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We study the filter design problem for Takagi-Sugeno fuzzy systems which are subject to norm-bounded uncertainties in each
subsystem. As we know that the Takagi-Sugeno fuzzy linear systems can be used to represent smooth nonlinear systems, the studied
plants can also be uncertain complex systems. We suppose to design a filter with the order of the original system which is also
dependent on the normalized fuzzy-weighting function; that is, the filter is also a Takagi-Sugeno fuzzy filter.With the augmentation
technique, an uncertain filtering error system can be obtained and the systemmatrices in the filtering error system are reorganized
into two categories (without uncertainties and with uncertainties). For the filtering error system, we have two objectives. (1) The
first one is that the filtering error system should be robust stable; that is, the filtering error system is stable though there are
uncertainties in the original system. (2) The second one is that the robust energy-to-peak performance should be guaranteed.
With the well-known Finsler’s lemma, we provide the conditions for the robust energy-to-peak performance of the filtering error
system in which three slack matrices are introduced. Finally, a numerical example is used to show the effectiveness of the proposed
design methodology.

1. Introduction

It is well known that the Takagi-Sugeno (T-S) linear systems
can be used to approximate smooth complex systems. There-
fore, recently, fuzzy systems based on Takagi-Sugeno (T-S)
[1–8] model have attracted a lot of attention [9–16]. In [17],
the parameterized linear matrix inequality techniques were
used in fuzzy control system design. In [18], the stability
analysis and synthesis of fuzzy singularly perturbed systems
were investigated. In [19], by assuming that there are some
uncertainties in the controller, the robust nonfragile 𝐻

∞

filtering of fuzzy systems with linear fractional parametric
uncertainties was studied. In [20], the fuzzy guaranteed cost
control for nonlinear systems with time-varying delay was
exploited. In [21], the variable structure system approach was
used in the stabilization of nonlinear systems. The tracking
control problem was studied in [22]. The authors in [23]
studied the robust quadratic-optimal control for TS-fuzzy-
model-based dynamic systems by considering both elemental
parametric uncertainties and norm-bounded approximation

error simultaneously. In the filtering aspect for T-S fuzzy sys-
tems or nonlinear systems, we can see that robust filter design
approaches were proposed in [24] and filtering problem for
discrete-time T-S fuzzy systems with time-varying delays was
studied in [25].

The filtering problem is quite important since this tech-
nique can be used to reduce the cost and improve the
measuring performance. Therefore, it is unsurprising that a
lot of effort has been made during the past few decades.
Among all the filtering work, the Kalman filtering [26] has
been utilized for many industrial and astronautics projects
since it was proposed in the 1960s. To design theKalmanfilter,
it requires the precise linear systemmodel and the covariance
of themeasurement noise at each sampling time. If the system
is a nonlinear one, the traditional Kalman cannot be directly
applied. Moreover in many practical applications, the above
requirements cannot be satisfied at the same time and the on-
line computation cannot be guaranteed [27, 28].

If the external disturbance is energy-bounded, we
have three additional strategies: energy-to-energy filtering,
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energy-to-peak filtering, and peak-to-peak filtering in the
new filtering aspects [29–31]. In the energy-to-peak filtering
[32–37], the infinity norm of the final filtering error aimes
to be minimized when the energy of the external noise is
bounded. When the peak value of the final filtering error
is required to be within a certain range or required to be
minimized, the energy-to-peak filtering is one of the best
strategies.

In this paper, we study the robust filtering problem for T-
S fuzzy discrete-time systems. We proposed to design a full-
order T-S fuzzy filter such that the filtering error can satisfy
the energy-to-peak performance. By using the augmentation
method, we derive a filtering error system. For the filtering
error system, we set two objectives. (1) The first one is that
the filtering error system should be robust stable. (2) The
second one is that the robust energy-to-peak performance
should be guaranteed. To achieve the objective, with twowell-
known lemmas, we offer the sufficient conditions which can
guarantee the above two objectives. With the proposed new
conditions in which there are several slack matrices to reduce
the conservativeness, we provide the design method of the
filter parameters of the T-S fuzzy filter. Finally, an illustrative
example is used to show the efficacy of the proposed design
methodology. The main contributions of this paper can
be organized as follows. (1) We introduce a lot of slack
matrices in the robust energy-to-peak performance for T-
S fuzzy systems. These matrices can be used to reduce the
conservativeness of the results in robust control and filtering.
(2) Compared with the work in the existing paper, the
norm-bounded uncertainties are considered in the T-S fuzzy
systems, which have be great potential to applied in filtering
problem for complex systems.

2. Problem Formulation

In this paper, we consider a class of uncertain discrete-time
T-S fuzzy systems as follows.

Plant Rule 𝑖. If 𝜂
1
(𝑘) is N

𝑖1
and 𝜂

2
(𝑘) is N

𝑖2
. . . and 𝜂

𝑠
(𝑘) is

N
𝑖𝑠
, then

𝑥
𝑘+1

= (𝐴
𝑖
+ Δ𝐴
𝑖
) 𝑥
𝑘
+ (𝐵
𝑖
+ Δ𝐵
𝑖
) 𝜔
𝑘
,

𝑦
𝑘
= 𝐶
𝑖
𝑥
𝑘
+ 𝐷
𝑖
𝜔
𝑘
,

𝑧
𝑘
= 𝐺
𝑖
𝑥
𝑘
,

(1)

where N
𝑖𝑗
for 𝑖 = 1, . . . 𝑠

1
, 𝑗 = 1, . . . , 𝑠 are the fuzzy sets;

𝑠 denotes the number of the premise variables; 𝑠
1
denotes

the number of fuzzy rules; 𝜂
𝑘
= [𝜂
1𝑘
, 𝜂
2𝑘
, . . . , 𝜂

𝑠𝑘
] denotes

the premise variable vector; 𝑥
𝑘
is the system state; 𝜔

𝑘
is the

external input which are bounded. Δ𝐴
𝑖
and Δ𝐵

𝑖
denote the

norm-bounded uncertainties satisfying

[Δ𝐴
𝑖
, Δ𝐵
𝑖
] = 𝑄
𝑖
𝐻(𝑘) [𝑋

𝑖
, 𝑌
𝑖
] , (2)

where 𝑄
𝑖
, 𝑋
𝑖
, 𝑌
𝑖
are given matrices and the time-varying

𝐻(𝑘) is bounded as 𝐻𝑇(𝑘)𝐻(𝑘). In addition, 𝐴
𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, 𝐷
𝑖
,

and 𝐺
𝑖
are matrices with appropriate dimensions and fixed

values.

𝑒

𝑧̂

𝑦

𝜔 +

−

T-S fuzzy filter
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systems

𝑧

Figure 1: Filtering problem for uncertain T-S fuzzy systems.

In order to deal with the fuzzy rules, similar with the
existing work on the T-S fuzzy systems, we can choose the
normalized fuzzy-membership functions as follows:

𝜇
𝑖
(𝜂 (𝑘)) =

∏
𝑠

𝑗=1
𝜃
𝑖𝑗
(𝜂
𝑗
(𝑘))

∑
𝑠
1

𝑖=1
∏
𝑠

𝑗=1
𝜃
𝑖𝑗
(𝜂
𝑗
(𝑘))

, (3)

where 𝜃
𝑖𝑗
(𝜂
𝑗
(𝑘)) is the grade of the membership of 𝜂

𝑗
(𝑘) in

the 𝑖th fuzzy rule. After the definition, we can see that the
normalized fuzzy-membership functions have the following
properties:

0 ≤ 𝜇
𝑖
(𝜂 (𝑘)) ≤ 1,

𝑠
1

∑

𝑖=1

𝜇
𝑖
(𝜂 (𝑘)) = 1.

(4)

The principle of the filter design problem in this paper
can be shown in Figure 1. The uncertain T-S fuzzy system is
driven by the external input 𝜔

𝑘
. The output of the system is

measured and denoted by 𝑦
𝑘
which is used to drive the filter.

𝑧̂
𝑘
is the output of the filter and 𝑧̂

𝑘
is the estimation of 𝑧

𝑘
.

In order to utilize the on-line information of the T-S fuzzy
system, we propose to design a full-order T-S fuzzy filter
which has the following structure: Filter rule 𝑖: if 𝜃

1
(𝑘) isN

𝑖1
,

and 𝜃
2
(𝑘) isN

𝑖2
, . . . and 𝜃

𝑠
(𝑘) isN

𝑖𝑠
, then

𝑥̂
𝑘+1

= 𝐴
𝑓𝑖
𝑥̂
𝑘
+ 𝐵
𝑓𝑖
𝑦
𝑘
,

𝑧̂
𝑘
= 𝐺
𝑓𝑖
𝑥̂
𝑘
,

𝑖 = 1, . . . , 𝑠
1
,

(5)

where 𝑥̂
𝑘
denotes the state in the filter; 𝐴

𝑓𝑖
, 𝐵
𝑓𝑖
, and 𝐺

𝑓𝑖
are

filter parameters to be determined in the filter design.
In the filter design, we wish the estimate 𝑧̂

𝑘
can track the

exact value 𝑧
𝑘
which is the most interesting signal. To fulfill

this wish, we can define and study the filtering error as 𝑒
𝑘
:=

𝑧
𝑘
− 𝑧̂
𝑘
. With the definition of the filtering error, we can have

the following filtering error system as

𝜉
𝑘+1

= 𝐴 (𝜇
𝑘
) 𝜉
𝑘
+ 𝐵 (𝜇

𝑘
) 𝜔
𝑘
,

𝑒
𝑘
= 𝐺 (𝜇

𝑘
) 𝜉
𝑘
.

(6)
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Here, we have the following notations:

𝜉
𝑘
= [

𝑥
𝑘

𝑥̂
𝑘

] ,

𝐴 (𝜇
𝑘
) = [

𝐴 (𝜇
𝑘
) + Δ𝐴 (𝜇

𝑘
) 0

𝐵
𝑓
(𝜇
𝑘
) 𝐶 (𝜇

𝑘
) 𝐴

𝑓
(𝜇
𝑘
)
] ,

𝐵 (𝜇
𝑘
) = [

𝐵 (𝜇
𝑘
) + Δ𝐵 (𝜇

𝑘
)

𝐵
𝑓
(𝜇
𝑘
)𝐷 (𝜇

𝑘
)
] ,

𝐺 (𝜇
𝑘
) = [𝐺 (𝜇

𝑘
) −𝐺

𝑓
(𝜇
𝑘
)] .

(7)

For the simplicity, we use the following notations to represent
these parameters:

𝐴 (𝜇 (𝑘)) =

𝑠
1

∑

𝑖=1

𝜇
𝑖
(𝜂 (𝑘)) 𝐴

𝑖
,

Δ𝐴 (𝜇 (𝑘)) =

𝑠
1

∑

𝑖=1

𝜇
𝑖
(𝜂 (𝑘)) Δ𝐴

𝑖
,

𝐵 (𝜇 (𝑘)) =

𝑠
1

∑

𝑖=1

𝜇
𝑖
(𝜂 (𝑘)) 𝐵

𝑖
,

Δ𝐵 (𝜇 (𝑘)) =

𝑠
1

∑

𝑖=1

𝜇
𝑖
(𝜂 (𝑘)) Δ𝐵

𝑖
,

𝐶 (𝜇 (𝑘)) =

𝑠
1

∑

𝑖=1

𝜇
𝑖
(𝜂 (𝑘)) 𝐶

𝑖
,

𝐷 (𝜇 (𝑘)) =

𝑠
1

∑

𝑖=1

𝜇
𝑖
(𝜂 (𝑘))𝐷

𝑖
,

𝐺 (𝜇 (𝑘)) =

𝑠
1

∑

𝑖=1

𝜇
𝑖
(𝜂 (𝑘)) 𝐺

𝑖
,

𝐴
𝑓
(𝜇 (𝑘)) =

𝑠
1

∑

𝑖=1

𝜇
𝑖
(𝜂 (𝑘)) 𝐴

𝑓𝑖
,

𝐵
𝑓
(𝜇 (𝑘)) =

𝑠
1

∑

𝑖=1

𝜇
𝑖
(𝜂 (𝑘)) 𝐵

𝑓𝑖
,

(8)

𝐺
𝑓
(𝜇 (𝑘)) =

𝑠
1

∑

𝑖=1

𝜇
𝑖
(𝜂 (𝑘)) 𝐺

𝑓𝑖
. (9)

As the norm-bounded uncertainties are involved in the
filtering error system, we reorganize the system as

𝜉
𝑘+1

= (𝐴̂ (𝜇
𝑘
) + Δ𝐴̂ (𝜇

𝑘
)) 𝜉
𝑘

+ (𝐵̂ (𝜇
𝑘
) + Δ𝐵̂ (𝜇

𝑘
)) 𝜔
𝑘
,

𝑒
𝑘
= 𝐺 (𝜇

𝑘
) 𝜉
𝑘
,

(10)

where

𝐴̂ (𝜇
𝑘
) = [

𝐴 (𝜇
𝑘
) 0

𝐵
𝑓
(𝜇
𝑘
) 𝐶 (𝜇

𝑘
) 𝐴
𝑓
(𝜇
𝑘
)
] ,

Δ𝐴̂ (𝜇
𝑘
) = [

Δ𝐴 (𝜇
𝑘
) 0

0 0
] = 𝑄̂ (𝜇

𝑘
)𝐻 (𝑘) 𝑋̂ (𝜇

𝑘
) ,

𝑄̂ (𝜇
𝑘
) = [

𝑄 (𝜇
𝑘
)

0
] , 𝑋̂ (𝜇

𝑘
) = [𝑋 (𝜇

𝑘
) 0] ,

𝐵̂ (𝜇
𝑘
) = [

𝐵 (𝜇
𝑘
)

𝐵
𝑓
(𝜇
𝑘
)𝐷 (𝜇

𝑘
)
] ,

𝐵̂ (𝜇
𝑘
) = [

Δ𝐵 (𝜇
𝑘
)

0
] = 𝑄̂ (𝜇

𝑘
)𝐻 (𝑘) 𝑌 (𝜇

𝑘
) .

(11)

In the filtering work, the main objective is to obtain a
smallest filtering error.The question becomes how to evaluate
the external input 𝜔

𝑘
and the filtering error 𝑒

𝑘
? Inspired by

the filtering work in [35], we use the energy-to-peak gain 𝛾
which has the following meaning: if the initial conditions for
the system and the filter are all zeros, the energy-to-peak gain
from the external disturbance𝜔

𝑘
to the defined filtering error

𝑒
𝑘
should be smaller than the preset energy-to-peak index 𝛾;

that is,

‖𝑒‖
∞
< 𝛾‖𝜔‖

2
. (12)

To make the design objective more clear, the objectives of
the paper are summarized in the following two points.

(1) The uncertain filtering error system in (6) is robustly
stable for zero disturbance input 𝜔

𝑘
.

(2) For zero-initial conditions for the original system and
the filter, the energy-to-peak gain from the external
input to the filtering error should be no greater than
a prescribed value 𝛾; that is,

‖𝑒‖
∞
< 𝛾‖𝜔‖

2
. (13)

In order to have a better result, we also include the follow-
ing lemmas.

Lemma 1 (see [38]). Given 𝑥 ∈ R𝑛,Θ = Θ
𝑇

∈ R𝑛×𝑛, andB ∈

R𝑚×𝑛, if rank(B) < 𝑛, the following conditions are equivalent:

(i) 𝑥TΘ𝑥 < 0, ∀B𝑥 = 0, 𝑥 ̸= 0,
(ii) ∃X ∈ R𝑛×𝑚 such that Θ +XB +BTXT

< 0.

Lemma 2. Suppose that Θ = Θ
𝑇, Q and X are real matrices

with compatible dimensions, and 𝐻(𝑘) is a time-varying
matrix satisfying𝐻𝑇(𝑘)𝐻(𝑘) < 𝐼. The following condition

Θ + Q𝐻(𝑘)X + Q
T
𝐻

T
(𝑘)X

T
< 0 (14)

holds if and only if there exists a positive scaler 𝜀 such that

[

[

Θ Q 𝜀XT

∗ −𝜀𝐼 0

∗ ∗ −𝜀𝐼

]

]

< 0 (15)
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is satisfied. Here, we use an asterisk (∗) as an ellipsis for the
terms that are introduced by symmetry.

Remark 3. Though the T-S fuzzy system is used to approx-
imate the nonlinear systems, we still introduce the norm-
bounded uncertainties in the system models. The main
reason is due to the approximate error and the uncertain
values for each linear model. This uncertain T-S fuzzy model
is more generalized and can be used to model more complex
systems. The norm-bounded uncertainties have been widely
used in the linear systems to cover more applications; see
[39, 40] and the references therein.

3. Main Results

3.1. Robust Stability and Robust Energy-to-Peak Performance
Analysis. We firstly propose a new theorem which can
guarantee the robust stability and the robust energy-to-peak
performance of the filtering error system.

Theorem4. Consider an uncertain T-S fuzzy system in (1) and
suppose that the filter parameters 𝐴

𝑓
(𝜇
𝑘
), 𝐵
𝑓
(𝜇
𝑘
), 𝐺
𝑓
(𝜇
𝑘
),

and a positive 𝛾 are given. The filtering error system in (6)
is robustly stable with a prescribed robust energy-to-peak per-
formance index 𝛾, if there exist matrices 𝑃(𝜇

𝑘
) = 𝑃
𝑇

(𝜇
𝑘
) > 0,

𝑃(𝜇
𝑘+1

) = 𝑃
𝑇

(𝜇
𝑘+1

) > 0, 𝐿(𝜇
𝑘
),𝑀(𝜇

𝑘
),𝑁(𝜇

𝑘
), and 𝜀 such that

J
1
=

[
[
[
[
[
[
[
[
[

[

𝑃 (𝜇
𝑘+1
) + sym (𝐿 (𝜇

𝑘
)) −𝐿 (𝜇

𝑘
) 𝐴 (𝜇

𝑘
) + 𝑀

𝑇

(𝜇
𝑘
) −𝐿 (𝜇

𝑘
) 𝐵 (𝜇

𝑘
) + 𝑁

𝑇

(𝜇
𝑘
) 𝐿 (𝜇

𝑘
) 𝑄̂ (𝜇

𝑘
) 0

∗ −𝑃 (𝜇
𝑘
) − sym (𝑀 (𝜇

𝑘
) 𝐴 (𝜇

𝑘
)) −𝑀(𝜇

𝑘
) 𝐵 (𝜇

𝑘
) − (𝑁 (𝜇

𝑘
) 𝐴 (𝜇

𝑘
))
𝑇

𝑀(𝜇
𝑘
) 𝑄̂ (𝜇

𝑘
) −𝜀𝑋̂

𝑇

(𝜇
𝑘
)

∗ ∗ −𝐼 − sym (𝑁 (𝜇
𝑘
) 𝐵 (𝜇

𝑘
)) 𝑁 (𝜇

𝑘
) 𝑄̂ (𝜇

𝑘
) −𝜀𝑌

𝑇

(𝜇
𝑘
)

∗ ∗ ∗ −𝜀𝐼 0

∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]
]
]
]
]

]

< 0,

(16)

[
−𝑃 (𝜇

𝑘
) 𝐺
𝑇

(𝜇
𝑘
)

∗ −𝛾
2

𝐼

] . (17)

Proof. By using Lemma 2, the condition in (16) holds if and
only if the following condition is satisfied:

[
[
[
[

[

𝑃 (𝜇
𝑘+1

) + sym (𝐿 (𝜇
𝑘
)) −𝐿 (𝜇

𝑘
) 𝐴 (𝜇

𝑘
) + 𝑀

𝑇

(𝜇
𝑘
) −𝐿 (𝜇

𝑘
) 𝐵 (𝜇
𝑘
) + 𝑁

𝑇

(𝜇
𝑘
)

∗ −𝑃 (𝜇
𝑘
) − sym (𝑀 (𝜇

𝑘
) 𝐴 (𝜇

𝑘
)) −𝑀(𝜇

𝑘
) 𝐵 (𝜇
𝑘
) − (𝑁 (𝜇

𝑘
) 𝐴 (𝜇

𝑘
))
𝑇

∗ ∗ −𝐼 − sym (𝑁 (𝜇
𝑘
) 𝐵 (𝜇
𝑘
))

]
]
]
]

]

< 0. (18)

Choose a Lyapunov function candidate for the filtering error
system in (6) as follows:

𝑉 (𝜉
𝑘
, 𝜇
𝑘
, 𝑘) = 𝜉

𝑇

𝑘
𝑃 (𝜇
𝑘
) 𝜉
𝑘
, (19)

where 𝑃(𝜇
𝑘
) = 𝑃
𝑇

(𝜇
𝑘
) > 0 is a positive-definite matrix which

is also dependent on the normalized fuzzy-weighting func-
tions.

It can be seen that the matrix inequality (18) is rewritten
as follows:

Θ +XB +B
𝑇

X
𝑇

< 0, (20)

where

Θ = [

[

𝑃 (𝜇
𝑘+1

) 0 0

∗ −𝑃 (𝜇
𝑘
) 0

∗ ∗ −𝐼

]

]

,

X =
[
[

[

𝐿 (𝜇
𝑘
)

𝑀 (𝜇
𝑘
)

𝑁 (𝜇
𝑘
)

]
]

]

,

B
𝑇

(𝜇
𝑘
) =

[
[

[

𝐼

−𝐴
𝑇

(𝜇
𝑘
)

−𝐵
𝑇

(𝜇
𝑘
)

]
]

]

,

(21)

and 𝐿(𝜇
𝑘
), 𝑀(𝜇

𝑘
), and 𝑁(𝜇

𝑘
) are matrices with appropriate

dimensions.
Recalling the filtering error system (6), we can see

that B𝑥
𝑘
is equal to zero for all 𝑥

𝑘
which is defined as
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𝑥
𝑇

𝑘
:= [𝜉
𝑇

𝑘+1
𝜉
𝑇

𝑘
𝜔
𝑇

𝑘
]. According to Lemma 1, the condition

(18) has an equivalent one: 𝑥𝑇
𝑘
Θ𝑥
𝑘
< 0, ∀B𝑥

𝑘
= 0, 𝑥

𝑘
̸= 0.

Substituting the representative of Θ into 𝑥𝑇
𝑘
Θ𝑥
𝑘
, we have

the following inequality:

𝜉
𝑇

𝑘+1
𝑃 (𝜇
𝑘+1

) 𝜉
𝑘+1

− 𝜉
𝑇

𝑘
𝑃 (𝜇
𝑘
) 𝜉
𝑘
− 𝜔
𝑇

𝑘
𝜔
𝑘
< 0. (22)

When the external disturbance is zero, the inequality (22) be-
comes

𝜉
𝑇

𝑘+1
𝑃 (𝜇
𝑘+1

) 𝜉
𝑘+1

− 𝜉
𝑇

𝑘
𝑃 (𝜇
𝑘
) 𝜉
𝑘
< 0, (23)

which implies that

Δ𝑉 = 𝜉
𝑇

𝑘+1
𝑃 (𝜇
𝑘+1

) 𝜉
𝑘+1

− 𝜉
𝑇

𝑘
𝑃 (𝜇
𝑘
) 𝜉
𝑘
. (24)

According to the Lyapunov theory, the uncertain filtering
error system is robustly stable.

In the sequel, we are going to establish the 𝑙
2
− 𝑙
∞

per-
formance attenuation level 𝛾. Suppose that the nonzero
external disturbance is no-zero. It is infered from (23) that
the difference of the Lyapunov function satisfies

Δ𝑉 < 𝜔
𝑇

𝑘
𝜔
𝑘
. (25)

Under the assumption of the zero initial values for the filter
and the original system, the Lyapunov function satisfies

𝑉 (𝜉
𝑘
, 𝜇
𝑘
, 𝑘) =

𝑘−1

∑

𝑖=0

Δ𝑉 <

𝑘−1

∑

𝑖=0

𝜔
𝑇

𝑖
𝜔
𝑖
. (26)

In terms of the Schur complement, the inequality (17) implies
that

𝐺
𝑇

(𝜇
𝑘
) 𝐺 (𝜇

𝑘
) < 𝛾
2

𝑃 (𝜇
𝑘
) . (27)

Recalling the filtering error system (6), (19), and (26), we can
conclude that

𝑒
𝑇

𝑘
𝑒
𝑘
= [𝜉
𝑘
]
𝑇

𝐺
𝑇

(𝜇
𝑘
) 𝐺 (𝜇

𝑘
) [𝜉
𝑘
]

< 𝛾
2

[𝜉
𝑘
]
𝑇

𝑃 (𝜇
𝑘
) [𝜉
𝑘
]

= 𝛾
2

(𝑉 (𝜉
𝑘
, 𝜇
𝑘
, 𝑘) + 𝜔

𝑇

𝑘
𝜔
𝑘
)

< 𝛾
2

∞

∑

𝑖=0

𝜔
𝑇

𝑖
𝜔
𝑖
.

(28)

Taking the supremum over time 𝑘 > 0 to the above inequality
can result in the following condition ‖𝑒‖

∞
< 𝛾‖𝜔‖

2
for

all nonzero 𝜔
𝑘

∈ 𝑙
2
[0,∞). Thus, the robust energy-to-

peak performance can be guaranteed. This completes the
proof.

3.2. T-S Fuzzy Filter Design Approach. In the previous sub-
section, we assumed the parameters of the filter are given
and obtained two conditions which can guarantee the robust
stability and the robust energy-to-peak performance. In
this subsection, we will propose the design method of the
filter parameters based on the main results in the previous
subsection.

Theorem 5. Consider a discrete-time robust T-S fuzzy system
in (1) and give a positive scalar 𝛾.Then the filtering error system
in (6) is robustly stable with a filter in the form of (5) if there
exist matrices 𝑃

11,𝑖
= 𝑃
𝑇

11,𝑖
> 0, 𝑃

12,𝑖
, 𝑃
22,𝑖

= 𝑃
𝑇

22,𝑖
> 0, 𝐿

11,𝑖
, 𝐿
12
,

𝐿
21,𝑖

,𝑀
11,𝑖

,𝑀
21,𝑖

, 𝑁
1,𝑖
, 𝐴𝐹
𝑖
, 𝐵𝐹
𝑖
, and 𝐺𝐹

𝑖
, ∀𝑖 = 1, . . . , 𝑠

1
, 𝑗 =

𝑖, . . . , 𝑠
1
, 𝑟 = 1, . . . , 𝑠

1
, such that the following conditions hold:

[
[

[

−𝑃
11,𝑖

−P
12,𝑖

𝐺
𝑇

𝑖

∗ −𝑃
22,𝑖

−𝐺𝐹
𝑇

𝑖

∗ ∗ −𝛾
2

𝐼

]
]

]

< 0, (29)

H
𝑖,𝑗,𝑟

+H
𝑗,𝑖,𝑟

< 0, (30)

where

H
𝑖,𝑗,𝑟

=

[
[
[
[
[
[
[
[
[

[

Ω
11

Ω
12

Ω
13

Ω
14

Ω
15

Ω
16

0

∗ Ω
22

Ω
23

Ω
24

Ω
25

Ω
26

0

∗ ∗ Ω
33

Ω
34

Ω
35

Ω
36

Ω
37

∗ ∗ ∗ Ω
44

Ω
45

Ω
46

0

∗ ∗ ∗ ∗ Ω
55

Ω
56

Ω
57

∗ ∗ ∗ ∗ ∗ −𝜀𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]
]
]
]
]

]

,

Ω
11
= 𝑃
11,𝑟

+ sym (𝐿
11,𝑖
) ,

Ω
12
= 𝑃
12,𝑟

+ 𝐿
12
+ 𝐿
𝑇

21,𝑖
,

Ω
13
= 𝑀
𝑇

11,𝑖
− 𝐿
11,𝑖
𝐴
𝑗
− 𝐵𝐹
𝑗
𝐶
𝑖
,

Ω
14
= 𝑀
𝑇

21,𝑖
− 𝐴𝐹
𝑖
,

Ω
15
= −𝐿
11,𝑖
𝐵
𝑗
− 𝐵𝐹
𝑗
𝐷
𝑖
+ 𝑁
𝑇

1,𝑖
,

Ω
16
= 𝐿
11,𝑖
𝑄
𝑗
,

Ω
22
= 𝑃
22,𝑟

+ sym (𝐿
12
) ,

Ω
23
= −𝐿
21,𝑖
𝐴
𝑗
− 𝐵𝐹
𝑗
𝐶
𝑖
,

Ω
24
= −𝐴𝐹

𝑖
,

Ω
25
= −𝐿
21,𝑖
𝐵
𝑗
− 𝐵𝐹
𝑗
𝐷
𝑖
,

Ω
26
= 𝐿
21,𝑖
𝑄
𝑗
,

Ω
33
= −𝑃
11,𝑖

− sym (𝑀
11,𝑖
𝐴
𝑗
) ,

Ω
34
= −𝑃
12,𝑖

− 𝐴
𝑇

𝑖
𝑀
𝑇

21,𝑗
,

Ω
35
= −𝑀

11,𝑖
𝐵
𝑗
− (𝑁
1,𝑖
𝐴
𝑗
)
𝑇

,

Ω
36
= 𝑀
11,𝑖
𝑄
𝑗
,

Ω
37
= −𝜀𝑋

𝑇

𝑖
,

Ω
44
= −𝑃
22,𝑖
,
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Ω
45
= −𝑀

21,𝑖
𝐵
𝑗
,

Ω
46
= 𝑀
21,𝑖
𝑄
𝑗
,

Ω
55
= −𝐼 − sym𝑁

1,𝑖
𝐵
𝑗
,

Ω
56
= 𝑁
1,𝑖
𝑄
𝑗
,

Ω
57
= −𝜀𝑌

𝑇

𝑖
.

(31)

Moreover, the parameters for each subfilter can be determined
by the following equations:

𝐴
𝑓𝑖
= 𝐿
−1

12
𝐴𝐹
𝑖
, 𝐵

𝑓𝑖
= 𝐿
−1

12
𝐵𝐹
𝑖
, 𝐺

𝑓𝑖
= 𝐺𝐹
𝑖
. (32)

Proof. The proof of the theorem can be done by partitioning
these matrices inTheorem 4 as

𝑃
𝑖
= [

𝑃
11,𝑖

𝑃
12,𝑖

∗ 𝑃
22,𝑖

] , 𝐿
𝑖
= [

𝐿
11,𝑖

𝐿
12

𝐿
21,𝑖

𝐿
12

] ,

𝑀
𝑖
= [

𝑀
11,𝑖

0

𝑀
21,𝑖

0
] , 𝑁

𝑖
= [𝑁
1,𝑖

0] .

(33)

This completes the proof.

The minimal value for the robust energy-to-peak perfor-
mance 𝛾 can be obtained in the following corollary.

Corollary 6. The minimum robust energy-to-peak perfor-
mance index 𝛾 for the filtering error system in (6) can be found
by solving the following minimization problem:

min 𝛾
2

,

s.t. (29) , (30) ∀𝑖 ≤ 𝑗, 𝑖, 𝑟, 𝑗 = 1, . . . , 𝑠
1
.

(34)

4. Illustrative Example

In this section, we consider a discrete-time T-S fuzzy system
as follows.

Plant Rule 1. If 𝑥
1𝑘
isN
11
, then

𝑥
𝑘+1

= [
0.60 0.15

−0.25 0.05
] 𝑥
𝑘
+ [

−0.20

−0.05
]𝜔
𝑘
,

𝑦
𝑘
= [1.0 0.5] 𝑥

𝑘
+ 0.01𝜔

𝑘
,

𝑧
𝑘
= [0.2 0.3] 𝑥

𝑘
.

(35)

Plant Rule 2. If 𝑥
1𝑘
isN
21
, then

𝑥
𝑘+1

= [
0.40 −0.20

−0.20 0.20
] 𝑥
𝑘
+ [

0.1

−0.1
] 𝜔
𝑘
, (36)

𝑦
𝑘
= [−1.0 0.3] 𝑥

𝑘
+ 0.03𝜔

𝑘
, (37)

𝑧
𝑘
= [0.3 1.5] 𝑥

𝑘
, (38)
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Figure 2: The filtering error in this example.

where 𝑥
1𝑘
is the first state of the system

N
11
=

{{

{{

{

0.5 + 0.3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

sin (𝑥
1𝑘
)

𝑥
1𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, for 𝑥
1𝑘

̸= 0,

1, for 𝑥
1𝑘
= 0,

(39)

N
21
=

{{

{{

{

0.5 − 0.3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

sin (𝑥
1𝑘
)

𝑥
1𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, for 𝑥
1𝑘

̸= 0,

0, for 𝑥
1𝑘
= 0.

(40)

For the previous discrete-time T-S fuzzy system, using
Corollary 6, the obtained minimal 𝛾 is 0.1337 and the corre-
sponding parameters of the filters are

𝐴
𝑓1
= [

−0.0810 −1.3402

0.0183 0.2738
] ,

𝐵
𝑓1
= [

−3.3804

0.5396
] ,

𝐺
𝑓1
= [−0.0550 −0.3265] ,

𝐴
𝑓2
= [

−0.0165 −0.1819

0.0120 0.1310
] ,

𝐵
𝑓2
= [

0.4062

−0.2234
] ,

𝐺
𝑓2
= [−0.1315 −1.1957] .

(41)

In order to verify the performance of the designed filter,
it is assumed that the initial state of the system is [0.5, 0.1]𝑇.
Figure 2 shows the filtering error. It can be seen that the filter-
ing error converges to zero quickly.

5. Conclusions

In this paper, we have investigated the robust energy-to-peak
filtering problem for uncertain T-S fuzzy systems. The full-
order filter is dependent on the normalized fuzzy-weighting
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functions. By using two novel lemmas, the conditions for the
robust stability and the robust energy-to-peak performance
of the filtering error systems were provided. The filter design
method was proposed by using the partition method. The
parameters of the T-S fuzzy filters can be obtained by solving
LMIs.
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