8

󵄨󵄨󵄨󵄨𝑦 (] + 1)
󵄨󵄨󵄨󵄨 +

1

64
Δ𝑦 (]) cos (𝑦 (] + 1))

+ cos (𝑦 (] + 1) Δ𝑦 (])) ]

= 𝐺 (0) [
1

8

󵄨󵄨󵄨󵄨𝑦 (] − 1)
󵄨󵄨󵄨󵄨 +

1

64
𝑦 (] − 1) cos (𝑦 (] − 1))

+ cos (𝑦 (] − 1) Δ𝑦 (] − 2)) ]

+ 𝐺 (1) [
1

8

󵄨󵄨󵄨󵄨𝑦 (])
󵄨󵄨󵄨󵄨 +

1

64
𝑦 (]) cos (𝑦 (]))

−
1

64
𝑦 (]−1) cos (𝑦 (]))+cos (𝑦 (]) Δ𝑦 (]−1)) ]
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+ 𝐺 (2) [
1

8

󵄨󵄨󵄨󵄨𝑦 (] + 1)
󵄨󵄨󵄨󵄨 +

1

64
𝑦 (] + 1) cos (𝑦 (] + 1))

−
1

64
𝑦 (]) cos (𝑦 (]+1))+cos (𝑦 (]+1) Δ𝑦 (])) ]

≥ [𝐺 (0) (
1

8
−

1

64
) −

1

64
𝐺 (1)]

󵄨󵄨󵄨󵄨𝑦 (] − 1)
󵄨󵄨󵄨󵄨

+ [𝐺 (1) (
1

8
−

1

64
) −

1

64
𝐺 (2)]

󵄨󵄨󵄨󵄨𝑦 (])
󵄨󵄨󵄨󵄨

+ 𝐺 (2) (
1

8
−

1

64
)
󵄨󵄨󵄨󵄨𝑦 (] + 1)

󵄨󵄨󵄨󵄨 − (𝐺 (0) + 𝐺 (1) + 𝐺 (2))

>
11

64 × 6 × 24
Γ (

5

4
)
󵄨󵄨󵄨󵄨𝑦 (] − 1)

󵄨󵄨󵄨󵄨 +
1

64 × 6
Γ (

5

4
)
󵄨󵄨󵄨󵄨𝑦 (])

󵄨󵄨󵄨󵄨

− (𝐺 (0) + 𝐺 (1) + 𝐺 (2))

>
11

64×6×24
Γ (

5

4
)
󵄨󵄨󵄨󵄨𝑦 (]−1)

󵄨󵄨󵄨󵄨−(
5

24×4
+

1

6
+ 1) Γ (

5

4
)

>
1

64 × 18
Γ (

5

4
)
󵄨󵄨󵄨󵄨𝑦 (] − 1)

󵄨󵄨󵄨󵄨 −
5

4
Γ (

5

4
) > 0.

(63)

Thus, for every𝑦 ∈ R, 𝑠 ∈ [0, 2]N0
,∑2
𝑠=0

𝐺(𝑠)𝑓(𝑠+]−1, 𝑦(𝑠+]−

1), and Δ𝑦(𝑠+]−2)) ̸= 0, so (𝐴
2
) holds, and if |𝑐| > (19/√𝜋),

then for 𝑡 ∈ [0, 𝑏 + 1]N0
,

[
1

8
(𝑡 + ] − 1)

]−1
−

1

64
(] − 1) (𝑡 + ] − 2)

]−1
] 𝑐 − 1 > 0

for 𝑐 >
19

√𝜋

(64)

or

[
1

8
(𝑡 + ] − 1)

]−1
−

1

64
(] − 1) (𝑡 + ] − 2)

]−1
] 𝑐 + 1 < 0

for 𝑐 < −
19

√𝜋
.

(65)

Furthermore,

𝑐𝑓 (𝑡 + ] − 1, 𝑐(𝑡 + ] − 1)
]−1

, 𝑐 (] − 1) (𝑡 + ] − 2)
]−2

)

=
1

8
𝑐(𝑡 + ] − 1)

]−1
+

1

64
𝑐 (] − 1)

× (𝑡 + ] − 2)
]−2 cos (𝑐(𝑡 + ] − 1)

]−1
)

+ cos [(𝑐(𝑡 + ] − 1)
]−1

) (𝑐 (] − 1) (𝑡 + ] − 2)
]−2

)]

> 0, for 𝑐 >
19

√𝜋
,

(66)

or

𝑐𝑓 (𝑡 + ] − 1, 𝑐(𝑡 + ] − 1)
]−1

,

𝑐 (] − 1) (𝑡 + ] − 2)
]−2

) < 0, for 𝑐 < −
19

√𝜋
,

(67)

so (53) or (54) holds; that is, (𝐴
3
) of Theorem 10 holds.

Then, all the assumptions of Theorem 10 hold. Thus, with
Theorem 10, the boundary value problem (60) has at least one
solution in Y .
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