Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2013, Article ID 945767, 13 pages
http://dx.doi.org/10.1155/2013/945767

Research Article

Hindawi

A Schistosomiasis Model with Praziquantel Resistance

Longxing Qi' and Jing-an Cui’

!'School of Mathematical Sciences, Anhui University, Hefei 230601, China
2 College of Science, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

Correspondence should be addressed to Longxing Qi; gilx@ahu.edu.cn

Received 28 August 2012; Accepted 23 October 2012

Academic Editor: Cengiz Cinar

Copyright © 2013 L. Qi and J.-a. Cui. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A compartmental model is established for schistosomiasis with praziquantel resistance. The model considers the impact of genetic
resistance and drug treatment on the transmission of schistosomiasis. We calculate the basic reproductive number and discuss
the existence and stability of disease-free equilibrium, boundary equilibrium, and coexistence equilibrium. Our analysis shows
that regardless of whether drug treatment leads to the emergence of resistance, once the impact of genetic resistance is larger, the
resistant strain will be dominant, which is detrimental to the control of schistosomiasis. In addition, once the proportion of human
with drug-resistant strain produced by drug treatment is larger, the number of human and snails with resistant strain is larger. This

is not a good result for drug treatment with praziquantel.

1. Introduction

Currently, treatment of human beings infected by schistoso-
miasis primarily focuses on chemotherapy with praziquantel
(PZQ). PZQ appeared as a new schistosomicidal compound
during the 1970s [1]. In recent years, PZQ has become the
drug of choice in most endemic areas because of its efficacy,
its ease of administration, its tolerable side-effects, and its cost
[1]. Although the effectiveness of PZQ against schistosomiasis
is well documented, the precise mode of action of the drug
has not clearly defined [2]. It is reported that the chemother-
apy of many helminth infections is complicated by the
occurrence of drug resistance and drug tolerance (a natural
resistance) to certain anthelmintics [2]. Not surprisingly,
recent epidemiological evidence suggests the emergence of
PZQ-resistant\tolerant schistosomes [1, 3, 4]. Resistance is
defined as a genetically transmitted loss of sensitivity in a
parasite population that was previously sensitive to a given
drug [2]. Tolerance is an innate insusceptibility of a parasite
to a drug, with the caveat that the parasite must not have
been previously exposed to the drug [2]. The first report
of possible PZQ resistance came from an intensive focus in
northern Senegal, where the drug had produced very low
cure rates (18-39%) [5, 6]. And snails collected in the area
carried schistosoma strains. When tested in the laboratory,
those snails had a decreased susceptibility to PZQ [7, 8].

Additional PZQ-resistant evidence was collected in Egypt
[4, 9]. Preliminary studies have begun on these isolates to
identify genetic, physiological, and morphological character-
istics associated with PZQ resistance, and some of these may
find use as markers for monitoring whether or not resistance
is developing in endemic areas, where the drug is used [10].

Many papers have reported that drug treatment results in
the emergence of schistosome resistance to PZQ [11-13]. Drug
treatment can remove drug-susceptible parasites in infected
human beings, while resistant parasites survive. However,
many investigations find that traits of PZQ resistance of
Schistosoma mansoni are dominant inheritance [14-16]. The
resistant worms can reproduce and pass the resistant genes to
the next generation. Furthermore, the resistance of Schisto-
soma mansoni to PZQ can be expressed in eggs, miracidia,
cercariae, adults, and all stages of development [14-16].
In other words, some definitive hosts carrying resistant
schistosomes can infect snails and make those snails carry
resistant schistosomes. On the contrary, some snails carrying
resistant schistosomes can infect definitive hosts and also
make those definitive hosts carry resistant schistosomes. It
goes on, the control of schistosomiasis will face enormous
difficulties. Therefore, it is necessary to study the impact of
this schistosome genetic resistance on the transmission of
schistosomiasis.



In previous schistosomiasis models, resistant problems
have been studied by considering that the resistance of
schistosomiasis is due to drug treatment [11-13]. In [11,13], the
authors proposed a multistrain schistosome model including
sensitive and resistant parasite strains. Their goal was to
infer the impact of drug treatment on the maintenance of
schistosome genetic diversity. In their assumptions, the drug-
sensitive parasite strain had an additional per capita death
rate, o, due to treatment. For a parasite strain that had
developed drug resistance with a resistance level 8 (0 > 1),
this treatment-related death rate was assumed to be reduced
by the factor 0 to o/0. Their results implied that higher
treatment rate could allow for coexistence between sensitive
and resistant parasite strains. In [12], the authors formulated a
deterministic model with multiple strains of schistosomes in
order to explore the role of drug treatment in the maintenance
of a polymorphism of parasite strains that differed in their
resistance levels. And snails infected by parasite strains were
divided into multistrain subclasses according to the different
level 0; of parasite strains. Analysis of the model showed
that the likelihood that resistant strains would increase in
frequency depended on the interplay between their relative
fitness, the cost of resistance, and the degree of selection
pressure exerted by drug treatments.

Motivated by [11-13], we establish a new model consider-
ing hosts with sensitive and resistant strains in this paper. Our
purpose is mainly to study the impact of drug treatment and
genetic resistance on the transmission of schistosomiasis.

Our paper is organized as follows. In Section 2, we
establish a mathematical model with praziquantel resistance
and obtain basic reproductive number and existence of
equilibria. And then the stability of disease-free equilibrium
is obtained in Section 3. Section 4 devotes to stability analysis
of boundary equilibria. In Section 5, stability analysis of
endemic equilibrium is performed.

2. Mathematical Model

According to different level of parasite strains, we divide
infected hosts into sensitive and resistant strains. Considering
resistance and inheritance of resistance, new resistant strains
are composed of two parts. We classify definitive and inter-
mediate hosts as susceptible, sensitive and resistant in the
following:

(i) X,(t), the population of susceptible human;

(ii) X;(t), the population of human infected with sensitive
parasite strain;

(iii) X,(t), the population of human infected with resistant
parasite strain;

(iv) Y,(¢), the population of susceptible snail host;
(v) Y;(t), the population of snail host carrying sensitive
parasites;

(vi) Y,(t), the population of snail host carrying resistant
parasites.

We follow some of the available models for schistosomi-
asis [17-19] and assume that the reproduction rate of hosts is
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constant, and we ignore the recovery class of host since the
life span of infected is short in comparison to that of human
(18, 20]. All parameters in the model are assumed to be non-
negative constants:

(i) A, recruitment rate of human;
(ii) y,, per capita natural death rate of human;
(iii) &, per capita disease-induced death rate of human;

(iv) B;, per capita contact transmission rate from infected
snails to susceptible human;

(v) A,, recruitment rate of snails;
(vi) u,, per capita natural death rate of snails;
(vii) «,, per capita disease-induced death rate of snails;

(viii) B3,, per capita contact transmission rate from infected
human to susceptible snails;

(ix) 0, the rate of treatment for infected human;

(x) p,the proportion of human with drug-resistant strain
produced by treatment;

(xi) k, represents the impact of inheritance and the cost
of resistance on transmission rate, we assume that
k < 1 since the transmission rate is reduced due to
resistance [12];

(xii) k,, represents the impact of resistance on disease-
induced death rate of human;

(xiii) k,, represents the impact of resistance on disease-
induced death rate of snails.

Then, we have a model with the form:

dx,
dt =A;- :BIXsYi - kﬁIXsYr - X+ (1 - P) X,
dx,
— = B XY - X; - o X; - 0X;,
dt
dx
dtr = kﬁIXsYr + pGXi - n"ler - klaIXr’
. 1)
dts = A2 - ﬁZYin - kﬁZYer - AMZYS’
a,
a = BY. X - Y - oY,
dy,
dtr = kﬁZYer - [’IZYr - k2‘x2Yr'

Using standard methods, it is easy to see that disease free
equilibrium E; = (A,/¢4;,0,0,A,/u,,0,0) always exists. Let
Xoo = Mifps Yoo = Npfpg,my = py + oy +0,my =y + ko,
ms = U, + oy, and m, = p, + k,«,. According to the concept
of next generation matrix [21] and the formula of the basic
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reproductive number for ODE compartmental models [22],
if we let

0 0 BX, O
po| 0 0 0 kB X,
BY, O 0 0 :
0 kBY, O 0
()
m_ 0 0 0
[ om0 o0
V=l 0o 0 m o |
0 0 0 m,

one can calculate that the eigenvalues of the next generation
matrix FV " are given by

ROi — \jﬁlﬁZXsOYsO ,

m,ms

_ \/kzﬁlﬁzxsoyso. (3)

or —
mymiy

Then, it follows that the basic reproductive number for the
system (1) is given by

R, = max {Ry;, Ry, } . (4)

To obtain other equilibria, we let the right-hand side of
(1) equal to zero and obtain

A _IBIXsYi_kﬁIXsYr_tMIXs"'(l_p)GXi: 0, (5)

B XY — i X; — oy X; - 0X; =0, (6)
kB, XY, + poX; — i X, —kjy X, =0, (7)
Ay = BY X, — kB Y X, — Y =0, (8)
BoY X; - hY; — ayY; = 0, 9)
kB, Y X, - w,Y, — k,a,Y, = 0. (10)

If X; = 0, we have Y; = 0 and a formula of X, as follows:
(kzﬁlﬁzAzmz + M1m2m4kﬁ2) X,

= kzﬁlﬁzAlAz — B mymy.

(11)

Note that Ry, > 1 equals to k*B, By A A, > pyphytymy.
Hence, if Ry, > 1, there exists a boundary equilibrium with

only resistant type, given as E,, = (X,,,0,X,,,Y;,,0,Y,,),
where
B Ay (M1m4R§r + kﬁlAZ)
T (umy + kB AL RS,
X = Uty (Rgr - 1)
T (uymy + kBA L) KB,
(my + kBN L) kP, (12)

_ Ay (umy + kBiA,)
Ui MyRG, + KBy Ay

B Aoy (R(z)r B 1)

v ptlm4R%, +kBiA,

sr

If drug treatment does not lead to drug resistance, that
is, p = 0, then when R;; > 1, we can obtain the other
boundary equilibrium with only sensitive type, given as E; =
(X> X;»0,Y;, Y}, 0), where

_Aymymy + (g + oy) pymymy

Xsi - >
BiBahy (g + ) + pymymy
B Hpmymy (Réi - 1)
BB, () +M1m1m3’
Y.

_ .81/321\22 (1) + ) + Aypymym,
Both ppmymy (R(Z)i_ 1)+ By o oty (phy 0y )+ phy a1y 1113
Y.

ii

Ao Bop pmy (Réi - 1)

- Both ppmymy (R(Z)i_l)+181ﬁ2A 2t (th +(x1)+‘u1‘u2m1m3'
(13)

Now, we study existence of coexistence equilibrium for
the system (1). From (5)-(10), we obtain

[Bi B, (1 + &y) + pymyms By ] X
+ (pmymskBy + By oA ) X, (14)

= BN ANy — pypymyms.

Following (6), (7), (9), and (10), we have

Y, kmX; _ mX; (15)
Y, mX,-poX; kmyX,
In the case that p = 0, (15) leads to
km, X; _ myX; ' 16)
m,X,  kmyX,

Note that R; = R, equals to km, /m, = m,/kms. It is easy to
see thatif R, # R,,, (16) cannot hold, which implies that there
is not coexistence equilibrium. If R; = R, (16) always holds.
Hence, if R), = Ry; > 1, thatis, B,5,A A, > puu,mms,
(14) represents the existence of coexistence equilibrium in the
form of a line.

In the case that p # 0, (15) leads to

mypoX; = (m2m4 - k2m1m3) X,. 17)

Note that Ry; > R,, equals to m,m, — k*m,m; > 0. Following
(14) and (17), we can obtain that if R); > R,, and Ry; > 1,



then the unique coexistence equilibrium is given by E,
(Xso» Xio» Xpoo Yoo Yy, Yy ), where

sc>

sc? re?

X, = mypa (BB A, — .“1!"27”17”3)
X ([BiBahy (py + ) + pymymy B, ]
X (m2m4 - k2m1m3)
+ mypo (umymskp, + B By A 27”2))71’

2
mymy — k“mym,
—cha

X. =

ic m,po
o A, (18)

* ﬁZXic + kﬁZch + %) '

—_ kA ZﬁZch

o omy (B X + KBy X + )

Yic — ﬂZYscXic,
Uy + &y

_ A1 + (1 _P)axic
* ﬁIYic-l—kﬁerc*—Ml‘

Summarizing above analyses, we have the following
result.

—BY; — kB Y, — (1_P)‘7 0
1Y —m, 0
J= kﬁIYr po —m,
0 _ﬂZYs _k:BZYs
0 B.Y, 0
0 0 kB,Y,

Then, the eigenvalues of E, are —p;, —y, and roots of the
following equations:

A+ (my +ms) A+ myms = 1S, X oV = 0, 20)
A+ (my + my) A+ mymy — KBy By X oY = 0.

Note that R, < 1 equalsto R); < 1 and R;, < 1, whichleads to
myms—B, B, X Yo > 0and m,m,—k* B, f,X Y., > 0. Hence,
if Ry < 1, then all the roots of (20) have negative real parts.
Hence, using the Routh-Hurwitz criterion, we can obtain that
the disease free equilibrium E, of the system (1) is locally
asymptotically stable if R, < 1 and unstable if R, > 1. O

Now, we turn to the study of the global stability of the dis-
ease free equilibrium of the model (1) by using Metzler matrix
theory and the technique of Kamgang and Sallet [23].
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Lemma 1. The existence of equilibria for the system (1) is as
follows:

(1) the disease free equilibrium E, always exists;

(2) if Ry, > 1, there exists a boundary equilibrium with
only resistant type E,,;

(3) if p = 0 and Ry; > 1, there exists a boundary equilibri-
um with only sensitive type E;

(4) if p = 0 and Ry; = Ry, > 1, there exists coexistence
equilibrium in the form of a line (14);

(5) ifp#0and Ry; > Ry, and Ry; > 1, there exists a unique
coexistence equilibrium E..

The following section shows that the basic reproductive
number R, provides a threshold condition for schistosoma
extinction in ().

3. Stability Analysis of the Disease
Free Equilibrium

In this section, we will analyze stability of the disease free
equilibrium of the model (1). The stability of the disease
free equilibrium determines whether schistosomiasis will be
permanent in an uninfected population. The following result
shows that schistosome will go extinctif R < 1.

Theorem 2. The disease free equilibrium E, of the system (1)
is locally asymptotically stable if Ry < 1 and unstable if R, > 1.

Proof. The Jacobian matrix for the system (1) is given by

0 _ﬁIXs _kﬁl Xs
0 Bi X, 0
0 0 kBX,
P Xi = kX, —p, O 0 19)
B X; —ms 0
kB, X, 0 —my
Consider systems of the following form:
dx
d_tl = f(x1,%,),
g (1)
X
d_tz = g(x1.%5)

where x; € R, x, € RP, and f and g are C'. We denote
by x = (x;, x,) the state of the system and (x;,0) is a disease
free equilibrium on a positively invariant set QO ¢ R*™™. Now
rewrite (21) as

dx,
dt

dx
dt

= A (%) (x;—x])+ A (%) x,,
(22)
= A, (x) x,.
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For the system (22), we make the following assumptions.

(h,) The system is defined on the positively invariant set Q)
of the nonnegative orthant. The system is dissipative
on .

(h,) The subsystem dx, /dt = A,(x) - (x; — x]) is globally
asymptotically stable at the equilibrium x; on the
canonical projection of Q on R'.

(h;) The matrix A,(x) is Metzler and irreducible for any
given x € Q).

(h,) There exists an maximum matrix Zz, then forany x €
Q such that A, = A,(X), x € R}" x {0}.

(hs) a(A,) < 0, that is, the greatest real part of eigenvalues
of A, is nonnegative.

For convenience, we state two lemmas due to Kamgang and
Sallet [23].

Lemma 3. If the above hypotheses, h,-hs, are satisfied, then
the disease free equilibrium is globally asymptotically stable in
Q.

Lemma 4. If the same notations and hypotheses in Lemma 3
hold and if, furthermore, we have A, = A,(x},0), the disease
free equilibrium is globally asymptotically stable if and only if
(x(zz) <O0.

Next, we discuss the global stability of the disease free
equilibrium E; of the system (1) using the above two Lemmas.
From the system (1), we know
d(X,+X;+X,)
dt
=AM - (X + X+ X,) - oy X - ko X,

S/\1_l’ll(‘XS""Xz""‘Xr)’

(23)
d(Y,+Y,+Y,)
dt
=Ny =y (Y +Y;+Y,) - Y, - kY,
<Ay - (Y +Y;+Y,).
This proves that the set
Q= { (X X;, X,, Y, Y, Y,) € RD | X, + X; + X,
(24)

A1 A2
<— Y +Y,+Y, < —=
th 1)

is a compact positively invariant absorbing set contained in
the nonnegative orthant. Thus, the system (1) is dissipative on
Q because the trajectories of (1) are forward bounded. Now,
we will study the system (1) on Q.

We set for system (1) x; = (X,,Y,), x, = (X;, X,,Y,,Y,),
and x| = (A/p;, A,/u,). As in [23], we express the subsys-
tem as dx, /dt = A,(x;,0)(x; — x;) and

dx,

dt =N - X,
oy (25)
dts = A2 - AMZYS'

This is a linear system, and its unique equilibrium (A, /y;,
A,/u,) (corresponding to the disease free equilibrium of (1))
is globally asymptotically stable, hence the assumptions (h,)
and (h,) are satisfied.

The matrix A, (x) is given by

—m 0 ﬁle 0
[ po om0 KBX,

A, (x) = BY, 0  -m; 0 . (26)
0 kBY, 0 -my

As required by hypothesis h;, for any x € Q, the matrix A, (x)
is irreducible.

Now, let us check (h,). There is a maximum which is
uniquely realized in Qif X, = A, /p; and Y, = A, /u,, which
corresponds to the disease free equilibrium. This maximum
matrix is then J,, the subblock of the Jacobian matrix at the
disease free equilibrium, corresponding to the matrix A, (x).
The matrix J, is given by

—my 0 Bi X0 0

- po. My 0 kBiXgy
J= B:Y 0 —ms 0 ' @7)
0 kBY, O -1y

Therefore, we are in the situation of Lemma 4, where the max-
imum is attained at the disease free equilibrium.
The hypothesis (h;) requires that e(J,) < 0. Writing J, asa

A2><2 BZXZ

block matrix J, = ( Cyrs Do ) Since A is already a Metzler

stable matrix, the condition «(J,) < 0 is equivalent to the
condition a(D — CA™'B) < 0 [23], where

ﬁl ﬁZXsOYsO —my,

0

m

D-CA™'B = ' R
PokB XY KBS X Yo —m
mym, my, !
(28)
Then,

a(D-CA™'B)

- max BiBaX oY — myms k2ﬁ1ﬁ2X50Yso — Myy
m, ’ m, '
(29)

Hence, the condition «(D — CA™'B) < 0 is equivalent to R, <
1. We have seen that the hypotheses (h,), (h,), (h;), (h,), and
(hs) are satisfied. Then, by Lemma 4, we have the following
result.

Theorem 5. The disease free equilibrium E, of the system (1)
is globally asymptotically stable if Ry < 1.



4. Stability Analysis of
the Boundary Equilibria

In this section, we turn to study stability of the two boundary
equilibria. From Lemma 1, we know that if R,, > 1, there
exists a boundary equilibrium with only resistant type E,),.
Through calculations, we can obtain the characteristic equa-
tion as following:

{(A+m1)(l\+m3) ﬁl:BZ N sr}

{(/\+m2)()u+m4)()t+‘u1 +kB,Y,,)
X (A + %93 + kﬁZer)

BBy X Y, (A + ) (A + [42)} =

(30)

Hence, the eigenvalue of E;, are roots of the following equa-
tions:

A+ (my + my) A+ mymy = B, B, X, Y, =0, (31

Mrad +a,) +a;d +a, =0. (32)
Here,
Ay
a, = m2+m4+—+ >0,
Sr Na
A A
a, = mymy + (m, +my) (—1 + —2>
XST YS?’
A A,
X Y k :BIﬁZ ST sr’
(33)
Ay, A, Ay A,
ay =mymy | =L+ =2 |+ (my +my) =L =2
X, Y, X, Y,
2
-k ﬁlﬁZXsr sr (Aul + .MZ)
AyA,
a, =mymy,— — —k X, Y .
4 2 4X5r Ysr ﬁlﬁZ srisrthi
From (12), we can obtain XY, XsOYso/Rgr =
m,m, [k B, 3. Then,
m,m
mymy = By, X, Y, = mymy — — 5= (34)

k2

It is easy to see that R,/R:. = (mym,/k*)/m,m;. Then,
Ry; < Ry, equals to mymy > 3, 3,X,,Y,,, which implies that
the roots of (31) have negative real parts if Ry; < R,,.
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Based on (A,/X,)(A,/Y,) =
k2/31/32 &Y, = My, we can obtain

_ Ay Az)
a/l—(m2+m4)<Xsr+Y +

St

th ‘qugr and

Ay A,

>0,
XST' YST

Hip1my (R(z)r - 1)
pmy + kB A,

kB A, (R(z)r - 1)
.“17’”4Rgr + kB A

az = My [

+ (my +my) .“1.”2R§rs

ay = MyMylh ( - 1)
(35)

Here, a; > 0and g, > 0if R, > 1.

If Ry, > 1, let kB Ay (RG, — D/ (uymyRg, + kBiA,) =
p1 > 0and ppmy(Ry, = 1)/ (pymy + kByA,) = p, > 0, then
Ay /Xy = pr+m > wand Ay/Y, = py + iy > . Note
that m, = p; + kjay > y; and my, = p, + ko, > p,, then
my +my > Y, + U, and mym, >y, pu,. Hence, we can obtain

H, =a >0,
a, a
H,=|1! 3 =aga —a
2 10, — a3
1 a,

A A
2 2 2 1 2
(mz +my +mymy + /41M2R0r) (—Xsr + —>

N

A
+(rr12+m4)<—1 +

X, Y

S

2
_2) +mymy (py + ) > 0

a a3 0
1 a O
0 a as

_ 2 2
=a,a,a; — a; —aja,

A, A\
(m, + 7”4)27”2”’l4<_1 + _2)
XST YST

A

3 A
+ (my +my) (X_l + Y_2> MIAMZRér

St

A A
2
+ i iy R, (my + my) mymy, <X_1 + Y_2>

Ssr sr

A, ALY
+ (m, +m4)mzm4<X—1 + Y—2>

Ng

A2

+(my + ””‘4)2(_1 + _2> .“1.”2R(2)r
A

o) (1 + 32 ) iR,

2 2f A A
2(!"1+M2)m2m4<x_1+y_2

r St
+ (my +my) MlP‘zR(Z)rmz”’M (1 + 1)

2
+ (my + my) " uy uymym,
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Ay A,
+2(my +my) X_+Y_ Uy pmymy

N

Ay A, 2
+ X_sr+Y_ W mymy

sr

A A
— (m, + m4)2m2m4 (Xl Y_2> (h + 1)

sr sr

%) (e + 1)

St N

A A
- MIAMZRér () + ) mymy <X_slr + Y_z)

ST

- (my +my) m2m4(X

Ay ALY 2
() e e+ )

sr sr

A A, 2
Xl + Y_> tta Ry,

N

- 2mymy (my +my) (
St

- mymy(m, + m4)2[41.“2R§r
2
> (m% + mzzx) my 1y (Pf + P; + 1Pyt P t Pz!"z)

+ mgmi (P? + P; +2p + 2P2.”2) >0,

a a; 0 0
1 a a O
0 a a3 O
01 a g

H, = = a,H, > 0.

(36)

It follows from Routh-Hurwitz criterion that all roots of
(32) have negative real parts if R), > 1. Summering above
analyses, we have the following result.

Theorem 6. The boundary equilibrium E,,, of the system (1) is
locally asymptotically stable if R;, > 1 and Ry; < R,,.

Now, we study the global stability of the boundary equi-
librium E,,. Consider the Lyapunov function

V, =d, X, +d,Y, (37)

whered, = (m; + 3,(A,/w,))/mm;(Ry; +1) and d, = (m; +
Bi(A/uy))/mm;s(Ry; + 1). The Lyapunov derivative is

av,

= =d, (B XY, -mX

) +dy (BY X, —myY;)

IN

A A
<d“81!”_1 - d2m3> Y, + (dzﬁz‘u_z - d1m1> X

1 2

A

< (Ry = 1) (Y; + X;)

IN

0 for Ry < 1.
(38)

This implies that the sensitive type dies out if Rj; < 1. Then
the largest compact invariant set of the system (1) in the set

{dv,/dt = 0}is Q, = (X, X, X,,Y,,Y,Y,) € Q| X; =
Y; = 0. Using the LaSalle-Lyapunov theorem, we know that
all trajectories in Q eventually tend to Q2; ast — o00. Then,
we only need to study the dynamical behavior of (1) in Q,. At
this time, (1) reduces to the following system

dx,
dr Ay kB XY, - X

djir = kﬁIXsYr - mZXr’

J (39)
Y,

E =A,- kﬂZYer - Y,

ay,

Fr kB, Y X, -m,Y,.

To show that all trajectories of (39) in the interior of Q,
approach the point (X,,, X,,,Y,,,Y,,) corresponding to the
boundary equilibrium E,y,, consider the Lyapunov function

V, =d, {[X - X, —Xsrln< X, )]
XST‘
)l
XTF
+d, HYS -Y,, —Ysrln<£>]
YST
Y,
. [YT—Yr,—Y,rln(—rﬂ},
er

where positive constants d; and d, are defined in the
following. It is easy to see that V, > 0 for (X, X,,Y,,Y,) € Q,,
andV, = 0 & (X,,X,,Y,,Y,) = (X,,X,,,Y,,Y,,). Hence,
the function V, is positive definite with respect to the point
('XST’ rr> ST’Y )

Computing the derivative of V, along solutions of system
(39), we have

@l ) - w (3]
dt— 'lldt oar \ X dt dr \ X,

e -a e Z‘?(%)H

+ [X, - X, -X,,In (
(40)

=d, [Al X, — XS’A + kB X, Y, + X
N
X,,
-m,X, —kp, XY, — X L +m,X,, ]

— Y.
+d, [Az - Y- %Az + kB Yo X, + py Y

N
Y,,
-m,Y, - kB, Y. X, — v L +m,Y,, |.

r

(41)



SubStitutingAl = kJBIXerrr'i_tuler’AZ = kﬁZYsrer+tu2Ysr’
m,X,, = kB, X,,Y,, and m,Y,, = kB,Y, X, into dV,/dt, we
obtain

dv,

dt

- X X
=d X, (2-=—-=")+ (kB X,Y, -m,X
1 {["1 sr< Xsr Xs ) ( ﬁl srer m, r)

2
X X
( ST") —k/31 XsYr er

S r

|

+ [ZkﬁlerYrr_kﬁlyrr

N N

= Y, Y
+ dZ{/’lZYsr (2 - Y_s - %) + (kBY o, X, —m,Y,)

(Ysr)2 Yrr

+ ZkﬁZYsrer_kﬁZer _kﬁZYer_ .
Y, Y,

(42)

Letd, = kB,Y, X,, and d, = kB, X,,Y,,. Following from
m,X,, = kB, X, Y, andm,Y,, = kB,Y_ X,,, we have

H1 (kﬁIXerr - mZXr) + a2 (kﬁZYsrXr - m4Yr) =0. (43)

Hence, for all (X, X,,Y,,Y,) € Q,,

% = 31 {.uler <2 - XS - XS?’)

dr X, X,
X XY . X
+kB, X, Y,, [2 L - M]}
Xs Xererr
- Y, Y,
o, (2 2 T2)
i Ysr Ys
Y, Y.XY,
+kﬁZYsrer [2 - - u]}
Y, Y,X,Y,

- X, X,\ - Y, v,
= dl."lIXsr <2 - X_:r - YT)"’dZ.MZYsr <2 - Y_S - Y_S>

N N

+a H <4_& _ XsYrer _& _ YerYrr ) <0
1%2 = Y-
XS XSTY?‘TXT YS YSTXT?"Yf
(44)
It is easy to see that
dv.
—2-0e=X,=X,, X, =aX,,

dt (45)
Ys = Ysr’ Yr = aYrr’

where a is an arbitrary positive number. Substituting X, =

XX, =aX,,, Y, =Y,,andY, = aY,, into the first equation
of system (39), we obtain

0= Al - akﬁlxerrr - /’llxsr’ (46)
and then the above formula holds if and only if a = 1.

Therefore, the only compact invariant subset of the set where
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dv,/dt = 0 is the point (X, X,,,Y,,Y,,), corresponding
to the boundary equilibrium E;,. By LaSalle’s Invariance
Principle, E,, is globally asymptotically stable if Rj, > 1 and
Ry; < 1. Summering above analyses, we have the following
result.

Theorem 7. The boundary equilibrium E,,, of the system (1) is
globally asymptotically stable if Ry, > 1 > R;.

Now, we turn to the other boundary equilibrium. From
Lemma 1, we know that if p = 0 and Ry; > 1, the boundary
equilibrium with only sensitive type E,; exists. Through cal-
culations, we can obtain the characteristic equation as follow-
ing:

{(/\ +m,) (A +my) - k2ﬂ1/32XsiYsi}
XA +my) (A +my) (A +p) (A + py + B X55)
+ 1Y (A +ms) (A +p, + B,X;;) (A +my —0)

~BiBaXY (A + ) (A + )} = 0.
(47)

Hence, the eigenvalue of E; are roots of the following equa-
tions:

A+ (my + my) A+ mym, — KB B XY =0, (48)
A+ + b, + b A+ b, = 0. (49)
Here,
by =m +my +pu +u, + X + 1Y >0,
by =y (my +my + py + By X5;) +my (my + py + B X5,)
+ms (py + By Xii) + BiY; (my — 0+ my + py + BrX;)
—mymg
=y (my +my + py + By Xy5) +my (y + B X50)
+ 15ty + BoX) + BrY (g + o+ ms + py + B, X5;)
>0,
by = pymy (ms + py + B, X) + myms (, + B, X5;)
+ BiYii [ms (y + BoXii) + (my = 0) (ms + py + B, X))
= mymy (py + )
= mmy (p + BoX;) + myms By X
+ BV [ms (py + BoXi) + (i + @) (ms + py + BrX55)]
>0,
by = pymym (¢ + By Xii) + By Y (py + BoX55) (my = o)
LTSS

= pymyms By X, + By Ymy (py + By X)) (g + @) > 0.
(50)
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From (13), we can obtain that 8, 3,X;Y,; = m,m,. Then,
itis easy to see that the roots of (48) have negative real parts if
Ry; > R,,. Similarly to the case of E,,, using Routh-Hurtwitz
criterion, we can obtain that all roots of (49) have negative
real parts if Ry; > 1. Summering above analysis, we have the
following result.

Theorem 8. When p = 0, the boundary equilibrium E; of
the system (1) is locally asymptotically stable if R, > 1 and
Rg; > Ry,

Now, we study the global stability of the boundary equi-
librium E;. Consider the Lyapunov function

L, =1, X, +LY,, (51)
where I} = (my + kB,(A,/w,))/mym,(Ry, +1)and [, = (m, +
kB, (A /u,))/mymy(R,, + 1). The Lyapunov derivative is
dL,

= L =1, (kB, XY, - myX,) + 1, (kB,Y.X, - m;Y,)

IN

<llkﬁ1% - lzm4> Y, + (lzkﬁz% - llm2> b%

1 2

N

= (ROr - 1) (Yr + Xr)

IN

0 for R;, < 1.
(52)

This implies that the resistant type dies out if R;, < 1. Then,
the largest compact invariant set of the system (1) in the set
{dL,/dt = 0}is Q, = {(X,,X;,X,,Y,,Y,,Y,) € Q| X, =
Y, = 0}. Using the LaSalle-Lyapunov theorem, we know that
all trajectories in Q) eventually tend to Q, ast — oo. Then,
we only need to study the dynamical behavior of (1) in Q2,. At
this time, (1) reduces to the following system:

aX, - B XY, - X, + 0X;,
di 1 1
dX;
I = P XY -m X,
dy. 9
dts =N, = Y X — 1Y
dy;
— = BY X - myY,

To show that all trajectories of (53) in the interior of Q,
approach the point (X, X;;,Y;,Y};) corresponding to the
boundary equilibrium E,y;, c0n31der the Lyapunov function

. X
Lz = ll {I:XS —XSl—XSlIII(—s):I
Xsi
X.
T xn( )]
Xii
- Ys
adfr v onm(2)]
Ysi
Y.
e [v-ve- v ()]}
Y

(54)

where positive constants /, and /, are defined in the following.
It is easy to see that L, > 0 for (X, X Y, Yl) € O, and
L, =0 e (X,X,,)Y,Y,) = (X X;» YY) Hence, the
function L2 is positive definite with respect to the point
(st’ ii> sz’ )

Computlng the derivative of L, along solutions of system

(39), we have
9l
X
Y
Y;

[ () [

de 'l dt  dr \ X, dt  dt
@ @) E-F G
2lldt dt \v, dt  dt

_ Xl
= ll AulX - X_A + ﬁlez it MIXsi -mX;
N

1

X X
B XY, +m X +0X;(1- =
X, X,

Y.
+1 [Az - Y- ?ﬂAz + B Y X; + Yy — myY;

1
N

Y,
~BY X+ maY ]
1

(55)

Substituting A = ﬁlXS, it X —0X Ay = BY X +
n"l Yst’ m X ﬁl si 11’ and mSYii = ﬁZYsiXii into dLZ/dt’
we obtaln

ra X,

X .
U(Xi_Xii)<1 - _Sl>
XS

X, ) X
X Y4_“
- B

1

dlL, z ‘l.”l (2 - ﬁ - % + (B XY, —my X;)

7 Ys Ysi
+1 ‘[F‘z ( Ty ?) + (B, Yy X; — msY;)

(¥, .)2 Y.
ii% - ﬁzYin#

s i

+|:2ﬁ1st it ﬁl it

2ﬁZYSi‘Xii - ﬁZX

(56)

Note that for the limiting system X, + X; = X; + X;; =
A/, then (X; - X;)(X, = X) < 0. Let]; = B,Y,;X;; and
I, = 3, X,;Y;;. Following from m, X;; = 3, X;Y;; and m3Y =
B,YX;;, we have

ii>

I (BiXgYs = my X) + 1 (BoYX; — msY;) = 0. (57)
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Hence, for all (X, X, Y,,Y;) € Q,,

dL - X X
s fux, (- 5 - )
Xsi Xs

X. XY.X.
epxn |23 - |
s sit i<
- Y. Y.
(2 2 %)
N Ysi Ys
Y, Y XY,
a2 -]
s si“riiti
- X, X - Y, Y
(- ) (- B T)
N Xsi Xs K Ysi Ys
- X, X)X Y, YJXY,
(4 R )
s sitiifNi s si‘riiti
(58)
It is easy to see that
dL
d—t2=0<=>XS=XSl-, X; = X
(59)
YszYsi’ Yi=Yii'

Therefore, the only compact invariant subset of the set where
dL,/dt = 0 is the point (X;, X;;,Y;,Y;;), corresponding to
the boundary equilibrium E,;;. By LaSalle’s Invariance Princi-
ple, E,; is globally asymptotically stable if Rj; > 1 and R, < 1.

Summering above analysis, we have the following result.

Theorem 9. When p = 0, the boundary equilibrium E,; of the
system (1) is globally asymptotically stable if Ry; > 1 > R,,.

5. Stability Analysis of
the Coexistence Equilibrium

In this section, we turn to study the local stability of the coex-
istence equilibrium E, in the limiting system of (1) by using
Krasnoselskii sublinearity trick [24], as in [25, 26]. In detail,
if x' = f(x) is a system of differential equations and x* is
an equilibrium point, then to prove the local asymptotical
stability of x* is to prove that the linearized equation Z' =
f '(x*)Z has no solutions of the form

Z(t) = Zye", (60)

with Z, € C", w € C and, Rew > 0. This implies that
the eigenvalues of the characteristic polynomial associated
with the linearized equations have negative real part, that is,
Rew < 0. Then, the coexistence equilibrium E. is locally
asymptotically stable.

Discrete Dynamics in Nature and Society

Considering the limiting system

dX;
— =B/ (N, - X - X,) Y, -m X,
dt
dXx
dtr = kpy (N} - X; = X,) Y, + poX; - m,X,,
(61)
dy;
— = A (N, =Y, - Y,) X; - myY,
dt
dy,
dtr = kﬁZ (NZ - Yz - Yr) Xr - m4Yr’
where N; = A,/p, and N, = A,/p,. In this way, let

Zy =(Z,,2,,25,2,), Z; € C. Substituting a solution of the
form (60) into the linearized system (61) of the coexistence
equilibrium E_, we obtain the following linear equations:

wZy =~ (B +my) Z) - B\Y,.Z,
+ By (N = Xie = X,o) Zs,

wZ, = (po —kp,Y,.) Zy — (kB Y, +my) Z,
+ kB (N, - X;. - X,.) Zy»

wZs = By (Ny = Yie = Y,o) Zy = (BoXic +m3) = By XicZs,

wZ, =kBy (N, =Y, - Y,.) Z, — kP2 X, . Z

= (kB, X, +my) Zy,
(62)

which is equivalent to the system

1 ﬁlYic
1+ — (w+BY,) |z, = - Bz
[ m, (w ﬁl zc):| 1 m, 2

+ ﬁl (Nl B Xic B XTC)Z3,

m

(PG B kﬂIYrc)

m,

[1+ L(w+k/51Y,C)] Z, = Z,
my,

+ kﬁl (Nl - Xic - ch)
m,
BZ (NZ - Yic - Yrc)

1
1+ —(w+B,X;.)| Z;5 = Z
[ "y (w ﬁZ 1c)j| 3 ms 1

Zs

_ ﬂZXiC Z4,
M3

kﬁZ (NZ - Yic - Yrc)Z
2
my

_ kﬁZXrCZ
my

[1 + m%l (w+ kﬁerc)] Z, =

5
(63)
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Moving all the negative terms to the left-hand side, after some
manipulations we obtain the system

[1+F (0)]Z, +[1+F(w)]Z,=(HZ), + (HZ),,

(64)
[1+F(w)]Z;+[1+F(w)]Z,=(HZ); +(HZ),,
where
+ B,Y,.  kBY,
Fl(w):w /31 lC+ :BI rc)
my m,
+ kf,Y, Y,
Fz(w):w ﬁl rc+ﬂ1 zc’
m, my
F3 (w) — W+ [;ZXic + kﬁZch’
3 my
F4 (w) — W+ kﬁZch + ﬁZXic,
my ms
0 0 A (Nl_nj(ic_xrc) 0
E 0 0 kﬁl (lexicfxrc)
my
"= ﬁZ (NZ_Yic_Yrc) 0 0 0
msy
0 0 0 kﬁz (NZ_Yic_Yrc)
My
(65)

Note that the matrix H has nonnegative entries, and E, =
(Xie» X0 Yier Y,.) satisties

re> T ic?

E, = HE,. (66)

To show that Rew < 0, we distinguish two cases: w = 0
and w # 0. In the first case, (62) is a homogeneous linear sys-
tem. Through calculations, we have the determinant of (62)
is

_(:BlYic +ml) _:BlYic ﬁlec 0
A — PU_kﬁIYrc _(kﬁerC +m2) 0 kﬁlxsc
.BZYsc 0 - (ﬁZXz’c + m3) _.BZXic
0 k:BZYsc 7kﬁ2ch - (kﬁzxrc + m4)

=—(BiYi +m) Ay + B Y, Ay + B X As, )
67

where

A= m1m3k2ﬁzxic + mlmikz —mykp B, XY,
- m3k2ﬁ1ﬁ2X,chc - mymykpB,Y, . —mymyf, X,
—mymzkf, X, — mymsmy,

Ay = po (msk Py X, + myPyXic + mymy) = mukPy XY,
- m3k2ﬁlﬁ2chYrc - mymykp,Y,. - m1m3k2[52X,C,

Ay = KB BX Yo + pokBy Xio Y = KBS XY, Yo
= BV (KB BoX Y, + makpyY,,

+ 11,k By X, + mymy) .
(68)

1

Then, we can obtain
A = po (mskPy By X, Yie + mufi Br XY
+mymy Y. + mymskpf, X, )
+ (BB XiYie + my By Xic + ms Y
x (m2m4 - m1m3k2) + 1B X, Yiemsk (my — my k)

+ BBy XY ek (my — msk) .
(69)

Note that the coexistence equilibrium E, exists under the con-
dition Ry; > R,,, that is, m,m, > m;m;k*. Then A > 0 if
m, —mk > 0 and m, — mzk > 0. Hence, for the case that
w = 0, (62) has only the trivial solution if m, — m;k > 0 and
m, — mzk > 0. This implies that w # 0.

Now assume that w # 0 and Re w > 0. Let F(w) = min{|1+
Fi(w)l,i = 1,2,3,4}. It is easy to prove that |1 + Fj(w)| > 1
for all 7, and therefore F(w) > 1. In the other hand, since the
coordinates of E_ are positive, if Zis any solution of (64), then
there exists a minimal positive real number s such that

|Z| <sE, (70)

where |Z| = (1Z,1,12,1,1Z51,1Z4]), and | - | is the norm in C.
Note that s is also the minimal positive real number such that

|Zl|+|zz| Ss(Xic+XrC)’ |Z3|+ |Z4l SS(Yic-FYrc)'

(71)

Taking norms on both side of (64) and using (66), (71), and
the fact that H is nonnegative, we obtain

F(w)(|Z)] +]2,]) < H(ZI), + H(Z]), < s (X, + X,.),
(72)
that is,

s
F(w)

|Zl| + |ZZ| £ (Xic + ch) <s (Xic + ch) > (73)
which contradicts the minimality of s. Hence, Rew < 0.
Summering above analysis, we have the following result.

Theorem 10. When p+0, the coexistence equilibrium E,
of the system (1) is locally asymptotically stable if k <
min{m,/my, m,/m;} and Ry; > 1.

The existence and stability of equilibria can be summered
in Table 1.

6. Discussion

In this paper we established a new schistosomiasis model.
In contrast to previous schistosomiasis models with drug
resistance, the model established in this study consider many
aspects. First, snail is considered as a variable in the model
since the resistance of schistosoma to PZQ can be expressed
in snails [14-16]. Second, previous models considered that
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TaBLE 1: Existence and stability of equilibria. The sign “3 !” means the existence and uniqueness. LAS means locally asymptotically stable,

and GAS means globally asymptotically stable.

p=0 p#0
Existence Stability Existence Stability
E, . IfR, < 1, LAS; . IfR, < 1, LAS;
IfR, < 1, GAS IfR, < 1, GAS
If Ry; > 1and Ry; > R,,, LAS;
E,. . 1 0i 0i 0r> > .
0i IfRy > 1,3! IfR, > 1> Ry, GAS Not exist /
If Ry, > 1and Ry, > R;, LAS; If R, > 1and Ry, > R;, LAS;
E 1 or or 0i> > 1 or (V3 0i> 4
o IR, >1,3! IfR, > 1> R, GAS IRy > 1,31 IfR, > 1> Ry, GAS
£ IfRy; =Ry, > 1, / IfR, > 1and Ry > Ry, 3 ! IfRy > 1land

aline

k < min {m,/m,, m,/m,}, LAS

resistance was caused by drug treatment, while a large
number of the literature show that some cases are due to
inheritance [1, 3, 4]. Therefore, in this study, we consider the
reasons for resistance are drug treatment and genetic. Last, in
previous models a resistance level (6) was used to discount the
treatment rate. But the resistance level could not be measured,
and its value was assumed. This model consider what percent-
age of infected human after treatment will recover and what
percentage will emerge drug resistance. In medicine, from the
occurrence of cases the value of this ratio can be identified.
For example, this ratio was given in [27, 28] (1 — p = 0.28 ~
0.609). Therefore, it is easy to operate. In addition, we separate
the discussion of the case that treatment will cause resistance
(p#0) and treatment will not cause resistance (p = 0).

The reproductive number Ry; and R, of the sensitive and
resistant strains are given, respectively. It is easy to see that R;
is a decreasing function of o, and Ry, is an increasing function
of k. If the basic reproductive number R, = max{R;, R;,}
of the model (1) is less than 1, one can prove the stability of
the disease free equilibrium. This means that the spread of
schistosomiasis can be effectively controlled. When the basic
reproductive number R, is greater than 1, we first consider
the case that p = 0. If R); = Ry, > 1, the two strains can
coexist. There is a line of coexistence equilibria in this case.
The infected human will evolve to one of them with higher
reproductive number (see Table 1).

When drug treatment can not cause resistance (p = 0),
that is, the new resistant strain is due to the inheritance of
resistance, the sensitive strain will dominate if the treatment
rate is smaller and the impact of the inheritance of resistance
is smaller such that R, > 1 > R,,. This result accords
to the results of previous models. On the other hand, if the
treatment rate and the impact of the inheritance of resistance
are both larger such that R, > 1 > R;, the resistant strain
will dominate. This shows that although the assumption is
that drug treatment does not result in the emergence of drug
resistance, once the treatment rate is greater than a value, and
the impact of genetic resistance is larger, there will still be
the emergence of resistant strain, and the resistant strain is
dominant. This further shows that genetic resistance has a
great impact on the system.

When drug treatment can cause resistance (p #0), we
can show that the sensitive strain either does not appear or

coexist with the resistant strain under certain condition. If
R, > 1, there is only resistant strain. It can be seen that,
regardless of whether drug treatment leads to the emergence
of resistance, once the impact of genetic resistance is larger,
resistant strain will be dominant, which is detrimental to the
control of schistosomiasis.

Finally, from the formula of the coexistence equilibrium
E,, it is easy to see that the value of the resistant strain
is increased with the value of p. This means once the
proportion of human with drug-resistant strain produced by
drug treatment is larger, the number of human and snails with
resistant strain is larger. This is not a good result for drug
treatment with praziquantel.

Hence, for poor treatment, there are two possible reasons:
drug therapy and genetic. An important priority in develop-
ing new control strategies is to search new drug targets, in
combination with selection of genetic methods such as that
viable vaccine candidates. And there is already a need for
alternative drugs to treat PZQ-resistant schistosomiasis, such
as already exists in northern Senegal [10].

Acknowledgments

This paper is supported by National Natural Science Foun-
dation of China (11126177 and 11071011), Natural Science
Foundation of Anhui Province (1208085QA15), and by
the Foundation for Young Talents in College of Anhui
Province (2012SQRLO021) and also supported by Doctoral
Fund of Ministry of Education of China (20113401110001 and
20103401120002), the Key Natural Science Foundation of the
Anhui Higher Education Institutions of China (KJ2009A49),
and Funding Project for Academic Human Resources Devel-
opment in Institutions of Higher Learning Under the Juris-
diction of Beijing Municipality (PHR201107123). The authors
would like to thank anonymous reviewers for very helpful
suggestions which improved greatly this paper.

References

[1] D. Cioli, “Chemotherapy of schistosomiasis: an update,” Para-
sitology Today, vol. 14, no. 10, pp. 418-422,1998.

[2] P. G. Fallon, L. E Tao, M. M. Ismail, and J. L. Bennett, “Schis-
tosome resistance to praziquantel: fact or artifact?” Parasitology
Today, vol. 12, no. 8, pp. 316-320, 1996.



Discrete Dynamics in Nature and Society

[3] D. Cioli, “Praziquantel: is there real resistance and are there
alternatives?” Current Opinion in Infectious Diseases, vol. 13, no.
6, pp. 659-663, 2000.

[4] M. Ismail, S. Botros, A. Metwally et al., “Resistance to prazi-
quantel: direct evidence from Schistosoma mansoni isolated
from egyptian villagers,” American Journal of Tropical Medicine
and Hygiene, vol. 60, no. 6, pp. 932-935, 1999.

[5] B. Gryseels, F. F. Stelma, I. Talla et al., “Epidemiology, immunol-
ogy and chemotherapy of Schistosoma mansoni infections in
a recently exposed community in Senegal,” Tropical and Geo-
graphical Medicine, vol. 46, no. 4, pp. 209-219, 1994.

[6] E F Stelma, I. Talla, S. Sow et al., “Efficacy and side effects
of praziquantel in an epidemic focus of Schistosoma mansoni;,
American Journal of Tropical Medicine and Hygiene, vol. 53, no.
2, pp. 167-170, 1995,

[7] P. G. Fallon, R. E Sturrock, A. Capron, M. Niang, and M. J.
Doenhoff, “Short report: diminished susceptibility to prazi-
quantel in a Senegal isolate of Schistosoma mansoni,” American
Journal of Tropical Medicine and Hygiene, vol. 53, no. 1, pp. 61-
62,1995.

Y. S. Liang, G. C. Coles, M. J. Doenhoff, and V. R. Southgate,
“In vitro responses of praziquantel-resistant and -susceptible
Schistosoma mansoni to praziquantel,” International Journal for
Parasitology, vol. 31, no. 11, pp. 1227-1235, 2001.

[9] M. Ismail, A. Metwally, A. Farghaly, J. Bruce, L. . Tao, and J. L.
Bennett, “Characterization of isolates of Schistosoma mansoni
from Egyptian villagers that tolerate high doses of praziquantel,”
American Journal of Tropical Medicine and Hygiene, vol. 55, no.
2, pp. 214-218, 1996.

[10] M.J. Doenhoff, J. R. Kusel, G. C. Coles, and D. Cioli, “Resistance
of Schistosoma mansoni to praziquantel: is there a problem?”
Transactions of the Royal Society of Tropical Medicine and
Hygiene, vol. 96, no. 5, pp- 465-469, 2002.

C. Castillo-Chavez, Z. Feng, and D. Xu, “A schistosomiasis
model with mating structure and time delay, Mathematical
Biosciences, vol. 211, no. 2, pp. 333-341, 2008.

[12] Z. Feng, J. Curtis, and D. J. Minchella, “The influence of drug
treatment on the maintenance of schistosome genetic diversity;”
Journal of Mathematical Biology, vol. 43, no. 1, pp. 52-68, 2001.

[13] D. Xu, J. Curtis, Z. Feng, and D. J. Minchella, “On the role of
schistosome mating structure in the maintenance of drug resist-
ant strains,” Bulletin of Mathematical Biology, vol. 67, no. 6, pp.
1207-1226, 2005.

[14] Y.S. Liang,]. R. Daj, Y. C. Zhu, G. C. Coles, and M. J. Doenhoff,
“Genetic analysis of praziquantel resistance in Schistosoma
mansoni;” Southeast Asian Journal of Tropical Medicine and Pub-
lic Health, vol. 34, no. 2, pp. 274-280, 2003.

(15] Y. S. Liang, J. R. Dai, Y. C. Zhu et al., “Studies on resistance of
schistosoma to praziquante 1IX. Genetic analysis of praziquantel
resistance in Schistosoma mansoni;” Chinese Journal of Schisto-
somiasis Control, vol. 16, pp. 81-85, 2004.

[16] W. Wang and Y. S. Liang, “Progress on research of resistance of
schistosome to praziquantel,” International Journal of Medical
Parasitic Diseases, vol. 34, pp. 291-296, 2007 (Chinese).

[17] Z.Feng, C.C.Li,and E A. Milner, “Schistosomiasis models with
density dependence and age of infection in snail dynamics;”
Mathematical Biosciences, vol. 177-178, pp. 271-286, 2002.

[18] Z.Feng, C.C.Li,and E A. Milner, “Schistosomiasis models with
two migrating human groups,” Mathematical and Computer
Modelling, vol. 41, no. 11-12, pp. 1213-1230, 2005.

(8

[11

(19]

(20]

(21]

(22]

[24]

(25]

(26]

(27]

13

P. Zhang, G. J. Sandland, Z. Feng, D. Xu, and D. J. Minchella,
“Evolutionary implications for interactions between multiple
strains of host and parasite;” Journal of Theoretical Biology, vol.
248, no. 2, pp. 225-240, 2007.

E.J. Allen and H. D. Victory Jr., “Modelling and simulation of a
schistosomiasis infection with biological control,” Acta Tropica,
vol. 87, no. 2, pp. 251-267, 2003.

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemi-
ology of Infectious Diseases: Model Building, Analysis and Inter-
pretation, Wiley Series in Mathematical and Computational
Biology, John Wiley & Sons, New York, NY, USA, 2000.

P. van den Driessche and J. Watmough, “Reproduction numbers
and sub-threshold endemic equilibria for compartmental mod-
els of disease transmission,” Mathematical Biosciences, vol. 180,
pp. 29-48, 2002.

J. C. Kamgang and G. Sallet, “Computation of threshold con-
ditions for epidemiological models and global stability of the

disease-free equilibrium (DFE),” Mathematical Biosciences, vol.
213, no. 1, pp. 1-12, 2008.

M. A. Krasnosel'skii, Positive Solutions of Operator Equations, P.
Noordhoff, Groningen, The Netherlands, 1964.

L. Esteva and C. Vargas, “Influence of vertical and mechanical
transmission on the dynamics of dengue disease,” Mathematical
Biosciences, vol. 167, no. 1, pp. 51-64, 2000.

H. W. Hethcote and H. R. Thieme, “Stability of the endemic
equilibrium in epidemic models with subpopulations,” Math-
ematical Biosciences, vol. 75, no. 2, pp. 205-227, 1985.

G. Raso, E. K. N'Goran, A. Toty et al., “Efficacy and side effects of
praziquantel against Schistosoma mansoni in a community of
western Cote d’Ivoire, Transactions of the Royal Society of
Tropical Medicine and Hygiene, vol. 98, no. 1, pp. 18-27, 2004.
L. van Lieshout, E F. Stelma, E Guissé et al., “The contribution
of host-related factors to low cure rates of praziquantel for the
treatment of Schistosoma mansoni in Senegal,” American Journal
of Tropical Medicine and Hygiene, vol. 61, no. 5, pp. 760-765,
1999.



-

Advances in

Operations Research

/
—
)

Advances in

DeC|S|on SC|ences

Mathematical Problems
in Engineering

Algebra

2

Journal of
Probability and Statistics

The Scientific
\(\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Mathematics

Journal of

DISBJBLL alhematics

International Journal of

Stochastic Analysis

Journal of

Function Spaces

Abstract and
Applied Analysis

Journal of

Applied Mathematics

ol

w2 v (P
/

e

\jtl (1)@" W, E

International Journal of
Differential Equations

ces In

I\/lathémamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization



